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Abstract

Enlargement or aneurysm of the aorta predisposes to dissection, an important cause of sudden 

death. We trained a deep learning model to evaluate the dimensions of the ascending and 

descending thoracic aorta in 4.6 million cardiac magnetic resonance images from the UK Biobank. 

We then conducted genome-wide association studies in 39,688 individuals, identifying 82 loci 

associated with ascending and 47 with descending thoracic aortic diameter, of which 14 loci 

overlapped. Transcriptome-wide analyses, rare-variant burden tests, and human aortic single 

nucleus RNA sequencing prioritized genes including SVIL, which was strongly associated with 

descending aortic diameter. A polygenic score for ascending aortic diameter was associated with 

thoracic aortic aneurysm in 385,621 UK Biobank participants (HR = 1.43 per s.d.; CI 1.32-1.54; P 
= 3.3 × 10−20). Our results illustrate the potential for rapidly defining quantitative traits with deep 

learning, an approach that can be broadly applied to biomedical images.

Aortic aneurysm, a pathologic enlargement of the aorta, is common, having a prevalence of 

approximately ~1% in industrialized nations1. Over time, the enlarged aorta progressively 

expands; this process can lead to aortic dissection and rupture, which are the most 

catastrophic complications of aortic aneurysm and important causes of sudden cardiac death. 

Currently, the most effective preventive therapy is surgical or endovascular repair of the 

aorta, morbid procedures that are only performed when aneurysms are detected prior to 

aortic dissection. However, timely detection is uncommon because thoracic aortic aneurysm 

is typically asymptomatic until the time of dissection or rupture. Unlike abdominal aortic 

aneurysm, which has clinical screening guidelines, population screening for thoracic aortic 

aneurysm is not routinely performed2,3.
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Consequently, the epidemiological and genetic contributions to aortic aneurysm have long 

been of interest to investigators. Clinical studies have suggested the close association of 

aneurysms of the descending thoracic aorta with atherosclerosis and lifestyle-associated risk 

factors, while those of the ascending aorta occur in younger patients, sometimes associated 

with pathogenic genetic predisposition4–6. Mutations in several genes have been associated 

with ascending aortic aneurysms, but the small number of implicated genes is mostly 

limited to highly penetrant Mendelian loci identified in family studies7–9. Thus, there is 

an urgent need to identify the genetic basis for variation in aortic size in order to enable 

the development of new therapeutic targets for medical intervention and to identify at-risk 

individuals with aortic aneurysms.

Results

We hypothesized that the size of the thoracic aorta is a complex trait, with contributions 

from common genetic variants. Because the ascending and descending thoracic aorta have 

not only separate biological origins10,11, but also distinct clinical risk factors underlying 

aneurysm formation12, we chose to quantify these aortic regions independently. All analyses 

were conducted in the UK Biobank unless otherwise stated.

Semantic segmentation of aorta with deep learning.

First, 116 cross-sectional cardiovascular magnetic resonance imaging (MRI) still-frame 

images at the level of the right pulmonary artery from the UK Biobank were manually 

annotated by a cardiologist (J.P.P.). This annotation is known as semantic segmentation—the 

task of identifying and labeling all pixels that comprise an object in an image.

We then used those annotations to train a deep learning model to perform the same semantic 

segmentation task. We chose a U-Net architecture13,14, because it has (i) an encoder that 

permits the model to recognize the image content (such as the presence of the aorta), 

and (ii) skip-connections from some of the earliest layers to some of the deepest layers, 

enabling the fine-grained localization of that semantic label within the input image. This 

allows the model to precisely identify the boundaries of the aorta, permitting accurate 

measurements. As a form of transfer learning, this model’s encoder had been pre-trained 

on ImageNet, which is a natural-image classification dataset. Therefore, instead of starting 

with random weights, the model was initialized with weights that are helpful for processing 

images, reducing the amount of manual annotation and model training necessary to achieve 

informative results13,15.

During training, 92 images were used for training and 24 as a validation set. The model 

achieved 96.5% pixel categorization accuracy for the ascending aorta and 94.1% for the 

descending aorta in the validation set. These were typical accuracies based on 10-fold 

cross validation (ascending aorta accuracy mean 95.2%, range 90.9%-97.2%; descending 

aorta accuracy mean 92.2%, range 88.9%-95.9%). We also evaluated inter-rater reliability 

between annotators, compared models trained by different annotators, and assessed the 

dependence of model performance on the number of training examples (see Supplementary 

Note, with a visualization of model output in Supplementary Fig. 1).
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Having trained a deep learning model to recognize the pixels of ascending and descending 

aorta using manually annotated images in the UK Biobank, we then applied the model 

to all dedicated aortic MRI data available in the UK Biobank (Table 1). The model was 

applied to 4,374,900 images from 43,243 participants who participated in the first UK 

Biobank imaging visit (Fig. 1). The deep learning model produced pixel labels with the 

same dimensions as the input MRI image (generally 240px by 196px).

Diameter measurement and quality control.

We applied classical computer vision algorithms to post-process the deep learning output 

in order to measure the aortic diameter16. We considered the elliptical minor axis at its 

maximum size throughout the cardiac cycle to be the aortic diameter. We computed the 

diameter of both the ascending and descending thoracic aorta and treated these as our 

primary phenotypes for subsequent analyses.

Quality control was then performed to exclude measurements from images in which the 

aorta was deemed to be incorrectly recognized according to one or more heuristics (see 

Online Methods). In total, 42,518 UK Biobank participants had at least one measurement 

that passed quality control (40,363 with ascending aortic diameter and 41,415 with 

descending aortic diameter). 39,260 participants’ measurements passed quality control for 

both ascending and descending aorta. We identified a subset of 2,976 individuals who had 

undergone imaging at two different times, and used those data to confirm that our modeling 

approach yielded reproducible measurements (detailed in the Supplementary Note).

Characteristics of the thoracic aortic diameter.

