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Sample size matters: A guide for urologists
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ABSTRACT
Understanding sample size calculation is vitally important for planning and conducting clinical research, and critically 
appraising literature. The purpose of this paper is to present basic statistical concepts and tenets of study design pertaining 
to calculation of requisite sample size. This paper also discusses the significance of sample size calculation in the context 
of ethical considerations. Scenarios applicable to urology are utilized in presenting concepts.
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INTRODUCTION

Urology is evolving to emphasize evidence-based 
practice. This movement is driven by the desire to 
deliver scientifically substantiated, optimal healthcare 
approaches applied at patient centred and population 
wide levels. Decisions based on evidence are driving 
medical guidelines, healthcare policies, and insurance 
reimbursements. An integral part of developing and 
utilizing evidence-based practice is understanding 
what makes an individual study valid, and an important 
component of validity is the role of sample size in study 
design and critical appraisal.

For researchers, sample size impacts the scale of the trial 
needed to answer research questions. Once a sample 
size is calculated, investigators can determine if they 
will have the resources or be able to recruit enough 
patients for the study. Investigators also balance ethical 
components for unknown clinical interventions, which 
risk both passive harm from inferior therapy as well 
as active harm from unknown adverse effects, and 
weigh exposure to these unknowns against the needed 
sample size to answer the proposed question. This can 

be particularly relevant in a surgical field such as urology, 
where the clinical intervention may result in irreversible 
modifications to a person’s body or functioning.

For practitioners, detailed reporting of the study designs 
and methods, including descriptions of sample size 
calculations, are necessary in published papers. This practice 
allows the reader to determine whether the arrived at 
conclusion was based on proper principles or assumptions. 
Sample size is especially relevant when study findings 
are negative, and a consideration should be if the study 
possessed adequate sample size to declare equivalence. 
Recognizing the importance of sample size in study design, 
the Consolidated standards of reporting trials (CONSORT) 
guidelines recommend detailing the methodologies used in 
sample size calculation.[1]

The purpose of this article is to present principles underlying 
sample size calculation, and to illustrate how these factors 
interact and drive the dynamics of statistical power. We will 
show how a practical understanding of these factors helps 
formulate questions, devise research strategies, and critically 
appraise conclusions. This paper will focus on aspects 
of study designs that are directly relevant to sample size 
calculation, and to the many components, which influence 
this calculation [Figure 1].

CLINICAL SCENARIO

A 52-year-old woman presents with stress urinary 
incontinence (SUI). After standard work-up, you determine 
that she would benefit from a mid-urethral sling procedure. 
You offer her a transobturator tape (TOT) procedure. She 
wonders if you could do a “mini-sling” for her instead, 
which her friend has had done recently. After a literature 
search using the “PICO” (problem, intervention, comparison, 
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outcome) question, “In women with SUI, how does the 
“mini-sling” compare to the TOT procedure for resolution of 
stress incontinence?”, you find a clinical trial reporting the 
efficacy of the mini sling (MiniArc) compared to traditional 
transobturator tape (Monarch).[2] The investigators performed 
a nonrandomized, retrospective cohort study in which 
75 patients had a MiniArc and 55 patients had a traditional 
Monarch midurethral sling placement for treatment of stress 
urinary incontinence. They report results at 6 weeks and 1 
year for the endpoints of cough stress test, quality of life, pad 
usage, and symptoms score. At one year, 85% of the mini 
sling (MiniArc) group experienced resolution of incontinence 
based on negative cough stress test, versus 89% of the TOT 
(Monarch) group, with a reported P value of 0.60. The 
authors concluded that no difference existed between the 
two groups for SUI treatment efficacy. Before proceeding 
with the mini sling, you wonder if this negative study 
possessed an adequate sample size to draw this conclusion.

STATISTICAL BACKGROUND

The basics of variables and variability
The primary goal of sampling is to take a smaller, but 
still truthful representation of a specific population, for 
which the effects of the studied intervention can then be 
generalized to that population.[3] This review focuses on 
factors for arriving at the requisite sample size, rather than 
on the intricacies of selecting a truly representative sample.

Data is evaluated on properties of both accuracy and 
precision, where accuracy is defined as the reproducibility 
of obtaining the results and precision is a measure of how 
close to the true value the results are. Measurements of both 
will inherently contain errors, though the goal of a well 
designed study is to minimize random and systemic errors.

