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Abstract
Cachexia, a condition prevalent in many chronically ill patients, is characterized by 
weight loss, fatigue, and decreases in muscle mass and function. Cachexia is associ-
ated with tumor burden and disease- related malnutrition, but other studies implicate 
chemotherapy as being causative. We investigated the effects of a chemotherapy drug 
cocktail on myofibrillar protein abundance and synthesis, anabolic signaling mech-
anisms, and substrate availability. On day 4 of differentiation, L6 myotubes were 
treated with vehicle (1.4 μl/ml DMSO) or a chemotherapy drug cocktail (a mixture 
of cisplatin [20 μg/ml], leucovorin [10 μg/ml], and 5- fluorouracil [5- FLU; 50 μg/ml]) 
for 24– 72 h. Compared to myotubes treated with vehicle, those treated with the drug 
cocktail showed 50%– 80% reductions in the abundance of myofibrillar proteins, in-
cluding myosin heavy chain- 1, troponin, and tropomyosin (p < 0.05). Cells treated 
with only a mixture of cisplatin and 5- FLU had identical reductions in myofibrillar 
protein abundance. Myotubes treated with the drug cocktail also showed >50% re-
ductions in the phosphorylation of AKTSer473 and of mTORC1 substrates ribosomal 
protein S6Ser235/236, its kinase S6K1Thr389 and eukaryotic translation initiation factor 
4E- binding protein 1 (all p < 0.05). Drug treatment impaired peptide chain initiation 
in myofibrillar protein fractions and insulin- stimulated glucose uptake (p = 0.06) but 
increased the expression of autophagy markers beclin- 1 and microtubule- associated 
proteins 1A/1B light chain 3B (p < 0.05), and of apoptotic marker, cleaved caspase 
3 (p < 0.05). Drug treatment reduced the expression of mitochondrial markers cy-
tochrome oxidase and succinate dehydrogenase (p < 0.05). The observed profound 
negative effects of this chemotherapy drug cocktail on myotubes underlie a need for 
approaches that can reduce the negative effects of these drugs on muscle metabolism.
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1 |  INTRODUCTION

Cachexia is a condition that affects greater than nine mil-
lion patients with chronic diseases such as cancer, chronic 
heart failure, and kidney disease (Haehling & Anker, 2010). 
Cachexia leads to wide scale fatigue and weakness, associ-
ated with decreases in quality of life and increased mortality 
and morbidity. It is a wasting disorder characterized by severe 
loss of body weight and depletion of muscle mass and adi-
pose tissue (Ozola Zalite et al., 2015; Thoresen et al., 2013).

Maintenance of skeletal muscle mass is dependent on an 
intricate balance between protein synthesis and protein degra-
dation. These two processes are highly regulated by multiple 
signaling events and pathways. For example, activation of the 
insulin receptor substrate 1 (IRS- 1)/protein kinase B (AKT)/
mammalian (mechanistic) target of rapamycin complex 1 
(mTORC1) pathway is vital for skeletal muscle growth and 
inhibition of skeletal muscle protein degradation (Adegoke 
et al., 2012; Bodine, Stitt, et al., 2001). Stimulation of either 
the ubiquitin proteasome pathway or autophagy/lysosomal 
pathway induces protein degradation within skeletal muscle 
(Bodine, Latres, et al., 2001; Sandri, 2013). Activation of ei-
ther pathway is regulated by factors including the forkhead 
box protein O (FOXO) (Lecker et al., 2004; Senf et al., 2010). 
In addition, mitochondrial homeostasis has been linked to 
muscle wasting (Ballarò et al., 2019). Damaged mitochondria 
activate the AMP- activated protein kinase pathway (Zhao 
et al., 2016), leading to an upregulation of FOXO transcrip-
tion factors and atrogin- 1 (Sandri et al., 2004). Mitochondria 
derived reactive oxygen species also activate FOXO and nu-
clear factor kappa- light- chain enhancer of activated B cells 
(NF- KB) signaling mechanisms (Dodd et al., 2010) leading 
to muscle atrophy.

Since lean body mass is a determinant of chemotherapy 
dose (Ali et al., 2016), patients with reduced muscle mass 
face the possibility of reduced treatment efficacy, increased 
risk of drug toxicity, and reduced chance of disease- free 
survival (Antoun et al., 2010; Jung et al., 2014). Therefore, 
a better understanding of the mechanism of disease- and/or 
treatment- induced cachexia may lead to the development 
of interventions that can limit the debilitating effects of this 
syndrome.

