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Using an allergic rhinitis (AR) model, we evaluated the pharmacological effects of
novel peptide drugs (P-ONE and P-TWO) at the small RNA (sRNA) level. Using high-
throughput sequencing, we assessed the sRNA expression profile of the negative
control, AR antagonist (positive control), P-ONE, and P-TWO groups. By functional
clustering and Gene Ontology and KEGG pathway analyses, we found that sRNA
target genes have a specific enrichment pattern and may contribute to the effects
of the novel peptides. Small RNA sequencing confirmed the biological foundations of
novel and traditional AR treatments and suggested unique pharmacological effects. Our
findings will facilitate evaluation of the pathogenesis of AR and of the pharmacological
mechanisms of novel peptide drugs.

Keywords: allergic rhinitis, peptide drugs, small RNAs, high-throughput sequencing, gene ontology, KEGG
pathway

INTRODUCTION

Allergic rhinitis (AR) (Maoz-Segal et al., 2019) is defined as inflammation of the nasal mucosa
induced by an allergic reaction; it is also known as anaphylaxis (allergy) (Turner et al., 2019). Based
on the clinical symptoms, AR can be classified into four groups based on its persistence and severity
(Settipane and Charnock, 2016; Jung et al., 2020). For instance, AR of > 4-week duration is classified
as persistent and AR with only mild symptoms as mild. These classifications can be combined;
for instance, mild persistent AR (Settipane and Charnock, 2016). According to an independent
survey, one in five people in Australia (Smith et al., 2017; Price et al., 2018) and one in three in
the United States (Han et al., 2016) suffer or have suffered from AR, typically accompanied by
asthma and allergic complications (Hill et al., 2016). Similar frequencies have been reported in
other countries (Cardell et al., 2016; Bousquet et al., 2018). Therefore, AR is an important threat to
human health globally.

Initially, the pathogenesis of AR was evaluated based on its pathological characteristics, such
as inflammation and bacterial infection (Ledford and Lockey, 2016). However, these symptoms
are similar to those of other diseases such as infectious rhinitis (the common cold) (Meltzer
et al., 2000), indicating that phenotypic features cannot explain the differential susceptibility
among populations. Next-generation sequencing enables genomic and transcriptomic analysis
of disease. Polymorphisms of genes such as FcγRIIIa (Zeyrek et al., 2008) and those encoding
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histamine-metabolizing enzymes (García-Martín et al., 2007) are
reported to be functionally related to the onset of such diseases.
Moreover, the expression of some microRNAs (miRNAs;
e.g., miR-370, miR-539, and miR-299) is altered during AR
pathogenesis (Specjalski et al., 2016).

Histamine H4 receptor, a member of the G protein-coupled
receptor superfamily, is a core regulatory factor of AR (Takahashi
et al., 2009; Broide, 2010; Shiraishi et al., 2013). During the
pathogenesis of AR, H4 receptor is upregulated, triggering
immune over-activation (Lundberg et al., 2011; Walter et al.,
2011) and remodeling of the inflammatory microenvironment
by modulation of IL-6 and INF-γ expression (Peng et al., 2019).
Among the drugs targeting the core pathogenic processes of AR,
many target the H4 receptor. Indeed, two vaccines developed
based on the immunological epitopes of the H4 receptor were
effective in animal models (Wang et al., 2018). Such vaccines
trigger an immune response against abnormally expressed H4
receptor. Th2 cells and IgE have been demonstrated to contribute
to AR pathogenesis and the efficacy of H4 receptor-based
therapeutics (Wang et al., 2018; Peng et al., 2019); however, the
underlying biological mechanisms are unclear.

At the methodological level, in this study, we focused on two
major biological/bioinformatics techniques: (1) establishment
of guinea pig allergic rhinitis model; (2) analyses on small
RNA sequencing data. For the establishment of guinea pig
allergic rhinitis, researchers from multiple countries have
developed and modified various methods to establish stable,
reproducible and comparable models to mimic the pathogenesis
of allergic rhinitis in human beings. In 2006, researchers
from University of British Columbia (Canada) summarized
the general workflow for the establishment of stable guinea
pig allergic rhinitis model using ovalbumin (Al Suleimani
et al., 2007), which is one of the most common allergens
for guinea pigs’ respiratory tracts. In the next decades, the
detailed techniques have been gradually modified but the major
establishment procedure remains stable, implying the stability
and efficiency of such ovalbumin based methods. Apart from
that, another major methodological challenges for our study
turns out to be the comparable small RNA sequencing analyses.
With the development of computational methods, a general
workflow for small RNA sequencing analyses has already been
established including small RNA clustering, novel small RNA
discovery, miRNA target prediction, differential expression of
small RNA, evolutionary analysis, and functional analysis (Baran-
Gale et al., 2015; Fuchs et al., 2015; Buschmann et al., 2016).
In this study, we applied the latest workflow/software for small
RNA identification and annotation [miRDeep2 (Friedländer
et al., 2008) and RIPmiR (Breakfield et al., 2012)], revealing
a robust small RNA profiling results for further analyses
and summarization.

MicroRNAs are important in the pathogenesis of AR. In
this study, miRNA profiling and a guinea pig model of AR
enabled identification of the therapeutic mechanisms of two
epitopes of the H4 receptor. All in all, based on the microRNA
profiling techniques and blood samples from guinea pig model
of allergic rhinitis (AR), we focused the underlying therapeutic
mechanisms of two reported epitopes against H4 receptor for

allergic rhinitis treatment at the microRNA level, trying to
reveal their potential pharmacological mechanisms by targeting
H4 receptors.

MATERIALS AND METHODS

Reagents and Instruments
The following reagents were used: TRIzol (Invitrogen, 15596018),
DEPC water (Ambion, AM9915), chloroform, isopropanol, and
isoamyl alcohol (Xilong Chemistry). The following instruments
were used: cryogenic centrifuge (Eppendorf), vortex oscillator
(Qilinbeier), and TissueLyser II (Qiagen).

Animal Models
We used 38-week-old male guinea pigs (Changchun Biological
Products Research Institute Co., Ltd.; SCXK (Ji) 2016-0008) to
establish a model of AR.

Model Establishment
Following widely reported rhinitis guinea pig model
establishment protocol (Narita et al., 1998), we established
a guinea pig model of AR using ovalbumin (OVA). OVA causes
less irritation and fewer side effects than toluene diisocyanate
but is prone to degeneration or coagulation and so must be made
fresh immediately before use.

Small Peptide Screening
We first purified anti-HRH4 monoclonal IgG to a high purity
(95%) for phage peptide library screening. Using HR4 antibody
as the antigen, we screened out two peptides with high affinity
for the monoclonal HRH4 IgG; these were named P-ONE
(FNKWMDCLSVTH) and P-TWO (TFKFTLSYRQVH) and
have been patented (Patent 1: “Vaccine based on mimicking
human histamine receptor 4 (HR4) epitope and construction
method thereof”, Application No.: 201510382851.1, Publication
No.: 105017385B and Patent 2: “Using a phage antibody library
to screen human histamine receptor 4 (HR4) epitope mimetic
peptides and a vaccine construction method”, Application No.:
201510382781.X, Publication No.: 105037499B).

Preparation of Vaccines
The peptide and CTB were dissolved in physiological saline, and
the same volume of liposome Lipofect was added such that each
200 µL contained 100 µg of peptide and 5 µg of CTB. The
mixture was stored overnight at 4◦C and on the following day
was brought to room temperature.