The median diameter of the ascending aorta in women was higher with advancing age 

(Extended Data Fig. 1), from 2.9 cm in women under the age of 55 to 3.1 cm in women over 

the age of 75. In men, the diameter ranged from 3.2 cm under the age of 55 to 3.4 cm over 

the age of 75. These values are similar to those reported previously using MRI to measure 

ascending aortic diameter in other cohorts17. For the descending aorta, the median diameter 

in women ranged from 2.2 cm in women under the age of 55 to 2.3 cm in women over the 

age of 75. In men, the diameter ranged from 2.4 cm under the age of 55 to 2.6 cm over the 

age of 75. A standard reference table of aortic diameters by age and sex was computed and 

is available in Supplementary Table 1. The ascending and descending aortic diameters were 

modestly positively correlated with one another (r2 = 0.18 after adjusting for sex, detailed in 

the Supplementary Note and shown in Supplementary Fig. 2). The ascending aortic diameter 

had greater variance than that of the descending aorta (Supplementary Note), consistent with 

prior observations18.

Correlation between aortic diameter and other traits.

We characterized the relationship between the aortic diameter and other anthropometric 

measurements in the UK Biobank (Supplementary Table 2 and Supplementary Fig. 3a, 

left). The diameter of ascending aorta was strongly positively correlated with traits such 

as weight, height, and blood pressure, as well as traits that correspond with larger body 

size such as greater forced expiratory volume in one second, hand grip strength, and food 

and alcohol consumption, consistent with previous reports19. The diameter of ascending 
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aorta was strongly inversely correlated with heart rate and biomarkers including cholesterol, 

testosterone, and sex hormone binding globulin. We observed similar associations for the 

descending aortic diameter (Supplementary Fig. 3a, right).

We also analyzed the association between aortic size and PheCode-based disease labels20. 

The size of the ascending aorta was associated with cardiovascular diseases such as 

hypertension, aortic aneurysm, valvular disorders, and cardiac arrhythmias, as well as other 

traits including varicose veins, obesity, and osteoarthritis, several of which correspond 

to previous clinical observations21. Descending thoracic aortic size was associated with 

obesity, hypertension, and varicose veins. Notably, coronary artery disease was inversely 

associated with descending aortic diameter (P = 1.7 × 10−6), but not associated with 

ascending diameter (P = 0.6). In addition, the descending aortic size was directly associated 

with cholelithiasis and headache, and inversely associated with type 1 diabetes, as has 

previously been observed22,23 (Supplementary Table 3 and Supplementary Fig. 3b, left). 

While the ascending and descending aortic diameters shared similar correlations with most 

continuous traits, their relationships with PheCode-based disease phenotypes were more 

independent (Supplementary Fig. 3b, right).

GWAS of thoracic aortic diameter.

We next sought to understand the common genetic basis for variation in the size of the 

ascending and descending thoracic aorta in the UK Biobank. We excluded participants from 

genetic analysis if they had an aortic diameter greater than 5 cm, a known history of aortic 

disease, or genetic data that did not pass sample-level quality control (Extended Data Fig. 2). 

38,694 participants had data that passed quality control and contributed to genetic analyses 

of the ascending aortic diameter, and 39,688 participants contributed to analyses of the 

descending aortic diameter (Table 1; participant characteristics stratified by smoking status 

are displayed in Supplementary Table 4).

We confirmed that both traits were highly heritable: the single nucleotide polymorphism 

(SNP) heritability of the size of the ascending aorta was 63% (95% CI 60%-67%), while that 

of the descending aorta was 50% (95% CI 47%-53%).

We then conducted genome-wide association studies (GWAS) of these two traits, testing 

16.7 million genotyped and imputed SNPs with MAF > 0.001. We identified 82 independent 

loci associated with the diameter of the ascending aorta at a commonly used genome-wide 

significance threshold (P < 5 × 10−8) (Table 2 and Fig. 2a,b). Of these, 75 loci were 

novel. In the descending aorta, we identified 47 genome-wide significant loci, of which 43 

were novel and one was located on the X chromosome (Table 3). In total, we identified 

115 loci, of which 14 were associated at genome-wide significance with both traits (Fig. 

2c). Test statistic inflation was observed in QQ plots (Extended Data Fig. 3) and the low 

linkage disequilibrium (LD) score regression (ldsc) intercepts indicated that this inflation 

was consistent with polygenicity rather than confounding (Supplementary Table 5)24. As 

a sensitivity analysis, the GWAS was also repeated in a European-only subset of the UK 

Biobank (Supplementary Note and Supplementary Tables 6 and 7).
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Previous analyses of thoracic aortic phenotypes including aortic root diameter, ascending 

aortic dissection, or thoracic aortic aneurysm have identified only 16 genome-wide 

significant loci; of these, nine achieved genome-wide significance in our study, including 

all three loci that have been associated with thoracic aortic dissection (near FBN1, ULK4, 

and the STAT6-LRP1 locus; Supplementary Table 8)25–29.

We sought to replicate our UK Biobank GWAS findings in 3,287 participants from the 

Framingham Heart Study (FHS) who had genotyping data and cross-sectional imaging of 

the ascending and descending thoracic aorta by computed tomography30,31. Since the FHS 

sample size was an order of magnitude smaller than our discovery population in the UK 

Biobank, we focused on directional agreement. Of the 82 lead SNPs in the ascending aorta, 

72 were identified in the FHS dataset. 60 of these 72 SNPs were directionally consistent 

in both datasets (two-tailed binomial P = 8.1 × 10−9; Extended Data Fig. 4a). 41 of the 46 

autosomal lead SNPs from the descending aorta were identified in FHS, and 36/41 were 

directionally consistent (two-tailed binomial P = 7.8 × 10−7; Extended Data Fig. 4b and 

Supplementary Table 9). Thus, despite comprising a significantly smaller sample, as well 

as using a different imaging modality and measurement technique, the FHS results were 

aligned with our findings from the UK Biobank.

Genetic correlation with other phenotypes.

We used genetic correlation to gain insight into the relationship between aortic diameter and 

other cardiovascular and anthropometric phenotypes in the UK Biobank. The ascending 

and descending aortic phenotypes had a genetic correlation with one another of 0.48 

(95% CI 0.45-0.52) as estimated by BOLT-REML32,33. We used LD score regression to 

assess genetic correlation between the aortic traits and up to 281 additional quantitative 

phenotypes from the UK Biobank that were precomputed by the Neale Lab (https://ukbb-

rg.hail.is/)34. As expected, we observed positive genetic correlations between aortic size and 

anthropometric measures such as height and weight, as well as related phenotypes such as 

blood pressure (Supplementary Table 10, Extended Data Fig. 5 and Supplementary Fig. 4).