Although available evidence suggests an association 
between chemotherapy treatment and cachexia, the mecha-
nisms of effects of chemotherapy- induced cachexia are not 
completely understood. Cisplatin, a platinum- containing che-
motherapy drug used in the treatment of testicular, ovarian, 
head, lung, and neck cancers (Dasari & Tchounwou, 2014), 
increases mRNA expression of muscle atrophy gene F- box, 
muscle RING finger- 1, and FOXO3 in vivo (Sakai et al., 
2014). In addition, administration of cisplatin in muscle 
cells activates NF- κB (Damrauer et al., 2018), a proteolysis- 
inducing signaling protein (Cai et al., 2004). Other drugs, 

such as 5- fluorouracil (5- FLU), a component of folfiri and 
folfox chemotherapy regimens that are used in the treatment 
of metastatic colorectal cancer (Douillard et al., 2000), up-
regulate p38 mitogen activated protein kinases resulting in 
weight loss, muscle loss, and reductions in mitochondrial 
content (Barreto, Waning, et al., 2016). In addition, 5- FLU 
administration leads to body weight loss, anorexia, and reduc-
tions in nitrogen balance in healthy and tumor- bearing mice 
(Le Bricon et al., 1995). Clinically, 5- FLU is often combined 
with leucovorin (a folic acid derivative) to treat colorectal 
cancer (Gramont et al., 2000). Mechanistically, 5- FLU acts 
as an anti- cancer agent by inhibiting a key enzyme in DNA 
biosynthesis, thymidylate synthase (Peters et al., 2002). 
However, 5- FLU alone is metabolized quickly and only stays 
in circulation for a short period of time. In combination with 
leucovorin, the inhibition of thymidylate synthase by 5- FLU 
is enhanced (Peters et al., 1992), leading to a greater tumor 
response rate (Piedbois et al., 1992) and survival in patients 
with advanced colorectal cancer (Poon et al., 1989). Other 
common chemotherapy drugs, such as doxorubicin, decrease 
muscle protein synthesis (Nissinen et al., 2016) and reduces 
insulin- stimulated glucose uptake (de Lima Junior et al., 
2016), both of which may lead to cachectic symptoms.

Previous studies have examined the effect of individual 
chemotherapy drugs such as cisplatin on muscle wasting 
(Damrauer et al., 2018) or of 5- FLU on body weight loss 
(Sotos et al., 1994). However, chemotherapy drugs are most 
often administered or studied as cocktails (Ballarò et al., 
2019; Barreto, Waning, et al., 2016; Douillard et al., 2000). 
In addition, previous studies have looked at the effect of che-
motherapy drugs on total muscle proteins (Barreto, Waning, 
et al., 2016). However, it is not clear whether myofibrillar 
proteins are specifically affected by these chemotherapy 
drugs. Lastly, although chemotherapy drugs reduce insulin- 
stimulated glucose uptake (de Lima Junior et al., 2016), it is 
not clear whether amino acid transport is similarly affected, 
an important point given the significance of amino acids in 
regulating muscle protein metabolism and mass. Therefore, 
the purpose of this study was to investigate the effects of a 
combinatory chemotherapy drug cocktail (cisplatin, 5- FLU, 
and leucovorin) on myotube morphology, myofibrillar pro-
tein abundance, and synthesis, and the modulation of ana-
bolic signaling pathways. In addition, we examined the 
effects of these drugs on measures of insulin sensitivity and 
substrate transport into muscle cells.

2 |  MATERIALS AND METHODS

2.1 | Cell culture

L6 skeletal myoblasts (American Type Culture Collection) 
were cultured in AMEM supplemented with 10% FBS and 
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1% antibiotic- antimycotic reagents at 37°C and 5% CO2. 
Once confluent (day 0, D0), cells were shifted into AMEM 
supplemented with 1% antibiotic- antimycotic reagents and 
2% horse serum to induce myotube differentiation. Medium 
was replaced every other day until day 4 of differentiation 
(D4). Myoblasts at D0 and myotubes at D4 were harvested 
and used as controls. In separate plates, D4 myotubes were 
treated with fresh differentiation medium in combination 
with either a chemotherapy drug cocktail ([20  μg/ml cis-
platin, 50  μg/ml 5- FLU, and 10  μg/ml leucovorin], Sigma 
Aldrich) or vehicle ([1.4  μl/ml DMSO], Sigma Aldrich). 
Following treatment initiation on D4, myotubes remained 
under respective vehicle or drug treatments for 24, 48, or 
72  h (corresponding to D5, D6, or D7 of differentiation, 
respectively). Although this cocktail is not used in clinics, 
cisplatin, and 5- FLU are extensively used together to treat 
cancers of the esophagus, head, neck, and anus (Hitt et al., 
2002; Psyrri et al., 2004; Rao et al., 2015). In addition, leu-
covorin is often used in combination with 5- FLU (Gramont 
et al., 2000; Kemeny et al., 2004). Therefore, we were in-
terested in studying the combined effects of the three drugs 
on myotubes. For experiments in which we used C2C12, 
myoblasts were cultured in DMEM supplemented with 10% 
FBS and 1% antibiotic- antimycotic reagents at 37°C and 5% 
CO2. Once confluent, cells were shifted into DMEM sup-
plemented with 1% antibiotic- antimycotic reagents and 2% 
horse serum. On D4, C2C12 myotubes were treated with 
vehicle or chemotherapy drug cocktail as described for L6 
myotubes. Compared to L6, C2C12 cells are derived from 
mouse and exhibit differences in glucose transport (Sarabia 
et al., 1990) and mitochondrial respiration (Robinson et al., 
2019). Therefore, we examined whether findings on the ef-
fect of the chemotherapy drug cocktail in L6 myotubes could 
be replicated in C1C12 myotubes.