(1) Add 1 mL of saline to the antagonist to make a 25 mg/mL
solution.

(2) Add 50 µL of normal saline to CTB to make a 10 mg/mL
solution.

(3) The antagonist requires a total of 200 µL of nasal drops
and is formulated as follows: Antagonist (peptide, 100 µg)
4 µL, CTB (5 µg) 0.5 µL, normal saline 95.5 µL, and
liposomes 100 µL.
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(4) P-ONE 20.7 mg, P-TWO 20.5 mg, and control vaccine 20.5
mg. Normal saline (NS) is added to P-ONE, P-TWO, and
control vaccine as shown in Table 1.

Evaluation of Animal Model of AR
There is no uniform standard for the evaluation of AR models.
Instead, such models are evaluated based on their ability to
repeatedly trigger an allergic reaction.

Symptoms of AR, combined with changes in animal behavior
and characteristic pathomorphological changes, were assessed to
evaluate the model. After stimulation, animals with AR exhibit
symptoms such as sneezing, scratching the nose, scratching
the face, and a running nose. Most prior studies adopted
the symptom score of Zhao (1993). We tested the model by
evaluating sniffing, sneezing, and nasal discharge. During the
evaluation, the superimposed quantitative score was applied to
indicate the success of modeling. Symptom score is tested and
calculated at the last time. After stimulation, each animal was
observed for 30 min. The scoring criteria were as follows:

(1) Nasal itching: 1 point for one or two instances of light nose
blowing, 2 points for moderate scratching of the nose/face,
and 3 points for violent scratching of the nose/face.

(2) Sneeze: 1 point for 1–3, 2 points for 4–10, and 3
points for ≥ 11.

(3) Clearing the nose: 1 point for nostril flow, 2 points for the
front nostril, and 3 points for the runny surface.

The three symptom scores were summed and a total score
of ≥ 5 was considered a success. This experiment is based
on observation records and combined with related behavioral
indicators, verifying the success of the model.

RNA Sampling
After the last dose on day 85, behavioral indicators were
evaluated. We extracted RNA from blood samples for miRNA
sequencing using the RNeasy Plus Micro and Mini Kits (Qiagen).

We fragmented and digested tissue samples by two methods.
The first method is a lapping machine-based method. An
appropriate amount of tissue sample was placed in a numbered
grinding and crushing tube and 1.5 mL of TRIzol lysate was
added. The mixture was ground in a TissueLyser II grinder for
30 s, and allowed to stand for 5 min. The second method was
performed using liquid nitrogen. TRIzol lysate (1.5 mL) was
transferred into a 2 mL EP tube. An appropriate amount of tissue
sample was ground into powder in liquid nitrogen, transferred to
the lysate, and allowed to stand flat for 5 min. Next, the disrupted
tissue samples were centrifuged at 4◦C and 12,000 g for 5 min.
The supernatant was transferred to an EP tube containing 300

µL of chloroform: isoamyl alcohol (24: 1), mixed by inverting
and shaking vigorously, and centrifuged at 12,000 g at 4◦C for
8 min. If the middle layer was thick and the water phase turbid,
extraction was repeated using the same volume of chloroform:
isoamyl alcohol (24: 1).

The supernatant was transferred to a centrifuge tube
containing 600 µL of isopropanol. Do not suck into the middle
layer (micro-tissue or micro-cell sample, add 2 µL of 5 mg/mL
glycogen-assisted precipitation during precipitation), mixed by
inversion, and placed at −20◦C for ≥ 2 h. Next, the sample was
centrifuged at 17,500 g for 25 min at 4◦C, the supernatant was
discarded, and the pellet was washed with 0.9 mL of 75% ethanol
and invert the suspended pellet. The sample was centrifuged at
4◦C for 3 min at 17,500 g (depending on the precipitation),
washed with 75% ethanol, and centrifuged at 17,500 g for 3 min at
4◦C. The supernatant was discarded, residual liquid was removed
after brief centrifugation, and allowed to dry for 3–5 min. Finally,
the pellet was dissolved in 30–200 µL DEPC or RNase-free water.

Small RNA Library Construction
We used the Agilent 2100 Bioanalyzer to evaluate sample
integrity and concentration, and NanoDrop to detect inorganic
ions or polycarbonate contamination.

To construct an RNA library, 0.2–1 µg of RNA was subjected
to electrophoresis, 18–30 nt bands were selected (14–30 ssRNA
Ladder Marker, TaKaRa) stripe and recycle. Next, we prepared
a connection 3′ adaptor system at 70◦C for 2 min and 25◦C
for 2 h and added RT primer at 65◦C for 15 min followed
by a ramp to 4◦C at 0.3◦C/s. Finally, we added the 5′ adaptor
mix system at 70◦C for 2 min and 25◦C for 1 h. For reverse
transcriptase-polymerase chain reaction (RT-PCR), we used
First-Strand Master Mix and Super Script II (Invitrogen) and
performed reverse transcription at 42◦C for 1 h and 70◦C for
15 min. Next, several rounds of PCR amplification using a PCR
Primer Cocktail and Master Mix were performed at 95◦C for 3
min; followed by 15–18 cycles of 98◦C for 20 s, 56◦C for 15 s,
and 72◦C for 15 s; followed by 72◦C for 10 min; and a hold
at 4◦C. The PCR products were purified by electrophoresis and
dissolved in EB.

The double-stranded PCR products were heat denatured and
circularized by the splint oligo sequence. The single-stranded
circular DNA (ssCir DNA) was used as the final library. The
library was validating using an Agilent Technologies 2100
Bioanalyzer. The library was amplified with phi29 to generate
a DNA nanoball (DNB), which harbored > 300 copies of one
molecule. The DNBs were loaded into the patterned nanoarray
and single-end 50-base reads were generated by combinatorial
probe-anchor synthesis (cPAS).

TABLE 1 | Vaccine preparation for different experimental and control groups.

Groups Peptide (uL) CTB (uL) Physiological saline (uL) Liposome (uL)

Negative Control NA NA 75 75

Positive Control 3.659 (JNJ77777120) 0.375 71 75

P-ONE 3.623 (P-ONE) 0.375 71 75

P-TWO 3.659 (P-TWO) 0.375 71 75
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Small RNA Sequencing and Analysis
Data Filtering
The impurities in raw data include 5′ primer contaminants, no-
insert tags, oversized insertion tags, low-quality tags, poly-A tags,
small tags, and tags lacking a 3′ primer. Generally, an adaptor
contaminant is caused by low sample quality or adaptor or sample
concentration. The higher the adapter proportion, the greater the
contamination. Low-quality tags are those with > 4 bases and a
quality of < 10 or those with > 6 bases and a quality of < 13.

The above contaminant tags were removed, and the length
distribution of clean tags was analyzed to evaluate sample
composition. Small RNAs (sRNAs) are typically 18–30 nt in
length (miRNAs, 21 or 22 nt; small interfering RNAs [siRNAs],
24 nt; and PIWI-interacting RNAs [piRNAs], 30 nt). The data
were processed by removing tags of low quality, with 5′ primer
contaminants, lacking a 3′ primer, without insertions, with poly-
A, and of < 18 nt. The length distribution of the clean tags was
summarized. After filtering, the remaining clean tags were stored
in FASTQ format (Cock et al., 2009).