Given the observed genetic correlation with blood pressure (ldsc rg 0.30 for ascending aortic 

diameter and 0.17 for descending aortic diameter), we also surveyed the overlap between 

the aortic loci and genome-wide significant blood pressure loci. Ten of the 82 lead SNPs for 

ascending aortic diameter were within 500 kb of a lead SNP from a recent GWAS for blood 

pressure, as were six of the 47 descending aortic lead SNPs (Supplementary Table 11)35. Of 

the nine adrenoceptor genes, which encode the molecular targets of alpha- and beta-blocking 

medicines, none were within 500 kb of a lead SNP in our study.

Transcriptome-wide association study.

To gain more insight into the GWAS loci themselves, we took three approaches to prioritize 

genes at each locus and to link those genes to relevant cell types. First, we conducted a 

transcriptome-wide association study (TWAS), linking predicted gene expression in aorta 

(based on GTEx v7) with aortic size (Fig. 3a and Supplementary Tables 12 and 13)36,37. We 

identified 53 transcripts that were significantly associated with the diameter of the ascending 

aorta and 15 with the descending aorta at P < 5 × 10−8.
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Among the strongest TWAS associations in the ascending aorta were ULK4, a gene 

previously linked with aortic dissection, and THSD4, whose protein product binds to 

fibrillin (FBN1) and modulates microfibril assembly38. Also notable was USP15, whose 

protein product is a deubiquitinating enzyme that acts on the TGF-β receptor and enhances 

TGF-β signaling39,40; the TWAS results suggest that higher USP15 expression is linked with 

a greater ascending aortic diameter. In the descending aorta, the strongest TWAS association 

was with the gene SVIL, of which increased transcription was associated with greater aortic 

diameter (Fig. 3a).

Rare variant association test.

Second, we conducted a rare variant association test in 12,336 UK Biobank participants with 

both aortic imaging and exome sequencing data. No gene achieved Bonferroni significance 

in an exome-wide analysis. Restricting the analysis to genes within a 500-kb window around 

GWAS loci (67 genes for ascending aorta and 55 genes for descending aorta; Supplementary 

Table 14), we found that loss of function variants in SVIL were most strongly associated 

with a smaller mean descending aortic diameter (14 carriers; loss-of-function effect size 

−0.17 cm, 95% CI −0.08 to −0.26 cm, P = 2.2 × 10−4; Fig. 3b).

Single nucleus RNA sequencing.

Third, we undertook direct analysis of tissue and cell-specific expression patterns to localize 

and identify relevant cell types. We used tissue-specific LD score regression to test for 

enrichment of the aortic diameter GWAS results in 53 GTEx v6 tissue types37,41. For the 

ascending aortic loci, enrichment was significant in aortic and coronary artery tissues (P 
= 8.8 × 10−5 and P = 1.1 × 10−4, respectively). Enrichment of aortic and coronary artery 

tissues was also observed for the descending aortic loci (P = 3.1 × 10−4 and P = 1.8 × 10−3; 

Supplementary Tables 15 and 16). These data are consistent with the expectation that the 

aorta itself is the most relevant tissue linked with our findings.

Therefore, we incorporated an analysis of single-nucleus RNA sequencing (snRNA-seq) 

using paired samples from the ascending and descending aorta from three individuals to 

identify potentially relevant cell types for the genes at aortic GWAS loci (Supplementary 

Note). We sequenced the transcriptomes of 54,092 nuclei and identified 12 primary cell 

clusters (Fig. 4a). Through comparison of unique transcriptional profiles in each cluster to 

canonical cell markers, we identified populations comprising vascular smooth muscle cells, 

fibroblasts, three distinct types of endothelial cells, as well as macrophages and lymphocytes 

(Fig. 4b). We then examined the cell type-specific expression of the genes prioritized by the 

TWAS (Fig. 4c,d).

Locus prioritization.

The gene SVIL was notable for being in proximity to one of the strongest GWAS signals for 

the descending aorta. In the TWAS, a predicted increase in SVIL expression corresponded 

to a larger descending aortic diameter (Fig. 3a), while loss of function variants in SVIL 
were associated with a smaller descending aortic diameter in the rare variant analysis 

(Fig. 3b). snRNA-seq revealed that SVIL is most strongly expressed in vascular smooth 

muscle cells within the aorta (Fig. 4c,d), consistent with a role in aortic size determination. 
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SVIL encodes the protein supervillin, an F-actin and myosin II binding protein that 

localizes to and coordinates the action of cell surface extensions called ‘invadosomes’. 

These promote matrix degradation through the localized release of extracellular matrix-lytic 

enzymes such as disintegrin-and-metalloprotease domain-containing proteins and matrix 

metalloproteinases42,43.

In the ascending aorta, a lead SNP (rs1441358) was found within an intron of THSD4, 

which encodes the protein thrombospondin type 1 domain containing 4, a protein that 

promotes the organized assembly of fibrillin-1 microfibrils38. In the TWAS, a decrease in 

predicted THSD4 expression was linked to an increase in aortic diameter. The gene was 

excluded from our rare variant association test because too few UK Biobank participants 

carried a loss-of-function variant. A recent familial study of thoracic aortic aneurysm 

and dissection linked loss-of-function variants in THSD4 to ascending aortic aneurysm44, 

consistent with the expected direction of effect. Our snRNA-seq data suggest that THSD4 is 

primarily expressed in aortic vascular smooth muscle cells (and a separate cell cluster with 

lymphatic character), consistent with a role in aortic size (Fig. 4c).

Our genetic and single-nucleus transcriptomic analyses also highlight WWP2, which is 

linked to the size of both ascending and descending aorta. The lead SNP (rs62053262) is an 

expression quantitative trait locus (eQTL) in the aorta for WWP237; the rs62053262 G allele 

corresponds to reduced expression of WWP2 in aorta and smaller aortic size. The protein 

product of WWP2, NEDD4-like E3 ubiquitin-protein ligase, acts as an E3 ubiquitin ligase 

for PTEN45 and has previously been shown to regulate cardiac fibrosis through modulation 

of SMAD signaling46. Examining single-nucleus expression data, we show that WWP2 
expression is enriched in aortic vascular smooth muscle cells (Extended Data Fig. 6).