The intrinsic variability that comes with measuring 
(sampling) an outcome’s known or unknown attributes is 
termed the standard error (SE).[4] The SE can be derived from 
recognized patient characteristics, baseline occurrence rates, 
previous studies, or a pilot study. Outcome variables can be 

defined as binary (for example, incontinent or continent), 
categorical (classification groups such as poor, moderate, or 
severe), or continuous (objectively measurable, such as flow 
rate). Binary and categorical variables need proportional 
calculations, while continuous data requires means testing. 
The standard error in binary variables is directly calculated 
from the baseline rate, whereas for categorical or continuous 
variables, the standard error is calculated from the observed 
variations from the mean.[4] This variability fundamentally 
shapes sample size calculation. When variability is low, 
sampling will be more consistent and more likely to be 
representative, and the sample size can be consequently 
smaller due to the smaller likelihood of sampling error. 
Conversely, large variability creates a higher sampling error, 
which needs to be offset with a larger sample size.

Most variables studied in human populations occur around 
a central tendency, measurable as a mean, median, or 
mode. In statistical terms, this is labelled as a normal 
distribution. A smaller standard deviation denotes values 
are well clustered around a mean, whereas a larger standard 
deviation implies that values are spread out. For any value 
with normal distribution, the variance can be mitigated by 
incorporating a larger sample size. However, the sample size 
should not be arbitrarily large, and the proper sample size 
should be tempered by others factors, including resource 
scarcity and a desire to minimize potential harm or exposure 
to inferior therapy. Additionally, if an intervention is truly 
unknown, researchers may elect to perform a 2-stage study 
design, where the initial stage is examined with a lower 
threshold of therapy response and a second stage continued 
if therapy response is confirmed. This approach minimizes 
exposure to harm from inferior therapy.[5]

In contrast to variability, the confidence interval reflects the 
range of data, including derived results such as relative risks or 
odds ratios. We may look to confidence interval as a surrogate 
resides within the presented range. A wide confidence 
interval indicates lack of precision on measurement of the 
effect, and a confidence interval that covers zero effect 
denotes a lack of statistical significance. The same factors that 
influence confidence interval also directly relate to sample 
size, including variability of the outcome, the significance 
level selected, and the magnitude of the effect.

Effect size and clinical significance
Studies are designed around the principle question being 
investigated. This seemingly obvious statement carries many 
important implications and corollaries. Endpoints need to be 
carefully considered and congruent to the question.

Effect size characterizes the primary endpoint studied, 
and expected treatment effects or event rates must be 
deliberated beforehand. For example, expected mortality 
can vary dramatically across different urological diseases. 
Localized transitional cell carcinoma of the bladder has a 

Figure 1: Variable and their relationship to sample size
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five-year survival of approximately 74.3%, whereas clinically 
localized prostate cancer has an overall five-year survival of 
99.7% (not differentiating stage or grade).[6] As such, a study 
of a proposed therapeutic intervention with mortality as the 
primary end point would necessarily require a much larger 
scale in a prostate cancer trial as opposed to a bladder cancer 
trial due to the lower mortality rates (lower expected event 
rates) associated with localized prostate cancer. 

The magnitude of the expected difference in outcome 
between two interventions will shape the trial size. When 
the treatment effect is anticipated to be large, it will 
be more readily apparent, and a smaller sample size is 
needed. Conversely, if the treatment effect is anticipated 
to be smaller, a compensatory increase in sample size is 
needed. Taken to extremes, a treatment effect may be so 
large that a comparative study would be moot, and sample 
size could theoretically be increased so high that statistical 
significance could be shown irrespective of its clinical 
utility. In a urological context, one might think of a novel 
intervention to treat stress urinary incontinence compared 
to current mid-urethral sling procedures. In theory, at a 
large enough sample size, a difference in continence rates 
of 2% could achieve statistical significance. However, it is 
doubtful that any urologist would consider this difference 
to be clinically relevant. It is important to consider that 
significance is also contextual. A 2% difference may be 
clinically significant if the endpoint was simultaneously rare 
and grave, such as with fatal pulmonary embolism. Thus, 
studies should declare a priori what the researchers deem 
to be a clinically significant difference, and they must be 
able to justify how they arrived at this figure. Investigators 
should define a treatment effect or outcome that represents 
the minimal change in magnitude, which would provide a 
clinically significant improvement. 

Random error assignments
Studies are designed to test a hypothesis. By convention, 
the hypothesis is often stated as a null. That is, for any 
intervention, the null hypothesis states that the intervention 
does not affect the outcome. The data is then examined 
and the conclusion is made whether to accept or reject 
that null hypothesis.[7] At this point, incorrect conclusions 
may be reached in opposing directions. A type I error 
exists when the null hypothesis is incorrectly rejected, 
i.e., stating that a treatment effect does exist when in 
truth it does not. The type I error is related to the P value 
(represented by α), which defines the threshold needed to 
achieve significance. A type II error occurs when the null 
hypothesis is erroneously accepted, i.e., concluding that no 
treatment effect is observed when in actuality one does exist. 
The type II error is represented by β, and is directly related 
to the power of the study to detect a treatment effect. This 
relationship is mathematically expressed as: Power = 1- β. 
The paramount goal of proper sample size estimation is to 
minimize the possibility for these two errors to occur. 