2.2 | Antibodies

Antibodies to myosin heavy chain- 1 (MHC- 1, MF20), tro-
ponin (JLT12), and tropomyosin (CH1) were obtained from 
Developmental Hybridoma. Antibodies to phosphorylated 
(p) ribosomal protein S6Ser235/236 (S6) (#4858), its kinase 
(S6K1thr389) (#9234), p- AktSer473 (#4060), p- eukaryotic trans-
lation initiation factor 4E- binding protein 1 (4EBP1Thr37/46) 
(#2855), SNAT1 (sodium- coupled neutral amino acid 
transporter 1, #36057), p- IRS1Ser612 (#3203), total (t)- 
IRS1 (#2382), p- glycogen synthase (GS)Ser641 (#47043), 
Beclin- 1 (#3738), microtubule- associated proteins 1A/1B 
light chain 3B (LC3B) (#3868), sqstm1/p62 (#5114), cas-
pase- 3 (#9662), caspase- 7 (#12827), succinate dehydro-
genase (SDHA) (#11998), cytochrome oxidase (COXIV) 
(#4850), and GAPDH (#2118) were purchased from Cell 
Signaling Technology. Anti- ubiquitin antibody (#sc- 8017) 

was purchased from Santa Cruz Technology and γ- tubulin 
(#T6557) from Sigma Aldrich.

2.3 | Immunofluorescence microscopy

Following treatments, myotubes cultured on cover slips 
were fixed in 4% paraformaldehyde solution (PFA in PBS), 
permeabilized with Triton Solution (0.03% Triton X- 100 
in PBS) and incubated in a blocking solution (10% horse 
serum in PBS) for 1  h at 37°C. Myotubes were then ex-
posed overnight at 4°C in a diluted MHC primary antibody 
solution (2.5  μg/ml of MHC in 1% bovine serum albumin 
[BSA] in PBS). The following day, cells were washed and 
exposed to a diluted Texas Red anti- mouse IgG second-
ary antibody solution (1:100 with 1% BSA in PBS) before 
4′,6- diamidino- 2- phenylindole (DAPI) staining (for nuclei) 
and cover slip mounting on microscope slides. Slides were 
then imaged using the EVOS FL Auto microscope (Life 
Technologies) along with the EVOS FL Auto program for 
maintaining acquisition settings in all experimental treat-
ments. Images were quantified as previously described 
(Rocco et al., 2019). Briefly, all images were transformed 
into an 8- bit gray scale image and mean gray value of each 
sample was measured within a 0– 255 range using Image J.

2.4 | Western blotting

Western blotting was carried out as previously described 
(Jeganathan et al., 2014; Zargar et al., 2011). Briefly, the 
pierce BCA protein assay kit (Thermo Fisher, #23225) was 
used to determine protein concentration. Equal amounts 
of protein (~25 µg) were separated on 10% or 15% SDS- 
PAGE gels and transferred onto polyvinylidene difluoride 
membranes (0.2  µM, BIO- RAD). Primary and secondary 
antibody incubation, imaging, and quantification were 
all done as previously described (Jeganathan et al., 2014; 
Zargar et al., 2011). In short, after overnight incubation in 
primary antibodies, membranes were washed 3 × 5 min in 
TBST and then incubated in HRP- conjugated anti mouse 
or anti- goat IgG, depending on the source of the primary 
antibodies. Following another 3 × 5 min washes in TBST, 
HRP chemical luminescent substrate was added to each 
membrane and BIO- RAD ChemiDoc XRS+ was used for 
signal visualization.

2.5 | Peptide chain initiation

At 24 and 48  h following the initiation of drug treatment, 
myotubes were incubated in a protein synthesis labeling mix 
(1X DMEM lacking methionine and cysteine, 2  μCi/ml of 
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35S methionine/cysteine [Perkin Elmer, NEG072007MC] 
and 2% dialyzed FBS) for 1 h. Next, cells were washed 5X in 
ice- cold PBS and harvested with lysis buffer (1 mM EDTA, 
2% sodium dodecyl sulfate [SDS], 25 mM Tris- HCl, pH 7.5, 
1 mM DTT, and 10 μl/ml of each of protease and phosphatase 
inhibitor cocktails). Following 10% SDS– PAGE, gels were 
stained with Coomassie Bright Blue Solution for 1 h (0.1 g 
Coomassie Blue R- 250 dissolved in 100 ml of 50% metha-
nol, 5% acetic acid, and 45% double distilled [DDH2O] solu-
tion). Next, gels were washed 4X in destaining solution (60% 
DDH2O, 20% methanol, 10% glacial acetic acid) and left 
overnight at 4°C in destaining solution. The following day, a 
Coomassie Blue Blot (CBB) image of the stained membranes 
was taken with the Typhoon FLA 9500 imager. Gels were 
then dried for 1 h using a Model 583 Gel Dryer from BIO- 
RAD and placed inside an autoradiography cassette (Fisher 
Scientific: FBCA 810) and exposed to a 20 × 25 cm phos-
pho imaging screen (Fujifilm #An28956475). Following the 
exposure period, the phosphor imaging screen was scanned 
using Typhoon FLA 9500 imager. Previous studies have also 
used 35S methionine/cysteine incorporation as an analysis of 
peptide chain initiation (Kim et al., 2005; Tominaga et al., 
2005).