In other cardiovascular phenotypes, GWAS loci have been enriched for Mendelian 

genes47,48, so we asked whether the loci identified in our study were in closer proximity 

to more genes implicated in Mendelian aortopathies than expected by chance. We did 

not find an enrichment of previously described Mendelian thoracic aortic aneurysm and 

dissection genes49 (23 genes; 2 overlapping with ascending loci, P = 0.14; 1 overlapping 

with descending loci, P = 0.32 by one-tailed permutation tests). However, our analysis has 

independently identified loci containing relevant genes such as FBN1, well described as the 

causal gene in Marfan syndrome50, and loci near genes such as PI15, known to cause arterial 

dysfunction in rats51, as well as the ABCC9-KCNJ8 locus, linked to Cantú syndrome—a 

rare recessive cause of aortic aneurysm in humans52. Other loci suggest the involvement 

of novel genes within networks previously implicated in aortic disease; for instance, the 

protein product of ASB2 is part of the E3 ligase that targets both filamin B (encoded by 

FLNB, the nearest gene to a lead SNP on chromosome 3) and the known aortic disease 

protein filamin A (FLNA) for degradation53. Moreover, TGF-β signaling, heavily implicated 

in clinical aortic disease, is also represented in our GWAS gene set as indicated by MAGMA 

analysis (Extended Data Fig. 7 and Supplementary Tables 17 and 18)54.

Polygenic score associated with clinical aortic disease.

Finally, we probed the clinical relevance of the GWAS loci by asking whether a polygenic 

score for ascending aortic size produced from these loci was associated with thoracic aortic 
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disease risk. We analyzed the remaining UK Biobank participants who had not undergone 

MRI and who did not have a diagnosis of aortic disease at enrollment. A polygenic score 

was built from the 89 autosomal, independently significant SNPs from the ascending aorta 

GWAS (including the lead SNPs as well as other SNPs with P < 5 × 10−8 having r2 < 

0.001 with other significant SNPs within the derivation sample; Supplementary Table 19). 

In 385,621 UK Biobank participants over a median of 11.2 years of follow-up time after 

enrollment, this polygenic score was strongly associated with the 685 incident cases of 

thoracic aortic aneurysm or dissection (HR = 1.43 per standard deviation; CI 1.32-1.54; P 
= 3.3 × 10−20). Participants in the top 10% of the polygenic score had a 2.1-fold hazard 

ratio compared to the remaining 90% of the cohort (CI 1.8-2.6; P = 7.3 × 10−15; Fig. 5). A 

descending aortic diameter polygenic score produced from the 46 autosomal lead SNPs had 

a weaker association with thoracic aortic aneurysm or dissection (HR = 1.15 per standard 

deviation; CI 1.07-1.24; P = 2.9 × 10−4).

Limitations.

Our study is subject to several limitations. The study population largely consisted of 

European-ancestry UK Biobank participants, limiting generalizability to other populations. 

The aortic measurements were derived from a deep learning model that was trained on 

cardiologist-annotated segmentation data, but the vast majority of images were not manually 

reviewed; nevertheless, genetic results derived from manually annotated FHS imaging data 

were generally concordant with our findings. Our experiments suggest that increasing the 

number of training examples would modestly improve the deep learning model, which may 

enhance our ability to discover genetic associations. The need for additional manually 

annotated training examples is likely to be particularly important for more complex 

structures in future work. The human aorta tissue samples for the single-nucleus RNA 

expression experiments arose from paired samples in three individuals, so there is likely 

to be considerable variation in expression that is not captured in our analysis. Additional 

questions of interest, such as the presence of gene-environment interactions, remain for 

future work. Because only approximately 10% of the UK Biobank population had exome 

sequencing data available, we were unable to explore the relationship between loss- and 

gain-of-function variants in genes such as SVIL and disease diagnoses outside of the 

imaging cohort; this will be interesting to explore when additional sequencing data become 

available. Finally, because thoracic aortic aneurysm is not routinely assessed in screening 

tests, the effect estimate of the ascending aortic polygenic score is likely to be biased 

due to ascertainment in UK Biobank participants; future analyses in external datasets will 

be required to confirm the observation linking the polygenic score to aortic aneurysm or 

dissection.

Discussion

In summary, we used deep learning to assess the size of the ascending and descending 

thoracic aorta using magnetic resonance imaging data in a large population-based biobank. 

We identified 75 novel loci in the ascending aorta and 43 in the descending aorta, explored 

their relationships to other traits, and assessed their association with aortic aneurysm or 

dissection. These findings permit several conclusions. First, these results demonstrate that 
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deep learning is a powerful tool for deriving quantitative phenotypes from raw signal data 

at a population level. In particular, by using transfer learning from a deep learning model 

trained on a large but unrelated set of images compiled for a different task, we were able to 

develop a useful model while manually annotating only a small number of images. Second, 

these results highlight the value of studying quantitative traits, such as aortic size, in order to 

gain greater understanding of disease processes underlying aneurysm and dissection. Third, 

the modest genetic correlation and limited locus overlap of the ascending and descending 

thoracic aorta highlight their distinct biology. Fourth, we prioritize several potential gene 

targets based on integration of GWAS, TWAS, and rare variant analyses, and identify their 

likely cell type of relevance with snRNA-seq. Fifth, a polygenic score for ascending aortic 

size is an independent risk factor for aneurysmal enlargement of aorta. Future work is 

warranted to determine whether a model incorporating a polygenic score and clinical risk 

factors might identify high-risk, asymptomatic individuals who would benefit from thoracic 

imaging to screen for ascending aortic aneurysm.

Methods

Study design.

All analyses were conducted in the UK Biobank unless otherwise stated. The UK Biobank is 

a richly phenotyped, prospective, population-based cohort that recruited 500,000 individuals 

aged 40-69 in the UK via mailer from 2006-201055. In total, we analyzed 487,283 

participants with genetic data who had not withdrawn consent as of October 2018. Access 

was provided under application #7089. Analysis was approved by the Partners HealthCare 

institutional review board (protocol 2019P003144). GWAS replication was performed in an 

imaging substudy of the community-based Framingham Heart Study (FHS) Offspring and 

Third-Generation cohorts; participants were ascertained based on sex-specific age cutoffs 

(≥ 35 years for men and ≥ 40 years for women), and weight < 350 pounds as described 

previously and approved by the institutional review boards of the Boston University Medical 

Center and the Massachusetts General Hospital30. Ascending and descending human aortas 

were obtained from 5 human patients through a rapid autopsy protocol (DFHCC IRB 

#13-416) within 4 hours of cardiac death.