An acceptable type I error threshold is usually set at 5%. 
This implies that the likelihood of the outcome occurring by 
chance alone is less than one in 20. Type II error is usually 
set at 20%, meaning that the likelihood of not seeing a real 
effect would occur in one in five. Its direct corollary power 
is 80%, using the previously noted power calculation. 
These established conventions signify that researchers 
are more disinclined to make an erroneous association of 
effect than they are to fail to recognize a true effect. These 
assumptions may or may not hold true for a particular 
research question, so in some instances further emphasis 
will be placed on finding the association. For example, a 
study may be directed to find equivalence, and the power 
of the study is correspondingly increased. Depending on 
the research question, expected occurrence rates, and other 
mitigating factors, the values selected for type I and type II 
errors may be adjusted. Choosing a higher type I error rate 
may compromise the legitimacy on any positive findings, 
and choosing a lower type I error may have the effect of 
lowering the statistical power of the study.

Setting the P value, testing for benefit versus harm, 
and using multiple end points
While the most conventionally selected P value is 0.05, 
this number is arbitrary. Certain clinical questions may 
warrant either a more or less stringent significance level (for 
example, P=0.01 or 0.1). This decision should be driven by 
the severity of the outcome and weighed against the risks 
associated with intervention.

Another consideration is if the study will only look for a 
positive difference or if it will also examine the possibility 
of a detrimental effect. This is correspondingly termed 
either a unidirectional one-sided significance test or a non-
directional, two-sided test. Performing the significance 
test in a non-directional manner effectively halves the α 
level, such that an α of 0.05 actually sets the significance 
level at a 0.025 probability for correctly (or erroneously) 
concluding that the intervention is significantly better than 
the comparative treatment. The two-sided test therefore 
requires a larger sample size and is appropriate when an 
unknown intervention may in fact be harmful compared to 
the control. It is generally the more favored significance test 
to use and, indeed, the CONSORT guidelines recommend 
two-sided test methodologies be used for comparative 
studies.[1]

Statistical significance is also influenced by examining 
multiple endpoints. Multiple hypotheses testing can 
compromise the alpha level and increases the likelihood 
of committing a type I error. A urology study on voiding, 
for example, may choose to evaluate multiple endpoints, 
including flow rate, post void residuals, symptoms scores, 
detrussor pressure, retention rates, surgical intervention 
rates, and more. It should be recognized that as more 
endpoints are considered, it becomes more likely that the 
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intervention will be found to achieve statistical significance 
for one of these endpoint, due to chance alone. This can 
be imperfectly adjusted for by computational corrections. 
The most common is the Bonferroni correction, where the 
threshold of significance level is lowered by dividing the 
alpha by n, where n is the number of hypothesise tested.[8] 
Depending on the number of endpoints, this may greatly 
reduce the significance of each statistical test. Indeed, some 
argue that the correction is too conservative and drives alpha 
to a prohibitive level.[8] Power is thus reduced as a larger 
sample may be needed to achieve this significance.

Compliance
Patient recruitment, compliance, and loss to follow-up 
are key concerns. The robustness of the sample size is also 
compromised by events of unrelated mortality, patient drop 
outs, contamination, and unplanned crossover. Thus, the 
planned sample size may need upward adjustment by 10% 
to 15% to account for these events.[9] Other assumptions used 
in sample size calculation such as treatment effects or event 
rates may prove to be incorrect, and it is also often prudent 
for researchers provide a mechanism for interim analysis, so 
sample size or target enrolment can be revised if needed, or 
treatment stopped if unexpected harm is detected.[10]

Power and sample size with example calculations
Power is directly related to the factors of sample size, effect 
size, and significance level. The effect size and the significance 
level are intrinsic to the clinical question being researched, 
where only a certain range is justifiable. This leaves sample 
size as the most accessible variable to the investigator. For any 
circumstance, increasing the sample size effectively increases 
the power of the study, although the power should be tempered 
to detect only differences that are clinically significant.

For dichotomous variables, required sample size can be 
estimated once the values of baseline events, appropriate 
level of significance, desired power of the study, and the 
clinical effect size are known. For continuous variables, an 
estimation of the variance in the sample data is also needed.