Reads Mapping
In general, the higher the alignment ratio, the closer the genetic
relationship between the sample and the reference species. A low
rate may be due to low similarity with the reference genome or to
contaminants. Bowtie (Langmead et al., 2009) was used to map
clean reads to the reference genome and to other sRNA databases.
Please note that for Rfam we used cmsearch (Nawrocki and Eddy,
2013) with the default parameters.

Small RNA Classification
When annotating, some sRNA tags may be mapped to more than
one category. To ensure that each sRNA was mapped to only
one category, we used the priority miRNA > piRNA > small
nucleolar RNA [snoRNA] > Rfam > other small RNA.

Small RNA Prediction
We used miRDeep2 (Friedländer et al., 2008) (for animals) and
RIPmiR (Breakfield et al., 2012) (for plants) to predict novel
miRNAs by exploring the characteristic hairpin structure of
miRNA precursors. Piano (Wang et al., 2014), which is based on
the support vector machine (SVM) (Scholkopf and Smola, 2001)
algorithm and transposon interaction information, was used to
predict piRNAs. The SVM classifier can be used in a wide range
of species including human, mouse, rat, fruit fly, and insects.
siRNA is a 22–24 nt double-strand RNA, one strand of which
is 2 nt longer than the other. Due to this structural feature, we
aligned tags to identify sRNAs meeting that criterion. Such tags
were regarded as siRNA candidates.

Small RNA Expression
The sRNA expression level was calculated by the transcripts
per million kilobases (TPM) method (John et al., 2004), which
eliminates the influence of sequencing discrepancy. The data can
be used for comparing gene expression between samples. To
calculate the TPM the following formula was used:

TPM =
C ∗ 106

N
(1)

Target Prediction
To identify targets we used RNAhybrid (Krüger and Rehmsmeier,
2006), miRanda (John et al., 2004), or TargetScan (Maziere and
Enright, 2007; Agarwal et al., 2015) for animal, and psRobot
(Wu et al., 2012) or TargetFinder (Fahlgren and Carrington,
2010) for plants. The default parameters were as shown in
Table 2.

Screening of DESs (Differential Expressed
Sequences)
RNA sequencing could be modeled as a random sampling
process, in which each read is sampled independently and
uniformly from every possible nucleotide in the sample
(Jiang and Wong, 2009). Under this assumption the number
of reads from a gene (or transcript isoform) follows a
binomial distribution (and can be approximated by the
Poisson distribution).

Using the statistical model described above, DEGseq (Wang
et al., 2009) proposes a novel method based on the MA-
plot, a statistical analysis tool used to detect and visualize
intensity-dependent ratios of microarray data (Yang et al., 2002).
Let C1 and C2 denote the counts of reads mapped to a
specific gene obtained from two samples, with Ci∼binomial
(ni, pi), i = 1,2, where ni denotes the total number of
mapped reads and pi the probability of a read coming
from that gene. We define M = log2C1 - log2C2, and
A = (log2C1 + log2C2 2). It can be shown that under the
random sampling assumption the conditional distribution of
M given that A = a (a is an observation of A) follows an
approximately normal distribution. For each gene on the MA
plot, we perform the hypothesis test H0: p1 = p2 versus H1:
p1 6= p2. A P-value is assigned based on the conditional
normal distribution.

The P-values calculated for each gene are adjusted to Q-values
for multiple testing corrections by two strategies (Benjamini
and Hochberg, 1995; Storey and Tibshirani, 2003). To improve
accuracy, we defined a differentially expressed gene (DEG)
as a fold-change of ≥ 2 and Q-value of ≤ 0.001. RNA-
seq experiments have low technical background noise and
the Poisson model fits the data well. In such cases, the
technical replicates can be pooled to increase the sequencing
depth and detect subtle changes in gene expression. Otherwise,
a method that estimates noise by comparing the replicates
is recommended.

Screening of DESs (Poisson Distribution)
Based on a prior report (Audic and Claverie, 1997), BGI (Beijing
Genomics Institute) developed an algorithm to identify DEGs

TABLE 2 | Default parameter for target prediction.

Methods Parameter

miRanda -en -20 -strict

RNAhybrid -b 100 -c -f 2,8 -m 100000 -v 3 -u 3 -e -20 -p 1 -s 3utr_human

psRobot -gl 17 -p 8 -gn 1

TargetFinder -c 4
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between two samples. If x is defined as the number of reads from
sRNA A, x yields the Poisson distribution:

p (x) =
eλλx

x!
(λ is the real transcripts of the gene) (2)

2
i=y∑
i=0

p(i|x) (3)

Or

2 ∗

1−
i=y∑
i=0

p(i|x))(if
i=y∑
i=0

p(i|x) > 0.5

 (4)

p(y|x) =

(
N2

N1

)
y

(
x+ y

)
!

x!y!
(

1+ N2
N1

)(x|y|1)
(5)

In the equation above, the P-value of the differential gene
expression test is corrected by the Bonferroni method (Atkinson,
2002). DES analysis is then performed on the sample; however,
this generates thousands of hypotheses simultaneously (only
if gene x is differentially expressed between the two groups);
therefore, correction for false positive (type I errors) and false
negative (type II) errors is performed by the false discovery rate
(FDR) method (Benjamini and Yekutieli, 2001). In the next step,
it is assumed that we have selected R DEGs among which S genes
show differential expression, and the V genes are false positives.
The error ratio (Q) is as follows: Q = V R. The user sets a cutoff
value for Q (e.g., BGI sets a default cutoff of 5%), and the FDR is
preset to < 0.05. To assess the significance of differences in gene
expression, an FDR of ≤ 0.001 and an absolute Log2Ratio value
of ≥ 1 are set as the default thresholds. More stringent criteria,
such as a smaller FDR and larger fold-change value, can also be
used to identify DEGs.

Next, we performed multiple hypothesis tests for the P-value
of the differential gene expression test and determine the P-value
field by controlling the FDR result. The conditions were set in
advance so that the FDR cannot exceed 0.05. We also calculated
the gene expression level (FPKM value) to assess differences in
gene expression between samples. The smaller the FDR value, the
greater the difference multiple, indicating a significant difference
in expression. Genes with an FDR≤ 0.001 and multiples of more
than two-fold were regarded as differentially expressed.

Hierarchical Clustering Analysis
We performed hierarchical clustering of differentially expressed
miRNAs using R package “pheatmap” (Kolde and Kolde, 2015).
For more than two groups, hierarchical clustering of the
intersection was performed, followed by union DESs.

Gene Ontology Enrichment Analysis
Gene Ontology (GO) (The Gene Ontology Consortium, 2016) is
an international standard gene functional classification system.
It offers a dynamically updated and controlled vocabulary,
as well as a defined concept to comprehensively describe
properties of genes and their products. GO has three ontologies:
molecular function, cellular component, and biological process.

The basic unit of GO is the GO term; each term belongs to a
type of ontology.

GO enrichment analysis finds all GO terms that are
significantly enriched in a list of DES target genes and finds genes
that correspond to specific biological functions. To perform this
analysis, BGI first maps all genes to GO terms in the database1,
which calculates the number of genes for each term. The
hypergeometric test is then performed to identify significantly
enriched GO terms in the input gene list. The analysis was based
on GO::TermFinder2 and was performed using the following
algorithm:

P = 1−
m−1∑
i=0

(
M
i

)(
N −M
n− i

)

(
N
n

)

(6)

Here, in the equation, N is the number of all genes with
GO annotations; n is the number of DES target genes in N; M
is the number of all genes annotated with a specific GO term;
and m is the number of DES target genes in M. The P-value
was corrected by the Bonferroni method (Ludbrook, 1998); a
corrected P-value ≤ 0.05 was taken as the threshold. GO terms
fulfilling this condition were defined as significantly enriched.