2.6 | Myotube fractionation

Our procedure was modified from a previous study (El 
Naggar et al., 2004). Following treatments, myotubes 
were trypsinized and collected into 15 ml- test tubes. Cells 
were centrifuged (0.4 g, 5 min, room temperature) and re-
suspended in PBS. They were then centrifuged as before 
and resuspended in 500 μl of buffer1 (1% Triton in PBS) 
supplemented with protease (10  μl/ml) and phosphatase 
inhibitor (10 μl/ml) cocktails and EDTA (1 mM). Of the 
500 μl, 100 μl was extracted for determination of protein 
concentration and also used as the load fraction, while 
the remaining 400 μl was centrifuged (0.1 g, 5 min, 4°C). 
The supernatant was extracted and labeled as the sarco-
plasmic fraction. The pellet (myofibrillar fraction) was 

resuspended in 300  µl of buffer 2 (10  μl/ml of protease 
inhibitor in myofibrillar protein isolation buffer [300 mM 
NaCl, 100  mM NaH2PO4, 50  mM NaH2PO4, 10  mM 
Na4P2O7, 10 mM EDTA, 1 mM MgCl2, pH 6.5, 0.1% mer-
captoethanol]) and left on ice for 40 min. The pellet was 
centrifuged (0.1 g, 5  min, 4°C) and resuspended in fila-
ment buffer (double distilled water, 0.1% betamercaptoe-
thanol, 1 mM EDTA) overnight on ice. The following day, 
pellet was centrifuged (0.1 g, 30 min, 4°C), resuspended in 
filament buffer and centrifuged again (0.1 g, 3 min, 4°C). 
Finally, the pellet was dissolved in 50  μl of 1X sample 
buffer. Since MHC- 1 and GAPDH are myofibrillar and 
sarcoplasmic proteins respectively, we expected to see 
MHC- 1 only in the myofibrillar fraction and GAPDH only 
in the sarcoplasmic fraction. Gamma tubulin was used as 
a loading control.

2.7 | Glucose transport

Following treatments, myotubes were incubated in starvation 
medium (complete starvation medium, free of amino acids 
and serum) for 3 h. They were then incubated with or without 
100 nM of insulin for 20 min, rinsed twice with 2X HEPES 
(4- (2- hydroxyethyl) piperazine- 1- ethanesulfonic acid) buff-
ered saline and then incubated for 5 min at 37°C in 300 μl of 
transport solution (HEPES buffer, 10  μM 2- deoxyglucose, 
0.5 μCi/ml [3H]- 2-  deoxyglucose). Samples were harvested and 
processed as previously described (Jeganathan et al., 2014).

2.8 | Statistical analyses

Quantification data for immunoblot analyses were adjusted 
by their corresponding gamma tubulin values and then nor-
malized to the 24  h vehicle group. For some experiments, 
separate target proteins were imaged in parallel and cor-
rected to similar gamma tubulin values. All graphs were 
drawn using Prism Software Version 7. Unpaired t- test with 
a Welch correction was used to analyze immunofluorescence 

F I G U R E  1  Myotube morphology and abundance of myofibrillar proteins are negatively regulated by a chemotherapy drug cocktail. Using 
the Nikon eclipse TS100 with the 10× objective lens, light microscope images of myotubes in the different treatment groups are shown. (a) 
L6 myoblasts (Day 0) at the onset of differentiation prior to the application of either vehicle (1.4 μl/ml DMSO) or chemotherapy drug cocktail 
(20 μg/ml cisplatin, 50 μg/ml 5- fluorouracil and 10 μg/ml leucovorin) treatment. (b) Following the initiation of drug treatment at the onset of 
differentiation, myoblasts treated with the drug cocktail (right) were unable to form myotubes compared to vehicle (left). Representative images 
from each of three different experiments are shown. In a separate experiment, myoblasts at D0 and myotubes at D4 were harvested and used as 
controls. On day 4 of differentiation (c, untreated myotubes), myotubes were treated with vehicle or the chemotherapy drug cocktail and observed 
24 (d) and 48 h (e) following the initiation of treatment. (f) Immunofluorescence detection of myosin heavy chain- 1 (MHC- 1) 24 and 48 h 
following the initiation of drug treatment in myotubes stained with DAPI (Bar, 400 μm). Vehicle and drug antibody control represents myotubes 
under their respective treatments incubated with primary, but no secondary antibody. Quantified mean gray value of MHC- 1 immunoreactive 
staining and DAPI nuclear staining in vehicle and drug- treated myotubes 24 (g) and 48 h (h) following the initiation of drug treatment. Data are 
mean ± SEM, n = 4 independent experiments (biological replicates), with at least three technical replicates in each treatment group for each of the 
independent experiments, *p < 0.05. DAPI, 4′,6- diamidino- 2- phenylindole
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results and to compare D0 myoblasts to D4 myotubes. Two- 
way ANOVA was used to analyze treatment and time com-
bination, followed by a Tukey's post hoc Test. Differences 

were found to be significant when p < 0.05. All results were 
expressed as means ± SEM of at least three independent ex-
periments (biological replicates).
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3 |  RESULTS