Consider these examples to illustrate how these factors 
interrelate. A randomized trial evaluates a novel technique 
for stress urinary incontinence with comparison to 
traditional mid-urethral sling. The endpoint is social 
continence. Suppose that traditional, mid-urethral slings 
have an efficacy of 80% in our defined study population, 
based on prior evidence, and we define a clinically relevant 
difference to be 10%. We select a standard P value of 0.05 
and a standard power of 80%. Sample size for this example 
can be calculated from available formulas.[11,12] Z values are 
found by referring to tables of probability distribution; in 
this example we use a normal distribution. Inserting values, 
we arrive at a calculated sample size of 83 subjects in each 
arm. However, if we also wish to consider that this novel 
therapy may in fact be worse than the mid-urethral sling, we 

need to use non-directional significance testing. This slightly 
different equation[11,12] shows we need 108 subjects in each 
arm. We should plan for recruiting in excess of this goal by 
10% to 15% to account for possible loss to follow-up or data 
loss, which is approximately 118 subjects in each arm. If we 
change our definition of a clinically relevant difference to 
20%, we now find that we would need approximately half 
the sample size, all other parameters being equal.

Looking at a continuous variable, we investigate a new 
medication in the treatment of benign prostatic hypertrophy, 
and our selected endpoint is flow rate. In our study 
population, the average flow rate is 12 ml/s with a standard 
deviation of 4 ml/s. We determine that a clinically significant 
improvement would be at least 3 ml/s, and we again select a 
P value of 0.05 and a power of 80%. Sample size calculation 
for this example[11,12] (size estimation for comparing means 
from a single population with a directional test) yields a 
study population of 11 patients per arm. If the standard 
deviation is 6 ml/s, the measurement of the outcome is much 
less precise, and the sample size needed for each group would 
become 25.[11,12] Inherent properties of measuring means 
can have tremendous influence in determining sample size.

Sample size in urology literature
Others have examined urological literature to determine 
how frequently negative studies were underpowered to 
find statistical significance. Breau et al. in 2006 looked at 
clinical trials in Urology where a negative conclusion was 
reached.[13] They identified 127 trials providing enough 
information for post hoc power calculation. Assuming a 
threshold for a treatment difference of 50%, they found that 
33% to 65% of studies were adequately powered (>80%), 
depending if the outcome were respectively continuous or 
dichotomous. When the threshold was changed to look at 
a treatment effect of 25%, (a more reasonable expectation) 
only 23% to 33% of those studies were adequately powered 
to detect a difference. They also noted that the prevalence 
of adequately powered studies did not improve over time. 
Another group found that in randomized controlled trials 
there was a higher prevalence of sample size calculation in 
2004 as compared to 1996 (47% versus 19%),[14] suggesting 
an increasing understanding within the urology community 
of its importance. This still revealed that the majority of 
randomized controlled trials in the urologic literature did 
not justify sample size. A significant portion of published 
comparative studies with negative findings may be 
underpowered to validly reach this conclusion, and such 
conclusions should be approached with caution.

Resolution of the clinical scenario
For clinicians, understanding sample size calculations is 
essential in analyzing the veracity of a study finding when 
there is a positive finding, but also when there is a finding of 
no difference between therapeutic interventions. At times, 
the failure to detect a difference stems from a lack of power 
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in the study and not from true equalities of the treatments. 
Therefore, it is vitally important for study authors to state 
a priori the sample size calculation, and delineate the 
underlying assumptions and expectations that went into 
that calculation.

In a negative finding study, such as the one comparing 
mini-sling to TOT, one of the concerns is whether the 
study was adequately powered to detect a difference if one 
existed. As the comparison was performed retrospectively, 
no sample size calculation was performed, yet we can still 
use this study to illustrate post hoc power calculation. We 
know from the literature that the TOT sling has an efficacy 
of approximately 85%. We can define a clinically significant 
difference to be 10%, a reasonable estimate based on the 
clinical scenario, prior studies, and potential benefits or 
harms of the procedure. We select the customary alpha 
values of 0.05 (running a two-tailed test) and decide on a 
beta value of 0.20, giving us a power of 80%. From this post 
hoc power calculation,[11,12] the study would have needed 
at least 78 patients in each arm to draw a valid conclusion, 
and appears to be slightly underpowered to detect a 10% 
difference in efficacy between these two modalities. Based 
on these clinical assumptions, the conclusion of equivalence 
may be in fact invalid. You counsel your patient appropriately 
and she is able to make an informed decision.

SUMMARY

An understanding of sample size estimation and how 
various factors interrelate into its calculation is invaluable 
knowledge to any person seeking to perform a clinical study 
or to critically appraise evidence. Sample size estimation 
helps ensure responsible usage of resources and the ethical 
treatment of human subjects. It also obliges researchers 
to define key assumptions including projected occurrence 
rates or effect size, levels of statistical significance, and 
acceptable power of the study so that the readers may 

make determination on the merits of these factors. This is 
imperative for studies with negative findings or for studies 
aiming to prove equivalence.
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