Pathway Enrichment Analysis
KEGG (Kanehisa et al., 2007) was used to perform pathway
enrichment analysis to identify significantly enriched metabolic
or signal transduction pathways in DES target genes when
compared with the whole genome.

The formula was as for GO analysis. N is the number of
all genes with KEGG annotations; n is the number of DES
target genes in N; M is the number of all genes annotated
with a specific pathway; m is the number of DES target genes
in M. The P-value was corrected by the Bonferroni method
(Weisstein, 2004); a corrected P-value <0.05 was taken as the
threshold. KEGG terms fulfilling this condition were defined as
significantly enriched.

RESULTS

General Data Information
The first results of our experiments turn out to be the evaluation
of the guinea pig models used for further analyses. Based on
the scoring criteria, we screened out qualified animals with a
total score of ≥5 as candidate guinea pigs for further grouping
and sequencing. Then, we sequenced the microRNAs from four
group: model establishment group (negative control); models
adding antagonists against HR4 (positive control); group P-ONE
for models adding peptide P-ONE and group P-TWO for
models adding peptide P-TWO. After sequencing and data
preprocessing, we firstly summarized the numbers detected small
non-coding RNAs from each group shown in Table 3. After such
data, we can identify that:

1http://www.geneontology.org/
2http://www.yeastgenome.org/help/analyze/go-term-finder
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TABLE 3 | Summary of detected small non-coding RNAs for each sample.

Sample name Known
miRNA count

Novel miRNA
count

Known piRNA
count

Novel piRNA
count

Known siRNA
count

Novel siRNA
count

Negative Control 266 1976 0 3467 0 0

Positive Control 264 1044 0 3618 0 0

P-ONE 317 768 0 1308 0 0

P-TWO 289 3294 0 26333 0 0

(1) Small non-coding RNAs (sncRNAs) have quite different
distribution patterns in different samples, indicating their
different biological status;

(2) Most of samples have similar number of known
microRNAs, indicating effective microRNA may be
stable and may not participate in related regulations;

(3) No siRNAs have been identified in all the samples.

To verify the distribution pattern, the first step is to verify the
quality of small RNA sequencing. Therefore, we firstly showed
the sequencing qualities length distribution of small RNAs among
different samples (Figures 1, 2). According to such two figures, it’s
easy for us to confirm that:

(1) Our sequencing is of high quality among all the samples:
generally, sequencing with unstable quality along the
genomic position or with averaged quality lower than
20 are regarded as low quality sequencing data. Our
sequencing data has a stable quality greater than 35,
ensuring the reliability of our further analysis;

(2) The identification of small RNAs is quite effective using our
experimental and computational methods;

(3) Such small RNA sequencing results can be processed for
further analysis.

Annotation of Small RNAs
After filtering, the next result obtained from analyses turned
out to be the annotation name and genome locations of such
identified small RNAs. Clean tags were mapped to sRNA database
such as miRBase and Rfam. Table 4 lists separate mapping rate
for each sample and Figure 3 shows the distribution of tags.
The proportion of all kinds of sRNA is shown in Figure 3.
According to Figure 3, different sample groups have quite
different distribution of small RNA subtypes but they do share
some specific prosperities:

(1) Most of the identified small RNAs can be mapped to
the genome.

(2) There still remain various unknown small RNAs for further
identification and function exploration with different
proportions in different samples.

(3) Among those genomic derived small RNAs, most of such
RNAs derived from genetic repeats and intergenic regions.

Based on the annotation of small RNAs, we summarized
the number and distribution patterns of small RNAs that have
already been confirmed and validated before, trying to reveal
potential functional small RNA contribution on allergic rhinitis.

Prediction of Unknown Small RNAs
After the annotation of small RNAs, there still remain a lot of
unknown tags and small RNAs. Therefore, it’s quite necessary for
us to identify new participators for the pathogenesis of allergic
rhinitis at small RNA level. The identification/prediction of new
small RNAs may not only help us enrich feature candidates for
distribution comparison, but also predicted potential functional
new small RNAs. Here, we used effective software : miRDeep2
(Friedländer et al., 2008) (for animals) and RIPmiR (Breakfield
et al., 2012) (for plants) to predict some unknown small RNAs
(microRNAs and piRNAs) based their architectural features.

Expression Identification of Small RNAs
The small RNA expression level is calculated by using TPM,
which is standardized for comparison.

Target Prediction of MicroRNAs Using
Two Typical Computational Software
The target gene/transcripts of microRNAs may actually reflect
the biological functions and significance of microRNAs. We can
use two effective software (RNAhybrid and miRanda) to get the
target gene of miRNA, extract intersection or union of target gene
as final prediction result. The combined target result as shows
in Figure 4. According to the prediction results, RNAhybrid
and miRanda shared various predicted targets (2646560), while
RNAhybrid can identify more unique targets comparing to
miRanda (4492273 vs 894290). The detailed distribution and
comparison of such prediction results can be seen in Figure 4.

Screening Differentially Expressed
piRNAs
Differentially Expressed small RNAs (DESs) screening is aimed to
find differentially expressed small RNA between samples and do
the further analysis. We use DEGseq and ExpDiff methods to do
this analysis on piRNAs. The DESs in each pairwise as shown in
Figure 5.

Screening Differentially Expressed
miRNAs
Similar with the identification of differentially expressed
miRNAs, using software like DEGseq and ExpDiff, we also
identified differentially expressed microRNAs in different groups.
The distribution of differentially expressed microRNAs in each
pairwise as shown in Figure 6. According to the figure, we
still focused on the differentially expressed miRNA pattern
of With DESs, we perform hierarchical clustering of three

Frontiers in Genetics | www.frontiersin.org 6 September 2020 | Volume 11 | Article 560812

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-560812 September 10, 2020 Time: 19:38 # 7

An et al. Pharmacological sRNA Regulation on AR

FIGURE 1 | Quality distribution of four sequencing results. (A) Negative control group; (B) Positive control group; (C) P-ONE group; (D) P-TWO group. From such
four bar plots, we can confirm that all sequencing results are of high quality (greater than 20), satisfying the requirements for further processing and analyses.

comparisons: negative controls and P-ONE; negative controls
and P-TWO and negative controls and positive controls. Based
on such comparation, we identified various expression statistics
at miRNA level:

(1) MicroRNAs have similar alteration pattern in positive
controls and P-ONE group, implying that via microRNAs,
the therapeutic mechanisms of P-ONE may share some
specific regulatory processes with the traditional HR4-
based therapeutics.

(2) However, P-TWO may have totally different regulatory
mechanism considering its specific different alteration
pattern comparing to P-ONE and positive control.

DESs Target Prediction
As we have described in the Methods, we also identified some
target of the DESs. The DESs target were performed by using
several software.