Our design was as follows: we manually annotated pixels belonging to the aortic blood pool 

in 116 cardiac MRIs from the UK Biobank. We then developed a deep learning model, 

trained on our manual annotations, to perform the same task at scale. The model was then 

applied to the remainder of the imaging data from the UK Biobank, permitting us to estimate 

the aortic diameter for every participant with imaging. Genetic discovery of loci related to 

the diameter of the ascending and descending thoracic aorta, treated as quantitative traits, 

was performed in this same UK Biobank cohort. A replication GWAS, based on previously 

performed aortic diameter measurements using computed tomography, was performed in 

FHS. With the genetic results from the UK Biobank, we performed a transcriptome-wide 

association study (TWAS) by incorporating publicly available gene expression data in order 

to prioritize genes at each genomic locus. We also performed a rare-variant association test 

in just over ~12,000 UK Biobank participants with both imaging and exome sequencing 

data. A single nucleus RNA sequencing study was then performed (using nuclei from aortas 
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obtained from five human patients through a rapid autopsy protocol) to identify the aortic 

cell types that were most relevant to the genes highlighted by our bioinformatic analyses. 

A polygenic score produced from SNPs associated with aortic diameter in the UK Biobank 

GWAS was used to predict incident aortic disease in the remaining UK Biobank participants 

who had not undergone cardiac imaging.

Statistical analyses were conducted with R version 3.6 (R Foundation for Statistical 

Computing, Vienna, Austria).

Cardiac magnetic resonance imaging.

The UK Biobank is conducting an imaging substudy on 100,000 participants which is 

currently underway56,57. Cardiac magnetic resonance imaging was performed with 1.5 Tesla 

scanners (MAGNETOM Aera, Siemens Healthcare), using electrocardiographic gating for 

cardiac synchronization57. A balanced steady-state free precession cine, consisting of a 

series of exactly 100 images throughout the cardiac cycle, was acquired for each participant 

at the level of the right pulmonary artery57.

Deep learning for segmentation of the aorta.

Segmentation maps were traced for the ascending and descending thoracic aorta manually 

by a cardiologist (J.P.P.). To produce the final model used in this manuscript, 116 samples 

were chosen, manually segmented, and were then used to train a deep learning model with 

fastai v1.0.5913. The model consisted of a U-Net-derived architecture, where the encoder 

was a resnet34 model pre-trained on ImageNet13–15,58,59. 80% of the samples were used 

to train the model, and 20% were used for validation. Development versions prior to this 

final model are detailed in the following section. Variations on this modeling approach, and 

inter-rater evaluations, are described in subsequent sections.

During training, all images were resized to be 160 pixels in width by 132 pixels in height 

for the first half of training (‘small image training’), and then 240 pixels in width by 196 

pixels in height, which is the native size of these images, for the second half (‘large image 

training’), detailed below. The Adam optimizer was used, and the model was trained with 

a minibatch size of 4 (when training with small images) or 2 (when training with large 

images)60. Rather than using extensive hyperparameter tuning with a grid search, the model 

was instead trained using a cyclic learning rate training policy, which alternately decreases 

and increases the learning rate during training61.

The maximum learning rate (the step size during gradient descent) was chosen with the 

learning rate finder from the FastAI library13. During small image training, the maximum 

learning rate was set at 0.002, with 20% of the iterations permitted to have an increasing 

learning rate during each epoch across 20 epochs. This was performed while keeping all 

ImageNet-pretrained layers fixed, so that only the final layer was fine-tuned. Then all 

layers were unfrozen and the model was trained for an additional 15 epochs with the same 

maximum learning rate. For large image training, the same model was then updated using 

full-dimension images, and the maximum learning rate was set to 0.0002, with 30% of 

the iterations permitted to have an increasing learning rate over 8 epochs. Then, all layers 

were unfrozen and the model was trained for an additional 15 epochs with a maximum 
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learning rate of 0.0002. Additional details about hyperparameter selection are provided in 

the subsequent sections.

Throughout training, augmentations (random perturbations of the images) were applied 

as a regularization technique. These augmentations included affine rotation, zooming, 

and modification of the brightness and contrast. Because medical imaging data are 

not symmetric across the midline of the human body, we did not permit mirroring 

transformations. Using the software default settings for splitting samples into training and 

validation sets, 92 images were used to train the model, and 24 were held out for validation. 

Segmentation accuracy was assessed separately for the ascending and descending aorta.

This model was then used to infer segmentation of the ascending and descending aorta 

on all available “CINE_segmented_Ao_dist” images in the UK Biobank. During inference, 

adaptive pooling was used to permit arbitrary image sizes62, which allows for the production 

of output that matches the input size, preserving the number of millimeters per pixel as 

reported in the metadata.

Extraction of aortic diameter from deep learning output.

Having identified which pixels represented aorta, we were able to determine the aorta’s 

cross-sectional dimensions. The aorta was treated as an ellipse: major and minor axes 

were computed using classical image moment algorithms63. Separately for the ascending 

and the descending thoracic aorta, the length of the minor elliptical axis (in centimeters) 

was ascertained at the point in the cardiac cycle when the aorta was at its maximum size 

(closely corresponding with end-systole). The minor axis was chosen for analysis because 

imperfection in the orientation of the plane of image acquisition may falsely elongate the 

apparent major axis of the ascending and descending aorta; in contrast, the dimension of the 

minor axis is not affected by such perturbations. The length of the minor axis, in pixels, was 

converted to an absolute length in centimeters by using the metadata accompanying each 

image; in the UK Biobank, the reported pixel width and height is 1.58 millimeters for nearly 

all “CINE_segmented_Ao_dist” images. The length of the minor axis (i.e., the diameter) of 

the ascending and descending aorta were treated as our primary phenotypes for subsequent 

analyses.

Characteristics of the thoracic aortic diameter.