3.1 | Myotube morphology and abundance 
of myofibrillar proteins are negatively 
regulated by a chemotherapy drug cocktail

In an initial experiment, we examined the effects of the drug 
cocktail on myotube formation. At the onset of differentiation 
(Figure 1a), D0 myoblasts were treated with DMSO (Vehicle) 
or the chemotherapy drug cocktail (Drug). By D4 of differen-
tiation, myoblasts treated with the drug cocktail did not form 
myotubes (Figure 1b, right) compared to vehicle (Figure 1b, 
left). We then investigated the effect of the drug cocktail on 
myotubes differentiated for 4 days. (Figure 1c). Twenty- four 
hours (Figure 1d) and 48 h (Figure 1e) after the initiation of 
drug treatment, abnormalities in myotube morphology were 
observed. Twenty- four hours following drug treatment, im-
munofluorescence analysis showed no substantial difference 
in MHC- 1 staining between groups (Figure 1f,g). However, 
at 48  h, treated myotubes exhibited significant reductions 
(~85%) in MHC- 1 staining (Figure 1f,h). Consistent with this 
data, at 48 and 72 h following initiation of drug treatment, 
myotubes treated with the drug cocktail showed >50% reduc-
tions in MHC- 1 protein abundance (Figure 2a). In addition, 
>50% reductions in protein abundance were found for tro-
pomyosin and troponin 24, 48, and 72 h following initiation 
of drug treatment (Figure 2a– c). Similar observations were 
made in C2C12 myotubes treated with the drug cocktail for 
MHC- 1 (Figure 2d) and Troponin (Figure 2e). Removal of 
leucovorin from the drug cocktail did not change the effect 
of the cocktail on MHC- 1 (Figure 2f) or troponin (Figure 2g) 
abundance.

3.2 | Anabolic signaling and protein 
synthesis are decreased following treatment of 
myotubes with a chemotherapy drug cocktail

Due to the decreases in myofibrillar protein content, we exam-
ined proteins involved in mTORC1 signaling, a master regu-
lator of muscle protein synthesis and mass (Adegoke et al., 
2012; Bodine, Stitt, et al., 2001). In the absence of any treat-
ment, phosphorylation (p) of AKTSer473 (mTORC1 upstream 

activator), S6Ser235/236 (ribosomal protein), and S6K1Thr389 
(mTORC1 substrate) were all increased in D4 myotubes 
compared to D0 myoblasts (Figure 3a– c). Myotubes treated 
with the drug cocktail showed significant reductions (>50% 
for all) in the phosphorylation of AKTSer473, S6Ser235/236 and 
S6K1Thr389 48 and 72 h after the initiation of drug treatment 
(Figure 3a– c). Only phosphorylation of S6K1Thr389 was 
found to be decreased (40%) at the 24 h time point (Figure 
3c). In addition, phosphorylation of 4EBP1Thr37/46 was sig-
nificantly reduced (75%) 48  h after the initiation of drug 
treatment (Figure 3d). Due to the observed changes in the 
protein content and mTORC1 signaling, we next measured 
35S amino acid incorporation into peptides, a measure of pep-
tide chain initiation. At 24 and 48 h, myotubes treated with 
the drug cocktail showed a decrease in peptide chain initia-
tion (Figure 3e). Furthermore, peptide chain initiation in my-
ofibrillar and sarcoplasmic fractions was also reduced at the 
48 h time point. Equal protein loading (CBB) and efficiency 
of fractionation (using MHC and GAPDH as markers) are 
shown in Figure 3f.

3.3 | Glucose transport and the expression of 
an amino acid transporter are altered following 
chemotherapy drug treatment

Due to the finding that phosphorylation of AKTSer473 was 
reduced in myotubes treated with the drug cocktail (Figure 
3a) and to examine whether the effects of the drug cocktail 
on myotubes is linked to substrate availability, we next in-
vestigated insulin- stimulated glucose uptake. There were no 
differences in either basal or insulin- stimulated glucose up-
take across treatments 24 h after initiation of drug treatment 
(Figure 4a). At the 48 h time point, there was a trend toward a 
significant reduction (p = 0.06) in insulin- stimulated glucose 
uptake (Figure 4b). To study other indicators of glucose me-
tabolism, we examined phosphorylation of GS, which when 
phosphorylated on Ser641 would suggest reduced glycogen 
synthesis (Jensen et al., 2012). P- GS and P- IRS1 were sig-
nificantly increased (~50%) and decreased (~60%) respec-
tively, in D4 myotubes compared to D0 myoblasts (Figure 
4c,d). Surprisingly, GSSer641 (Figure 4c) and IRS1Ser612 
(Figure 4c,d) were decreased (60% and 70%, respectively) at 