Gene Ontology Enrichment Analysis of
DESs Targets
According to previous analyses, we identified thousands of
genes targeted by differential expressed miRNAs. However, it’s
impossible and unreasonable to analyze the biological effects of
such genes one by one. To show the detailed correlations between

genes targeted by differentially expressed microRNAs and AR
therapeutic effects, here, we introduced gene ontology (The
Gene Ontology Consortium, 2016) and KEGG terms (Kanehisa
et al., 2016, 2018) to describe the functional distribution of
such targeted genes.

Based on the methods we described in Methods, we
further performed Gene Ontology (GO) enrichment analysis
(The Gene Ontology Consortium, 2016) with screened DESs
target genes. GO functional classification is listed to help
understanding the distribution of gene functions of the specie
from the macro level. To reveal the detailed pharmacological
effects of P-ONE and P-TWO, we chose three comparison
to show with GO functional classification box plot. The
comparison can be seen in Figure 7. Comparing the GO
classification box plot, it’s easy to find out that DES target
genes may enrich in similar pattern under three therapeutic
conditions, implying that such three therapeutic methods
(HR4 antagonist, P-ONE and P-TWO) may have similar
pharmacological mechanisms and microRNA may play an
irreplaceable role during such processes.

Pathway Enrichment Analysis of DESs
Targets
Genes usually interact with each other to play roles in certain
biological functions. We perform pathway enrichment analysis
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FIGURE 2 | Length distribution of four sequencing results. (A) Negative control group; (B) Positive control group; (C) P-ONE group); (D) P-TWO group. From such
four bar plots, most of the small RNAs have reasonable length less than 18 nt, corresponding with the general distribution of small RNAs’ length. Therefore, such
results validated the high-quality of our sequencing and the accurate identification of small RNAs.

of DESs target genes based on KEGG database (Kanehisa et al.,
2016, 2018) and generate a report for DESs target genes in
each pairwise, respectively. In addition, we generate a scatter
plot for the top 20 of KEGG enrichment results as Figure 8
and a bar plot for the statistics of KEGG terms types as
Figure 9.

According to the KEGG enrichment figures, we can
summarize the different functional enrichment pattern under

three therapeutic conditions (HR4 antagonist, P-ONE and
P-TWO):

(1) The detailed KEGG enrichment pattern under
three conditions are different involving different
regulatory pathways.

(2) Some specific pathways like pathways in cancer, TGF-beta
signaling pathway and focal adhesion are shared in all
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TABLE 4 | Summary of detected tags for each sample.

Sample name Total tag Mapped tag Percentage (%)

Negative Control 21100237 15900803 75.36

Positive Control 25112110 23343614 92.96

P-ONE 27733405 14780247 53.29

P-TWO 23575452 19846022 84.18

the three groups, indicating the potential contribution of
such pathways for the pharmacological effects of such three
treatment methods.

(3) Still, there are various specific pathways that is differentially
enriched in three groups. For instance, PI3K signaling
pathway is only enriched in positive control group (HR4
antagonist) and P-TWO treatment group, but not P-ONE
treatment group, revealing the potential differences among
such three therapeutic methods.

DISCUSSION

Here, as we have presented above, we accomplished a systematic
analysis on the small RNA (piRNAs and small RNAs) distribution
pattern and potential targeting functional distribution pattern

under different therapeutic conditions against AR. To further
discuss the underlying therapeutic mechanisms of two reported
epitopes against H4 receptor for allergic rhinitis treatment at the
microRNA level and try to reveal their potential pharmacological
mechanisms by targeting H4 receptors, we divided our discussion
in two parts : (1) discussion on the differential small RNA
distribution patterns; (2) discussion on functional clustering of
genes targeted by the differential expressed microRNAs.

Discussion on the Differential Small RNA
Distribution Patterns
As we have shown in Figures 5, 6, it is obvious to see that at
piRNA level, although there is differential expression patterns
in P-ONE and P-TWO, however, the positive control does not
show alterations at piRNA level, indicating that such alteration
induced by P-ONE and P-TWO may not be directly correlated
with targeting HR4 and therapeutic effects on AR. According
to recent publications, no direct reports indicate that piRNAs
may play effective role in the regulation of HR4 during the
pathogenesis of AR, further explaining the specific pattern of
piRNAs in the positive control groups. However, there are various
publications, in deed confirmed that piRNAs may contribute to
the pathogenesis of AR via some specific regulatory mechanisms
like interacting with PTEN (Phosphatase and Tensin homolog)

FIGURE 3 | Catalog of small RNAs in four sequencing groups. (A) Negative control group; (B) positive control group; (C) P-ONE group; (D) P-TWO group. For all
the four samples, most of the so-called small RNAs all come from the genome especially the intergenic regions and only about 5% of all the small RNAs can be
defined as microRNA or small non-coding RNAs. And for all the samples, there still remain thousands of unknown small RNAs for further exploration.
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FIGURE 4 | Venn statistics of filtered predicted targets. Using RNAhybrid and
miRanda, we identified potential targets for our identified miRNAs. According
to the prediction results, among all the predicted targets, most of the targets
are shared by both RNAhybrid and miRanda. Comparing such two methods,
RNAhybrid may work better with more unique prediction results.

(Alexandrova et al., 2016) and PI3k (Phosphoinositide 3-kinase)
(Alexandrova et al., 2016; Narożna et al., 2017). Considering that
traditional HR4 antagonists only block HR4 by physical binding,
however, our newly identified peptides block HR4 biological
functions by triggering specific immune response against HR4.

Therefore, although also targeting HR4, such two peptides may
also have some unique therapeutic contributions on AR, probably
via PTEN or PI3K associated biological processes. The detailed
biological mechanisms may still need further molecular and cell
biology studies to reveal. What’s more, actually, the distribution
patterns of P-ONE and P-TWO are also quite different, P-TWO
has greater effects on the regulation of piRNAs, indicating that
such two peptides may still trigger different immune response
and have different pharmacological mechanisms against AR.

Different from the distribution pattern of piRNAs, the
distributions of miRNAs are quite similar between positive
group and P-ONEp group, indicating that at miRNA level,
such two methods may have similar therapeutic effects on AR.
However, as for the P-TWO group, the distribution of up-
regulated and down regulated microRNAs are reversed. More
microRNAs turn out to be up-regulated in such pattern. Such
phenotype cannot be explained now. However, at least, such
results indicate that P-TWO has quite different pharmacological
effects on microRNA level comparing to P-ONE and traditional
HR4 antagonists.

All in all, summarized from such figures, we can conclude that:

(1) At piRNA level, P-ONE, P-TWO and traditional
HR4 antagonists have totally different expression
pattern, indicating their different regulatory effects
and pharmacological mechanisms.

FIGURE 5 | Statistic of differential expressed sRNAs. Using DEGseq nad ExpDiff, we identified the differentially expressed piRNAs from four groups: 1) negative
control group (neg); 2) positive control group (pos); 3) P-ONE group; 4) P-TWO group. X-axis represents pairwise and Y-axis means number of screened DESs. Blue
bar denotes down-regulated and orange bar for the up-regulated. According to the figure, comparing to the control group, P-TWO have quite a large group of
upregulated pi-RNAs, indicating that P-TWO may have specific pharmacological effects via microRNA regulation.
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FIGURE 6 | Statistic of differential expressed miRNAs. Using DEGseq nad ExpDiff, we identified the differentially expressed miRNAs from four gourps: 1) negative
control group (neg); 2) positive control group (pos); 3) P-ONE group; 4) P-TWO group. X-axis represents pairwise and Y-axis means number of screened DESs. Blue
bar denotes down-regulated and orange bar for the upregulated. According to the figure, P-ONE and traditional HR4-targeted method may have similar regulatory
mechanisms via microRNAs but P-TWO may have its specific pharmacological effects and mechanisms via microRNA regulation.