The correlation between ascending and descending aortic diameter was assessed with 

ordinary least squares regression. Because of the strong dependence of aortic diameter on 

sex, we configured the model to treat sex as a fixed effect, and predicted the ascending 

aortic diameter from that of the descending aorta. To remove the contribution of sex from the 

estimate of model fit (r2), we also predicted ascending aortic diameter from sex alone, and 

then performed an F test (using 1 degree of freedom for the descending aortic diameter) to 

compare the two nested models.

We also assessed whether the dispersion of the diameters of ascending and descending aorta 

differed. This analysis was stratified by sex. First, we asked whether the variance was equal 

between ascending and descending diameter using the F-test in R (implemented as var.test). 
Because the means of the two diameters were also different, we then tested whether the 
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coefficient of variation, a dimensionless value computed by dividing the standard deviation 

by the mean, was equivalent between ascending and descending aorta. Significance testing 

to compare the coefficients of variation was performed using the function asymptotic_test 
from the cvequality package, the test statistic of which is asymptotically χ2 distributed64,65.

Aortic disease codes.

International Classification of Diseases version 10 (ICD-10) codes and Office of Population 

Censuses and Surveys Classification of Interventions and Procedures version 4 (OPCS-4) 

codes used to define aortic procedures and thoracic aortic aneurysm, dissection, or rupture 

are detailed in Supplementary Table 20. These definitions were used for GWAS participant 

exclusion and polygenic score assessment.

Correlation between phenotypes and aortic measurements.

We conducted phenome-wide association studies (PheWAS) to assess the relationship 

between the observed aortic traits and (i) other continuous traits measured in the UK 

Biobank, and (ii) other disease phenotypes based on ICD-10 and OPCS-4 codes.

All participants with aortic measurements were used in the continuous trait PheWAS. 

The number of participants modeled for each trait varied based on availability in the UK 

Biobank. 669 traits had sufficient data for analysis using a linear model accounting for the 

MRI serial number, sex, PC1-5, age at enrollment, the cubic natural spline of age at the time 

of MRI, and the genotyping array.

The same covariates were used in a logistic regression model testing the relationship 

between the aortic traits and 1,333 PheCode-defined diseases derived from hospital billing 

codes.

Genotyping, imputation, and genetic quality control.

As detailed previously, UK Biobank samples were genotyped on either the UK BiLEVE 

or UK Biobank Axiom arrays, then centrally imputed into the Haplotype Reference 

Consortium panel and the UK10K+1000 Genomes panel66. Variant positions were identified 

using the GRCh37 human genome reference. Genotyped variants with genotyping call rate 

< 0.95 and imputed variants with INFO score < 0.3 or minor allele frequency ≤ 0.001 

in the analyzed samples were excluded. After variant-level quality control, 16,080,416 

imputed autosomal variants and 566,283 imputed variants on the X chromosome remained 

for analysis.

Participants without imputed genetic data, or with a genotyping call rate < 0.98, mismatch 

between self-reported sex and sex chromosome count, sex chromosome aneuploidy, 

excessive third-degree relatives, or outliers for heterozygosity as defined centrally by the 

UK Biobank were excluded66.

We excluded participants with a measured aortic diameter greater than 5 cm, a history 

of aortic aneurysm or dissection, or a history of aortic surgical procedures. We assessed 

whether we could also exclude individuals with rare variants likely to lead to Mendelian 

aortopathy from the GWAS; however, in the subset of ~12,000 participants in the imaging 
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substudy who had exome sequencing data, none had Marfan-related FBN1 variants 

identified in ClinVar.

The aortic diameters were found to be non-normally distributed (with non-zero skewness 

and kurtosis). Therefore, for the heritability analysis and genome-wide association study, 

they were first inverse-normal transformed67.

Heritability and genetic correlation of aortic traits.

BOLT-REML v2.3.4 was used to assess the SNP heritability of the minor axis length of the 

ascending and descending thoracic aorta and their genetic correlation with one another using 

the directly genotyped variants in the UK Biobank32.

Genome-wide association study of aortic traits.

We analyzed the inverse-normal transformed values of the diameter of the ascending and 

descending thoracic aorta at the frame within the cardiac cycle when they were at their 

largest. Genome-wide association studies for the diameter of the ascending and descending 

thoracic aorta were conducted using BOLT-LMM version 2.3.4 to account for cryptic 

population structure and sample relatedness32,33. These traits were adjusted for age at 

enrollment, age and age2 at the time of MRI, age at enrollment, the first 10 principal 

components of ancestry, sex, the genotyping array, and the MRI scanner’s unique identifier. 

We used the full autosomal panel of 714,512 directly genotyped SNPs that passed quality 

control to construct the genetic relationship matrix (GRM). GWAS covariates included age 

at enrollment, age and age2 at the time of MRI, the first five principal components of 

ancestry, sex, the genotyping array, and the MRI scanner’s unique identifier. Associations 

on the X chromosome were also analyzed, using all autosomal SNPs and X chromosomal 

SNPs to construct the GRM (n = 732,151 SNPs), with the same covariate adjustments and 

significance threshold as in the autosomal analysis. In this analysis mode, BOLT treats 

individuals with one X chromosome as having an allelic dosage of 0/2 and those with two X 

chromosomes as having an allelic dosage of 0/1/2. Variants with association P < 5 × 10−8, a 

commonly used threshold, were considered to be genome-wide significant.

In order to identify independently significantly associated variants, linkage disequilibrium 

(LD) clumping was performed with PLINK-1.968 in the same participants used to conduct 

the GWAS. We used a wide 5-Mb window (--clump-kb 5000) and a stringent LD 

threshold (--r2 0.001) in order to identify independently significant SNPs despite long LD 

blocks (particularly on chromosome 16 near WWP2). Using the independently significant 

SNPs, distinct genomic loci were defined by starting with the SNP with the strongest P 
value, excluding other SNPs within 500 kb, and iterating until no SNPs remained. The 

independently significant SNPs that defined each genomic locus are termed the lead SNPs. 

Lead SNPs were tested for deviation from Hardy-Weinberg equilibrium at a threshold of P < 

1 × 10−6 (ref. 68).

Assessment for test statistic inflation.

Quantile-quantile plots of SNP association test statistics were produced. Linkage 

disequilibrium (LD) score regression analysis was performed with ldsc version 1.0.024. For 
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both the ascending and descending aorta GWAS, the genomic control factor (lambda GC) 

was partitioned into polygenic and inflation components using the ldsc software’s defaults.