F I G U R E  2  Myotubes treated with the chemotherapy drug cocktail exhibit reductions in myofibrillar protein abundance. L6 myotubes were 
differentiated and treated as described in Figure 1. Control represents the group that received no vehicle or chemotherapy drug treatment. Samples 
were harvested 24, 48, and 72 h following initiation of drug treatment and immunoblotted for MHC- 1 (a), tropomyosin (a, b), and troponin (c). 
MHC- 1, tropomyosin, and the corresponding γ- tubulin (loading control) were imaged on the same membranes. C2C12 myotubes were treated 
with vehicle or a chemotherapy drug cocktail as described for L6 myotubes. Myotubes were harvested and blotted for MHC- 1 (d) and troponin 
(e) 24 and 48 h following the initiation of drug treatment. In (f, g) myotubes were treated with the chemotherapy drug cocktail described earlier 
(drug) or a cocktail composed of 20 μg/ml cisplatin and 50 μg/ml 5- fluorouracil (Cis + 5- Flu) and blotted for MHC- 1 (f) and troponin (g). Data are 
mean ± SEM, n = 3– 4 independent experiments, except in (g) where for technical reasons n = 2 because we could not obtain usable troponin blot 
for one of the three experiments. *p < 0.05, **p < 0.01, ***p < 0.001. MHC, myosin heavy chain- 1
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48 h following the initiation of drug treatment. We note that 
total IRS- 1 level was also reduced (Figure 4e). In addition, 
there were significant reductions (>50% at all time points) in 
protein expression of the amino acid transporter SLC38A9/
SNAT1 at 24 and 48 h (Figure 4f).

3.4 | Ubiquitinated proteins, abundance of 
autophagy markers, and apoptosis in myotubes 
treated with the chemotherapy drug cocktail

Due to the finding that mTORC1 activity and peptide chain 
initiation were decreased (Figure 3), we hypothesized that my-
otubes treated with the drug cocktail would be in a state of el-
evated catabolism. However, there was no significant effect on 
the abundance of ubiquitinated proteins (Figure 5a), a marker 
of activation of the ubiquitin dependent proteolytic pathway 
(Sandri, 2013), but there was a trend for increased beclin1, a 
marker of the autophagy/lysosomal proteolytic system (Kang 
et al., 2011), at 24 and 48 h (p = 0.1 for both time points) 
(Figure 5b). Significant increases (~2- fold) were found for 
LC3BII (Figure 5c), another marker of autophagy. Consistent 
with the induction of autophagy, there was a trend for reduced 
p62 abundance at 48  h in myotubes treated with the drug 
cocktail (Figure 5d). At 48 h of treatment, total, and cleaved 
caspase 3 were decreased (~50%) and increased (~3.5- fold), 
respectively, in drug- treated myotubes (Figure 5e). Although 
there was a trend for decreased caspase 7, cleaved caspase 7 
was not different between groups (Figure 5f).

3.5 | Markers of mitochondrial 
abundance are reduced following 
chemotherapy drug treatment

Since mitochondria dysfunction has been implicated in the 
prognosis of muscle wasting (Ballarò et al., 2019), we meas-
ured mitochondrial content markers. SDHA and COXIV 
were both increased in D4 myotubes compared to D0 myo-
blasts, likely due to increased energy demands. Compared to 
myotubes treated with vehicle, those treated with the drug 
cocktail showed significant reductions in SDHA at both 48 
(50%) and 72 h (60%) after the initiation of drug treatment 
(Figure 6a). Significant reductions (75%) were also found for 
COXIV (Figure 6b).

4 |  DISCUSSION

We showed that treatment of myotubes with the chemo-
therapy agents cisplatin, 5- FLU, and leucovorin led to ab-
normal myotube morphology, impaired protein metabolism, 
and altered substrate availability. These effects appeared to 
be mediated by cisplatin and 5- FLU combination (normally 
used for the treatment of diverse cancers), as the effects on 
myofibrillar protein abundance were identical whether or not 
leucovorin was added. Although some earlier studies have 
examined the effects of chemotherapy drugs on muscle me-
tabolism (Barreto, Mandili, et al., 2016; Barreto, Waning, 
et al., 2016), we demonstrated specific pronounced effects 
of this chemotherapy drug cocktail on both the abundance 
of myofibrillar proteins MHC- 1, troponin, and tropomyo-
sin, and on incorporation of radiolabeled amino acids into 
total and (especially) myofibrillar protein fractions. These 
changes occurred along with reduced substrate (amino acid, 
glucose) availability, and insulin signaling.