FIGURE 7 | Go functional classification of DES target genes from three comparison. (A) Comparison between negative control and positive control. (B) Comparison
between negative control and P-ONE. (C) Comparison between negative control and P-TWO. X-axis means number of DEGs (the number is presented by its square
root value). Y-axis represents GO terms. All GO terms are grouped in to three ontologies: blue is for biological processes; brown is for cellular component and
orange is for molecular functions. According to three plots, DES target genes may enrich in similar pattern under three therapeutic conditions, implying that such
three therapeutic methods (HR4 antagonist, P-ONE and P-TWO) may have similar pharmacological mechanisms and microRNA may play an irreplaceable role
during such processes.
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FIGURE 8 | Statistics of pathway enrichment in each pairwise. (A) Comparison between negative control group and positive control group. (B) Comparison between
negative control group and P-ONE. (C) Comparison between negative control group and P-TWO. Rich Factor is the ratio of DESs target genes numbers annotated
in this pathway term to all gene numbers annotated in this pathway term. Greater Rich Fator means greater intensiveness. Q-value is corrected P-value ranging from
0 to 1, and less Q-value means greater intensiveness. We just display the top 20 of enriched pathway terms.

FIGURE 9 | KEGG classification of each pairwise. (A) Comparison between negative control group and positive control group. (B) Comparison between negative
control group and P-ONE. (C) Comparison between negative control group and P-TWO. X-axis means number of DEGs. Y-axis represents second KEGG pathway
terms. All second pathway terms are grouped in top pathway terms indicated in different color.

(2) At miRNA level, P-ONE may have similar therapeutic
effects with HR4 antagonists but P-TWO has quite unique
therapeutic effects on such level.

(3) The typical alteration of small RNA expression level
confirmed that small RNAs in deed play an irreplaceable
role during the therapy of AR and participate in the
pharmacological mechanisms of such medicine.

(4) Also, in terms of methodology, software DEGseq and
ExpDiff may have quite comparable results.

Discussion on Functional Clustering of
Genes Targeted by the Differential
Expressed MicroRNAs
Apart from such phenotypic discussion on the expression
comparison of small RNAs in different groups, using gene
ontology and KEGG annotation and clustering, we also identified
some specific enrichment patterns under different therapeutic

conditions, helping reveal the potential pharmacological
effects of P-ONE and P-TWO comparing to traditional
HR4 antagonists.

Here, firstly, we focused on Figure 7 describing the results of
gene ontology enrichment analyses. Based on the gene ontology
classification, we can summarize that the microRNA target
expression pattern is quite similar under such three treatment
conditions. Therefore, according to such results, although
some regulatory details of P-ONE and P-TWO are different
from traditional HR4 antagonists, actually, the comprehensive
regulatory effects of such two peptides may still be the same at
microRNA regulatory level. Further, such results also confirmed
that new drugs like P-ONE and P-TWO only affect similar
biological processes comparing with previous HR4 antagonists.
Therefore, such two peptides may also be safe to be used in
further therapies.

Apart from gene ontology, we also focused on the KEGG
annotation and clustering results. Based on Figure 8, we
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presented the pathway enrichment pattern in each pairwise. Here,
we identified some specific KEGG pathways that differentially
enriched in different experimental groups.

Firstly, there are still some shared KEGG pathways that have
been identified under all the same conditions, indicating its
specific role for AR pathogenesis and therapies at microRNA
regulatory level. For instance, TGF-beta signaling pathway,
according to recent publications, such biological process has
been widely reported to be a specific pathological pathway
for AR. Early in 1992, researchers in the United States have
confirmed that TGF beta 1 as a core regulator in such
signaling pathway contribute to the pathogenesis of chronically
inflammation in human upper airway tissues, related to the
onset of allergic rhinitis (Ohno et al., 1992). Further in 2002,
another independent study further confirmed the pathogenesis
of allergic rhinitis is directly correlated with TGF-beta effects
(Benson et al., 2002). Therefore, the identification of such
pathway by all the three therapeutic treatment confirmed that
such two new medicine also relied on interfering one of the most
significant pathways of AR to cure such disease. What’s more,
more recent publications (Akdis et al., 2005; Jutel et al., 2006;
Kucuksezer et al., 2013) on TGF-beta and allergic rhinitis also
indicate that TGF-beta is associated with the abnormal immune
responses of AR, corresponding with the designed principal of
P-ONE and P-TWO which is triggering antigen-specific immune
response against HR4.

Apart from such shared biological processes, we also identified
some effective biological processes that is only recognized by
P-ONE and P-TWO. For P-ONE, endocytosis is a unique
pathway with quite low Q-value and has not been identified
by group positive control and P-TWO. In 2019, a specific
publication (Blanco-Pérez et al., 2019)confirmed that a unique
pattern of endocytosis mediated allergen fusion contributing
to the relief of specific allergies, implying that endocytosis
may also contribute to the pathogenesis of AR. The functional
enrichment of P-ONE associated microRNA targets may indicate
that P-ONE may potential inhibit abnormal allergic effects by
interfering allergen fusion, presenting a new theory for the
pharmacological effects of P-ONE. Similarly, as for P-TWO,
there are still some detailed biological processes and pathways
that are uniquely identified in such group. For instance,
the lysosome, although with a relatively high q-value, recent
publications (Ring and Munehen, 1983; Kohno et al., 1987;
Liu et al., 2005) also reported that such biological process
also regulated the abnormal immune response of AR. In
2005, a specific histopathological study (Liu et al., 2005)
on allergic rhinitis confirmed that another drug named as
Centipeda minima treats AR by interfering lysosome associated
biological processes. Therefore, the enrichment of microRNA
targets in such biological process may indicate that P-TWO,
our new peptide drug may interact with lysosome associated
biological processes and interfere the pathogenesis of AR under
certain mechanisms.

Further, we identified the KEGG classification pattern for
each pairwise. Although we have identified various unique
KEGG pathways for each comparison, the general classification
pattern of such three pariwises are quite similar with each

other, implying the general therapeutic effects contributed by
microRNA regulation and the safety of our new drugs P-ONE and
P-TWO.

All in all, as we have mentioned analyzed above, at the
functional level, we can summarize that:

(1) Both P-ONE and P-TWO has similar general and
comprehensive therapeutic effects comparing to traditional
HR4 antagonists at microRNA regulation level according
to gene ontology analyses.

(2) The general pharmacological effects of P-ONE and P-TWO
are similar with those of traditional HR4 antagonists at
microRNA regulatory level. Therefore, P-ONE and P-TWO
may be safe to be applied in clinics considering its
systematic effects in vivo.

(3) According to KEGG pathway enrichment analyses, there
are still some differential regulatory effects of different
treatment strategies at microRNA regulatory level. The
biological foundations of differential therapeutic effects
induced by P-ONE and P-TWO have all been supported
by recent publications.

(4) Some specific pathways like endocytosis, lysosomes, hippo
signaling pathway and inositol phosphate metabolism may
be significant and specific pharmacological mechanisms
for our new drugs P-ONE and P-TWO comparing with
previously widely reported HR4 antagonists.