Genetic correlation with other quantitative traits.

Genetic correlation across traits was assessed using ldsc34 in 281 continuous traits from the 

UK Biobank whose ldsc-formatted summary statistics were made available by the Neale 

Lab (https://ukbb-rg.hail.is/). Of the 281 tested traits, genetic correlation with 257 traits was 

computable in the ascending aorta and with 256 traits in the descending aorta.

Tissue-specific LD score regression.

To address which tissues were most tightly linked to the ascending and descending aorta 

GWAS results, we applied tissue-specific LD score regression against 53 GTEx v6 tissue 

types that were preprocessed by the ldsc authors37,41. The ldsc authors identified genes that 

were specifically expressed in each tissue, retaining the top 10% of genes most specifically 

expressed from each of the 53 tissues. We then conducted stratified LD score regression 

with these specifically enriched gene sets (ldsc-SEG) to determine the contribution of the 

tissue-specific expression to the heritability of the size of the aorta. The returned P value 

represents the probability of seeing such a large coefficient if the null hypothesis (that the 

tissue is not enriched) were true, i.e., it tests whether the tissue-specific contribution is 

distinguishable from zero. Significance was determined using a false discovery rate (FDR) 

of 5%.

Mendelian aortopathy gene set enrichment.

We considered the 23 thoracic aortic aneurysm and dissection-related genes from Category 

A, B, or C from Renard et al. to be Mendelian aortopathy genes49. SNPsnap was used to 

generate 10,000 sets of SNPs that match the lead SNPs from the GWAS based on minor 

allele frequency, number of SNPs in linkage disequilibrium, distance to the nearest gene, 

and gene density at the locus69. A lead SNP was considered to be near a Mendelian locus 

if it was within 500 kb upstream or downstream of any gene on the panel. Significance 

was assessed by permutation testing across the 10,000 SNP sets to determine the neutral 

expectation for the number of overlapping genes in loci with characteristics similar to ours, 

yielding a one-tailed permutation P value.

Transcriptome-wide association study.

For ascending and descending thoracic aorta separately, we performed a TWAS to identify 

genes whose imputed cis-regulated gene expression corrrelates with aortic size36,70–72. We 

used FUSION with eQTL data from GTEx v7. Precomputed transcript expression reference 

weights for the aorta (n = 6,462 genes) were obtained from the FUSION authors’ website 

(http://gusevlab.org/projects/fusion/)36,37. FUSION was then run with its default settings.

MAGMA gene set analysis.

Using MAGMA 1.07b, we were able to test 7,706 gene sets from MSigDB for 

enrichment in the ascending and descending aortic GWAS results54,73. We used 

gene locations for GRCh37 and European reference data that were preprocessed 
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by MAGMA’s authors (https://ctg.cncr.nl/software/magma). We used the composite 

“GO_PANTHER_INGENUITY_KEGG_REACTOME_BIOCARTA” gene sets from 

MSigDB provided by the MAGENTA authors74,75.

Exome sequencing in UK Biobank.

We conducted an exome sequencing analysis in the first 50,000 exomes released by the 

UK Biobank. Samples from the UK Biobank were chosen for exome sequencing based on 

enrichment for MRI data and linked health records76. Exome sequencing was performed 

by Regeneron and reprocessed centrally by the UK Biobank following the Functional 

Equivalent pipeline77. Exomes were captured with the IDT xGen Exome Research Panel 

v1.0, and sequencing was performed with 75-bp paired-end reads on the Illumina NovaSeq 

6000 platform using S2 flowcells. Alignment to GRCh38 was performed centrally with 

BWA-mem. Variant calling was performed centrally with GATK 3.078. Variants were hard-

filtered if the inbreeding coefficient was < −0.03, or if none of the following were true: 

read depth was greater than or equal to 10; genotype quality was greater than or equal 

to 20; or allele balance was greater than or equal to 0.2. In total, 49,997 exomes were 

available. Variants were annotated with the Ensembl Variant Effect Predictor version 95 

using the--pick-allele flag79. LOFTEE was used to identify high-confidence loss of function 

variants: stop-gain, splice-site disrupting, and frameshift variants80.

Rare variant association test.

We conducted a collapsing burden test to assess the impact of loss-of-function variants in up 

to 12,336 participants who had aortic measurements and exome sequencing data available. 

For quantitative traits (minor axis length of the ascending and descending thoracic aorta), 

with heritability of approximately 0.6, we estimated that 13 loss-of-function variant carriers 

would be sufficient to achieve a power of 0.8 at an alpha of 0.05. Variants with MAF ≥ 

0.001 were excluded. Using the LOFTEE “high-confidence” loss-of-function variants, for 

each of the 3,285 protein-encoding genes with at least 13 carriers of one or more loss-of-

function variants in the UK Biobank, we tested whether loss-of-function carrier status was 

associated with aortic minor axis length using linear regression. The aortic diameter was 

the dependent variable and the presence or absence of a loss of function variant was the 

independent variable of interest; the model was adjusted for weight (kg), height (cm), the 

MRI serial number, age at enrollment, the cubic natural spline of age at the time of MRI, 

sex, genotyping array, and the first five principal components of ancestry. We performed an 

additional analysis that subset the gene list to those within a 500-kb window of one of the 

independently associated SNPs from the GWAS.

Association of aortic polygenic scores with incident disease.

Within a strictly defined European subset of the UK Biobank, we computed a polygenic 

score from the 89 autosomal, independently significant SNPs from the ascending aorta 

GWAS (Supplementary Table 20) and another from the 46 autosomal, independently 

significant SNPs from the descending aorta GWAS (Table 3), excluding participants whose 

data was used for the GWAS (Supplementary Table 21).
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The strict European ancestry was defined using individuals who self-identified in the UK 

Biobank as British, Irish, or of other European ancestry as previously described81. The 

R package aberrant was applied to the first three pairs of principal components with the 

parameter lambda set to 40; only inliers were considered “European” for this analysis82.