Several factors may explain the altered morphology and 
impaired protein metabolism in these myotubes. These in-
clude reduced protein synthesis and increased proteolysis. 
The effect of the drug cocktail on myofibrillar protein abun-
dance occurred in parallel with suppressed mTORC1 signal-
ing, consistent with reduced phosphorylation of S6K1 seen 
in denervation- induced muscle atrophy (MacDonald et al., 
2014) and in other cachexia models (Zhang et al., 2012). The 
reduced mTORC1 signaling is also consistent with reduced 
protein synthesis in these myotubes as mTORC1 mediates 
anabolic signaling (Goodman, 2014). Although we did not 
measure proteolysis per se, we observed a small, but insig-
nificant increase in ubiquitinated proteins in cells treated 
with the drug cocktail. Along the same line, drug treatment 
increased LC3BII and beclin1, but reduced the abundance 
of p62, markers of autophagy/lysosomal proteolytic system 
(Kang et al., 2011), a process that is regulated by mTORC1 
(Kim et al., 2011). These data are consistent with increased 
autophagy (Yang et al., 2010), as shown in a previous study 
with folfiri (chemotherapy) treatment. However, only total 
LC3B and not LC3B II was investigated in that study (Barreto, 
Waning, et al., 2016). We also demonstrated reduced abun-
dance of total caspases 3 and 7, but increased amount of 
cleaved caspase 3, consistent with increased apoptosis (Porter 
& Jänicke, 1999). There is evidence that mitochondrial im-
balance is implicated in the development of muscle wasting 

F I G U R E  3  Anabolic signaling and protein synthesis are decreased following treatment of myotubes with a chemotherapy drug cocktail. 
L6 myotubes were differentiated and treated as described in Figure 1. Phosphorylation of AKTSer473 (a), S6Ser235/236 (a, b), S6K1Thr389 (c), and 
4EBP1Thr37/46 (d) were detected by western blotting in vehicle and drug- treated myotubes 24, 48, and 72 h following initiation treatments. P- 
AKTSer473, S6Ser235/236, and the corresponding γ- tubulin (loading control) were imaged on the same membranes. (e) Autoradiograph showing 
peptide chain initiation, using 35S methionine/cysteine, 24 and 48 h following initiation of treatments. (f) Autoradiograph showing peptide chain 
initiation in myofibrillar and sarcoplasmic protein fractions at 48 h of treatment. Protein loading (CBB) and fractionation efficiency (Western 
Blot) are shown. Data are mean ± SEM, n = 3 for p- S6K1 and p- S6, n = 4 for p- AKT and p- 4EBP1, *p < 0.05, **p < 0.01, ***p < 0.001. CBB, 
Coomassie Blue Blot
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(Ballarò et al., 2019). This is consistent with our data show-
ing reduced level of COXIV and SDHA. Interestingly, cancer 
cachectic patients also show significant increases in beclin1 
and LC3BII, as well as mitochondrial associated autophagy, 
mitophagy (Aversa et al., 2016). Together, these data point to 
co- ordinated regulation of both protein synthesis and proteol-
ysis that put drug- treated myotubes in a catabolic state.

Reduced myofibrillar protein abundance and synthesis 
may also be linked to altered substrate delivery to the cells, 
since the substrates are needed as a source of energy (glu-
cose) and as building blocks for protein synthesis (amino 
acids). Consistent with this, we observed a robust reduction 
in insulin- stimulated glucose transport. The mechanism of 
regulation of glucose uptake in skeletal muscle is tightly reg-
ulated, involving multiple signaling proteins. Activation of 
IRS- 1 by the binding of insulin to the α- subunit of its cognate 
insulin receptor leads to the activation of the PI3K pathway 
(Roques & Vidal, 1999). Acting via the phosphorylation of 
AKT (Franke et al., 1995), the PI3K pathway induces the 
translocation of glucose transporter 4 to the cell surface, 
thereby promoting glucose uptake. The finding of reduced 
glucose uptake is consistent with reduced AKT phosphor-
ylation observed in chemotherapy drug- treated myotubes. 
Interestingly, doxorubicin treatment too decreased insulin- 
stimulated glucose uptake in L6 cells (de Lima Junior et al., 
2016). We also observed reduced expression of a sodium- 
coupled neutral amino acid transporter (SNAT1, or solute 
carrier family 38 member 1 [SLC38A1]). This observation 
is consistent with an earlier report with doxorubicin, a che-
motherapy drug that not only decreases muscle protein syn-
thesis (Nissinen et al., 2016), but also negatively affects free 
amino acid pools within skeletal muscle (Fabris & MacLean, 
2018). Because of the roles of some amino acids (including 
the branched- chain amino acids, glutamine, and arginine) in 
stimulating mTORC1 (Dyachok et al., 2016), chemotherapy 
drug- induced impairment in amino acid transport would not 
only reduce substrate availability, but also suppress anabolic 
signaling needed for protein synthesis.