CONCLUSION

Relied on stable AR models, we identified the pharmacological
effects of our two new candidate peptide drugs P-ONE and
P-TWO on the small RNA level comparing to traditional
HR4 targeting antagonists. Based on the small RNA profiling
results, we firstly confirmed that P-ONE, P-TWO and traditional
HR4 targeting antagonists have specific therapeutic on AR at
microRNA level. Apart from that, the comprehensive effects of
such three treatment strategies are quite similar. For details,
based on KEGG pathway enrichment analysis, we also identified
some unique pharmacological effects of new drugs P-ONE and
P-TWO. All in all, using small RNA sequencing techniques,
for the first time, we compared the pharmacological effects of
P-ONE, P-TWO and traditional drugs and revealed both the
similarities and the differences of such strategies at small RNA
regulatory level, laying a solid foundation for the comprehensive
understanding of the new drugs’ pharmacological mechanisms
and the potential pathogenesis of AR.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in NCBI
SRA. The study number of SRA database is SRP278422 (https:
//trace.ncbi.nlm.nih.gov/Traces/sra/?study~=~SRP278422), and
the BioProject number is PRJNA658395 (https://www.ncbi.nlm.
nih.gov/bioproject/PRJNA658395).

Frontiers in Genetics | www.frontiersin.org 13 September 2020 | Volume 11 | Article 560812

https://trace.ncbi.nlm.nih.gov/Traces/sra/?study~=~SRP278422
https://trace.ncbi.nlm.nih.gov/Traces/sra/?study~=~SRP278422
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA658395
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA658395
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-560812 September 10, 2020 Time: 19:38 # 14

An et al. Pharmacological sRNA Regulation on AR

ETHICS STATEMENT

The animal study was reviewed and approved by the
Institutional Animal Care and Use Committee (IACUC) of Jilin
University approved all animal procedures [permit number:
SYXK(2014-0012)].

AUTHOR CONTRIBUTIONS

LL: conception or design of the work. L-FA: data collection.
Z-DL: data analysis and interpretation. L-FA, Z-DL, and LL:
manuscript drafting and final approval of the version to be

published. All authors contributed to the article and approved the
submitted version.

FUNDING

The work presented in this report is the subject of two patents
filed by Jilin University (CN201510382851.1 [P].2015-11-04 and
CN201510382781.X [P].2015-11-11). This study was supported
by the National Natural Science Foundation of China (81100702),
the Health and Family Planning Foundation of Jilin Province
(20152046), and the Science and Technology Development Plan
Foundation of Jilin Province (20160101070JC).

REFERENCES
Agarwal, V., Bell, G. W., Nam, J.-W., and Bartel, D. P. (2015). Predicting effective

microRNA target sites in mammalian mRNAs. eLife 4:e05005.
Akdis, M., Blaser, K., and Akdis, C. A. (2005). T regulatory cells in allergy:

novel concepts in the pathogenesis, prevention, and treatment of allergic
diseases. J. Allergy Clin. Immunol. 116, 961–968. doi: 10.1016/j.jaci.2005.
09.004

Al Suleimani, M., Ying, D., and Walker, M. J. (2007). A comprehensive model
of allergic rhinitis in guinea pigs. J. Pharmacol. Toxicol. Methods 55, 127–134.
doi: 10.1016/j.vascn.2006.05.005

Alexandrova, E., Miglino, N., Hashim, A., Nassa, G., Stellato, C., Tamm, M.,
et al. (2016). Small RNA profiling reveals deregulated phosphatase and tensin
homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/Akt pathway in bronchial
smooth muscle cells from asthmatic patients. J. Allergy Clin. Immunol. 137,
58–67. doi: 10.1016/j.jaci.2015.05.031

Atkinson, G. (2002). Analysis of repeated measurements in physical therapy
research: multiple comparisons amongst level means and multi-factorial
designs. Phys. Ther. Sport 3, 191–203. doi: 10.1054/ptsp.2002.0123

Audic, S., and Claverie, J.-M. (1997). The significance of digital gene expression
profiles. Genome Res. 7, 986–995. doi: 10.1101/gr.7.10.986

Baran-Gale, J., Kurtz, C. L., Erdos, M. R., Sison, C., Young, A., Fannin, E. E., et al.
(2015). Addressing bias in small RNA library preparation for sequencing: a new
protocol recovers MicroRNAs that evade capture by current methods. Front.
Genet. 6:352. doi: 10.3389/fgene.2015.00352

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J. R. Statist. Soc. Ser. B 57,
289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in
multiple testing under dependency. Ann. Statist. 29, 1165–1188.

Benson, M., Carlsson, B., Carlsson, L. M., Mostad, P., Svensson, P.-A., and Cardell,
L.-O. (2002). DNA microarray analysis of transforming growth factor-β and
related transcripts in nasal biopsies from patients with allergic rhinitis. Cytokine
18, 20–25. doi: 10.1006/cyto.2002.1012

Blanco-Pérez, F., Papp, G., Goretzki, A., Möller, T., Anzaghe, M., and Schülke, S.
(2019). Adjuvant allergen fusion proteins as novel tools for the treatment of
Type I allergies. Arch. Immunol. Ther. Exp. 67, 273–293. doi: 10.1007/s00005-
019-00551-8

Bousquet, J., Arnavielhe, S., Bedbrook, A., Fonseca, J., Morais Almeida, M., Todo
Bom, A., et al. (2018). The Allergic Rhinitis and its Impact on Asthma (ARIA)
score of allergic rhinitis using mobile technology correlates with quality of life:
the MASK study. Allergy 73, 505–510.

Breakfield, N. W., Corcoran, D. L., Petricka, J. J., Shen, J., Sae-Seaw, J., Rubio-
Somoza, I., et al. (2012). High-resolution experimental and computational
profiling of tissue-specific known and novel miRNAs in Arabidopsis. Genome
Res. 22, 163–176. doi: 10.1101/gr.123547.111

Broide, D. H. (2010). Allergic rhinitis: pathophysiology. Allergy Asthma Proc. 31,
370–374. doi: 10.2500/aap.2010.31.3388

Buschmann, D., Haberberger, A., Kirchner, B., Spornraft, M., Riedmaier, I.,
Schelling, G., et al. (2016). Toward reliable biomarker signatures in the age of

liquid biopsies - how to standardize the small RNA-Seq workflow. Nucleic Acids
Res. 44, 5995–6018. doi: 10.1093/nar/gkw545

Cardell, L.-O., Olsson, P., Andersson, M., Welin, K.-O., Svensson, J., Tennvall,
G. R., et al. (2016). TOTALL: high cost of allergic rhinitis—a national
Swedish population-based questionnaire study. NPJ Prim. Care Respirat. Med.
26:15082.

Cock, P. J., Fields, C. J., Goto, N., Heuer, M. L., and Rice, P. M. (2009). The Sanger
FASTQ file format for sequences with quality scores, and the Solexa/Illumina
FASTQ variants. Nucleic Acids Res. 38, 1767–1771. doi: 10.1093/nar/gkp1137

Fahlgren, N., and Carrington, J. C. (2010). miRNA target prediction in plants.
Methods Mol. Biol. 592, 51–57. doi: 10.1007/978-1-60327-005-2_4

Friedländer, M. R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel,
S., et al. (2008). Discovering microRNAs from deep sequencing data using
miRDeep. Nat. Biotechnol. 26:407. doi: 10.1038/nbt1394

Fuchs, R. T., Sun, Z., Zhuang, F., and Robb, G. B. (2015). Bias in ligation-based
small RNA sequencing library construction is determined by adaptor and RNA
structure. PLoS One 10:e0126049. doi: 10.1371/journal.pone.0126049

García-Martín, E., García-Menaya, J., Sanchez, B., Martínez, C., Rosendo, R., and
Agúndez, J. (2007). Polymorphisms of histamine-metabolizing enzymes and
clinical manifestations of asthma and allergic rhinitis. Clin. Exper. Allergy 37,
1175–1182. doi: 10.1111/j.1365-2222.2007.02769.x

Han, Y.-Y., Forno, E., Gogna, M., and Celedón, J. C. (2016). Obesity and rhinitis in
a nationwide study of children and adults in the United States. J. Allergy Clin.
Immunol. 137, 1460–1465. doi: 10.1016/j.jaci.2015.12.1307

Hill, D. A., Grundmeier, R. W., Ram, G., and Spergel, J. M. (2016). The
epidemiologic characteristics of healthcare provider-diagnosed eczema, asthma,
allergic rhinitis, and food allergy in children: a retrospective cohort study. BMC
Pediatr. 16:133. doi: 10.1186/s12887-016-0673-z

Jiang, H., and Wong, W. H. (2009). Statistical inferences for isoform expression in
RNA-Seq. Bioinformatics 25, 1026–1032. doi: 10.1093/bioinformatics/btp113

John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., and Marks, D. S.
(2004). Human microRNA targets. PLoS Biol. 2:e363. doi: 10.1371/journal.pone.
000363

Jung, S., Lee, S.-Y., Yoon, J., Cho, H.-J., Kim, Y.-H., Suh, D. I., et al. (2020). Risk
factors and comorbidities associated with the allergic rhinitis phenotype in
children according to the ARIA classification. Allergy Asthma Immunol. Res.
12, 72–85. doi: 10.4168/aair.2020.12.1.72

Jutel, M., Blaser, K., and Akdis, C. A. (2006). “The role of histamine in regulation
of immune responses,” in Allergy and Asthma in Modern Society: A Scientific
Approach, ed. R. Crameri (Berlin: Karger Publishers), 174–187. doi: 10.1159/
000090280

Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., et al. (2007).
KEGG for linking genomes to life and the environment. Nucleic Acids Res.
36(Suppl._1), D480–D484.

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2016).
KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic
Acids Res. 45, D353–D361.

Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., and Tanabe, M. (2018). New
approach for understanding genome variations in KEGG. Nucleic Acids Res. 47,
D590–D595.

Frontiers in Genetics | www.frontiersin.org 14 September 2020 | Volume 11 | Article 560812

https://doi.org/10.1016/j.jaci.2005.09.004
https://doi.org/10.1016/j.jaci.2005.09.004
https://doi.org/10.1016/j.vascn.2006.05.005
https://doi.org/10.1016/j.jaci.2015.05.031
https://doi.org/10.1054/ptsp.2002.0123
https://doi.org/10.1101/gr.7.10.986
https://doi.org/10.3389/fgene.2015.00352
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1006/cyto.2002.1012
https://doi.org/10.1007/s00005-019-00551-8
https://doi.org/10.1007/s00005-019-00551-8
https://doi.org/10.1101/gr.123547.111
https://doi.org/10.2500/aap.2010.31.3388
https://doi.org/10.1093/nar/gkw545
https://doi.org/10.1093/nar/gkp1137
https://doi.org/10.1007/978-1-60327-005-2_4
https://doi.org/10.1038/nbt1394
https://doi.org/10.1371/journal.pone.0126049
https://doi.org/10.1111/j.1365-2222.2007.02769.x
https://doi.org/10.1016/j.jaci.2015.12.1307
https://doi.org/10.1186/s12887-016-0673-z
https://doi.org/10.1093/bioinformatics/btp113
https://doi.org/10.1371/journal.pone.000363
https://doi.org/10.1371/journal.pone.000363
https://doi.org/10.4168/aair.2020.12.1.72
https://doi.org/10.1159/000090280
https://doi.org/10.1159/000090280
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-560812 September 10, 2020 Time: 19:38 # 15

An et al. Pharmacological sRNA Regulation on AR

Kohno, H., Inoue, H., Seyama, Y., Yamashita, S., and Akasu, M. (1987). Mode of
the anti-allergic action of cepharanthine on an experimental model of allergic
rhinitis. Nihon yakurigaku zasshi. Folia Pharmacol. Jpn. 90, 205–211. doi:
10.1254/fpj.90.205

Kolde, R., and Kolde, M. R. (2015). Package ‘Pheatmap’. R Package 1.7.
Krüger, J., and Rehmsmeier, M. (2006). RNAhybrid: microRNA target prediction

easy, fast and flexible. Nucleic Acids Res. 34(Suppl._2), W451–W454.
Kucuksezer, U. C., Ozdemir, C., Akdis, M., and Akdis, C. A. (2013). Mechanisms

of immune tolerance to allergens in children. Korea. J. Pediatr. 56:505. doi:
10.3345/kjp.2013.56.12.505

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009). Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol. 10:R25.

Ledford, D. K., and Lockey, R. F. (2016). Aspirin or nonsteroidal anti-inflammatory
drug-exacerbated chronic rhinosinusitis. J. Allergy Clin. Immunol. 4, 590–598.
doi: 10.1016/j.jaip.2016.04.011

Liu, Z., Yu, H., Wen, S., and Liu, Y. (2005). Histopathological study on allergic
rhinitis treated with Centipeda minima. China J. Chin. Mater. Med. 30,
292–294.

Ludbrook, J. (1998). Multiple comparison procedures updated. Clin. Exper.
Pharmacol. Physiol. 25, 1032–1037. doi: 10.1111/j.1440-1681.1998.tb02179.x

Lundberg, K., Broos, S., Greiff, L., Borrebaeck, C. A., and Lindstedt, M. (2011).
Histamine H4 receptor antagonism inhibits allergen-specific T-cell responses
mediated by human dendritic cells. Eur. J. Pharmacol. 651, 197–204. doi:
10.1016/j.ejphar.2010.10.065

Maoz-Segal, R., Machnes-Maayan, D., Veksler-Offengenden, I., Frizinsky, S.,
Hajyahia, S., and Agmon-Levin, N. (2019). “Local allergic rhinitis: an old story
but a new entity,” in Rhinosinusitis, eds B. S. Gendeh and M. Turkalj (London:
IntechOpen). doi: 10.5772/intechopen.86212

Maziere, P., and Enright, A. J. (2007). Prediction of microRNA targets. Drug Discov.
Today 12, 452–458.

Meltzer, E. O., Malmstrom, K., Lu, S., Prenner, B. M., Wei, L. X., Weinstein, S. F.,
et al. (2000). Concomitant montelukast and loratadine as treatment for seasonal
allergic rhinitis: a randomized, placebo-controlled clinical trial. J. Allergy Clin.
Immunol. 105, 917–922. doi: 10.1067/mai.2000.106040

Narita, S.-I., Asakura, K., Shirasaki, H., Isobe, M., Ogasawara, H., Saito, H., et al.
(1998). Effects of cyclosporin A and glucocorticosteroids on antigen-induced
hypersensitivity to histamine in a guinea pig model of allergic rhinitis. Inflamm.
Res. 47, 62–66. doi: 10.1007/s000110050274
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