Finally, the altered morphology and impaired protein 
metabolism in chemotherapy drug- treated myotubes may be 
linked to impaired signaling by anabolic hormones such as 
insulin. Along this line, we observed reduced AKT phosphor-
ylation in response to drug treatment as has been reported 
by others (Fanzani et al., 2011). However, and surprisingly, 
IRS1 serine phosphorylation was reduced in the drug- treated 
groups. This is likely related to reduced mTORC1 signaling, 
as this kinase complex is implicated in the inhibitory serine 

phosphorylation of IRS1 (Lynch & Adams, 2014; Yoon, 
2016). Phosphorylation of IRS1 can lead to varied outcomes, 
depending on the residues that are phosphorylated. For ex-
ample, serine phosphorylation of IRS- 1 usually leads to the 
termination of insulin signaling (Giraud et al., 2007), while 
tyrosine phosphorylation of IRS- 1 promotes insulin signaling 
(Gual et al., 2005). In addition, we found decreased serine 
phosphorylation of GS in the drug- treated groups, suggestive 
of increased glycogen synthesis (Jensen et al., 2012). This is 
an unexpected finding, but one that is consistent with data 
showing tendency for increased muscle glycogen level in a 
model of cancer and chemotherapy- induced cachexia (Pin 
et al., 2019). Findings related to the effect of chemotherapy 
on glucose metabolism are potentially critical as pre- existing 
diabetes in patients receiving chemotherapy treatment can 
lead to both glycemic issues and an increased risk of death 
(Barone et al., 2008).

Limitations of this study include the fact that the che-
motherapy drugs and their effects were not studied individ-
ually. Whereas others have studied the effects of individual 
(Damrauer et al., 2018; Sotos et al., 1994), the goal of our 
study was to investigate the combined effects of chemother-
apy drugs, as this is the usual practice in clinical settings 
(Douillard et al., 2000). The drug doses we used were based 
on a previous study (Barreto, Waning, et al., 2016). Plasma 
concentrations of cisplatin in the range 0.37 to 17 µg/ml have 
been reported in cancer patients being treated with the drug 
(Panteix et al., 2002; Rajkumar et al., 2016), so the concen-
tration we used (20 µg/ml) is not far from values reported in 
patients and hence the relevance of our work. The concentra-
tion of 5- FLU that we used (50 µg/ml) is much higher than 
blood concentration range (0.106– 3.0  µg/ml) observed in 
patients (Gamelin et al., 1996; Yoshida et al., 1990), so more 
studies are needed to examine if lower doses of the drug 
would have an impact on muscle cells. Because total protein 
levels for phosphorylated proteins were not investigated, it is 
possible that the observed decreases in the phosphorylation 
of these signals is due to a decrease in total protein con-
tent. Furthermore, due to the decreases in γ- tubulin levels 
48 and 72  h following drug treatment initiation, findings 
from this study could be attributed to the effect of the che-
motherapy drug cocktail on cell death. This is in line with 
our data showing increased abundance of cleaved caspase 
3 and is consistent with studies that show chemotherapy- 
induced cell death in cardiomyocytes (Nayak et al., 2013; 
Priya et al., 2017). However, all data were normalized to 
their respective γ- tubulin values. In addition, decreases in 

F I G U R E  4  Glucose transport and the expression of an amino acid transporter are altered following chemotherapy drug treatment. L6 myotubes 
were differentiated and treated as described in Figure 1. At 24 (a) and 48 h (b) basal and insulin- stimulated glucose uptake in control, vehicle 
and chemotherapy drug- treated myotubes was examined. Glucose transport was expressed as picomole per μg of protein. Using western blotting 
analysis, p- GSSer641 (c), p- IRS1Ser612 (c, d), t- IRS1 (e) and SLC38A9/SNAT1 (f) were detected in the different groups 24 and 48 h following 
initiation of treatment. P- GSSer641, p- IRS1Ser612, and γ- tubulin (loading control) were imaged on the same membranes. Data are mean ± SEM, n = 3, 
*p < 0.05, **p < 0.01, ***p < 0.001
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the abundance of troponin, tropomyosin and p- S6K1, and in 
peptide chain initiation were found 24 h after the initiation 
of drug treatment, at a time point when γ- tubulin values did 
not differ between treatments. Furthermore, myotube nuclei 
area (Figure 1g,h) was measured and found to not be differ-
ent between treatments. With regard to our cachexia model, 
using an in vitro approach does not allow for the elucidation 
of how these chemotherapy drugs effect the entire body sys-
tem. Nonetheless, our in vitro model allows for the investi-
gation of mechanisms of direct effects of chemotherapy on 
myotube protein metabolism and cachexia development in 
skeletal muscle cells.

In conclusion, we demonstrated specific effects of a che-
motherapy drug cocktail on myofibrillar protein abundance 
and synthesis. These changes occurred in parallel with co-
ordinated alterations in substrate transport, insulin signaling, 

and markers of mitochondrial abundance. If these data mea-
sures are confirmed in vivo, targeting these changes may help 
to preserve muscle mass during chemotherapy treatment and 
thus help to increase treatment efficacy, quality of life, and 
survival of patients.
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