We analyzed the relationship between the ascending aorta polygenic score and incident 

thoracic aortic aneurysm or dissection in 385,621 individuals (685 events) using a Cox 

proportional hazards model that was also adjusted for clinical risk factors. There is limited 

data regarding clinical risk factors for thoracic aortic aneurysm outside of associated 

syndromes and family history, so we chose putatively relevant covariates based in part 

on inference from evidence in the abdominal aortic aneurysm literature83. These covariates 

included sex, prevalent diagnoses of type 2 diabetes or hypertension, tobacco smoking 

history (the number of pack years of tobacco smoking), body mass (the cubic natural spline 

of BMI), and age (the cubic natural spline of age at enrollment). We also adjusted for other 

covariates including the cubic natural spline of height, the number of standard alcoholic 

drinks consumed per week, the genotyping array, and the first five principal components 

of ancestry. This analysis was performed separately for the ascending and descending aorta 

polygenic scores.

Extended Data

Extended Data Fig. 1. Aortic size by age and sex
The length of the minor elliptical axis of aorta at its maximum size during the cardiac 

cycle (i.e., the diameter) is shown for the ascending aorta (left) and the descending aorta 

(right). The x-axis represents the participant’s age at the time of cardiac MRI, and the y-axis 

represents the size of aorta. Each point represents one person’s measurements; men are 

plotted in turquoise and women in red. Sex-specific locally weighted scatterplot smoothing 
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(LOESS) curves are overplotted. Each point represents one of the 42,518 participants 

who passed imaging quality control for at least one of the ascending or descending aorta 

measurements: 40,363 had accepted measurements for ascending aorta, and 41,415 had 

accepted measurements for descending aorta.

Extended Data Fig. 2. GWAS sample flow diagram.
The GWAS sample flow diagram depicts the sample filtering process that led to the specific 

samples being chosen for the ascending and descending aortic diameter GWAS.
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Extended Data Fig. 3. GWAS QQ plots
Quantile-quantile plots showing the theoretical distribution of P values under a uniform 

distribution (x-axis) versus the observed distribution within the sample (y-axis) are displayed 

for the ascending and descending aorta GWAS summary statistics. The plots are stratified 

by minor allele frequency (‘maf_bin’): ‘common’ denotes SNPs with MAF > 0.05, low 

frequency with 0.005 < MAF ≤ 0.05, and rare with 0.001 < MAF ≤ 0.005. Variants with 

MAF < 0.001 were excluded from the analysis.
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Extended Data Fig. 4. GWAS replication in the Framingham Heart Study
a,b, For lead SNPs from the main UK Biobank GWAS that could be identified in a GWAS 

from FHS, each SNP is plotted based on the UK Biobank Z score (x-axis) and the FHS Z 
score (y-axis). 72 SNPs for ascending aortic diameter (a) and 41 SNPs for descending aortic 

diameter (b) could be identified in FHS and are plotted here. SNPs where the direction of 

effect is in agreement between FHS and UK Biobank are plotted in blue, while those with 

opposite direction of effect are marked in red.
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Extended Data Fig. 5. Genetic correlation with continuous traits
The genetic correlation between continuous traits and the ascending (top) and descending 

(bottom) thoracic aorta in the UK Biobank are represented in volcano plots. Of the 281 

tested traits, genetic correlation with 257 traits was computable in the ascending aorta and 

with 256 traits in the descending aorta. The x-axis represents the magnitude of genetic 

correlation, while the y-axis represents the −log10 of the genetic correlation P value, 

based on ldsc. Traits achieving Bonferroni significance are colored red (for positive genetic 
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correlation) or blue (for negative genetic correlation). The top 10 positively and negatively 

associated traits are labeled. The underlying data are available in Supplementary Table 10.

Extended Data Fig. 6. Cell type-specific gene expression at the WWP2 locus
Cell-type specificity of genes with expression data within 500 kb of the lead SNP near 

WWP2. As with Figure 4, the size of each square represents the average log2(Expr) for a 

gene across all nuclei in a given cluster. The color represents the log fold-change comparing 

the expression of the given gene in each cluster to all other clusters based on a formal 

differential expression model. A dot represents significant up- or down-regulation in the 

given cluster based on a Benjamini-Hochberg correction for multiple testing at FDR < 

0.01. Expr, normalized nucleus-level expression calculated as the number of counts of a 

gene divided by the total number of counts in the nucleus and multiplied by 10,000; FC, 

fold-change.
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Extended Data Fig. 7. MAGMA gene set associations
Gene sets enriched in MAGMA analysis of the GWAS of the ascending (top) and 

descending (bottom) thoracic aorta are represented in volcano plots. The x-axis represents 

the magnitude of estimated effect of a pathway-based gene set on the aortic trait, while 

the y-axis represents the −log10 of the MAGMA association P value. Pathways achieving 

Bonferroni significance are colored red and labeled. The underlying data are available in 

Supplementary Tables 17 and 18.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. 
Study overview
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Figure 2 |. Genome-wide association study results for ascending and descending thoracic aorta 
diameter.
a,b, Loci with P < 5 × 10−8 are shown in red (if not previously reported) or blue (if 

previously reported in common variant association studies for aortic size or disease status 

(aneurysm or dissection)). The X chromosome is represented as ‘23’. c, Venn diagram 

showing the number of loci uniquely associated at P < 5 × 10−8 with either the ascending 

or descending thoracic aorta. Those in orange are associated with both and are enumerated 

in the table to the right. Loci whose lead SNP’s nearest gene differs between ascending and 

descending are demarcated as “Ascending/Descending”.
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Figure 3 |. Gene-level association tests.
In the top row, protein-coding genes associated with the size of the ascending (left) and 

descending (right) thoracic aorta based on an integrated gene expression prediction are 

shown. The x-axis represents the magnitude of the TWAS Z score, while the y-axis 

represents the −log10 of the TWAS P value. Genes achieving Bonferroni significance are 

colored red (positive correlation) or blue (negative correlation). The top five positively and 

negatively correlated genes are labeled. In the bottom row, rare variant collapsing burden 

test results are depicted for the genes within a 500-kb window around GWAS loci (67 for 
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ascending and 55 for descending). Loss-of-function carrier status in each gene was tested 

for association with the size of the ascending (left) and descending (right) thoracic aorta. 

The x-axis represents the effect size of LoF in each gene on aortic size, while the y-axis 

represents the −log10 of the association P value in a logistic model. SVIL, which achieved 

P < 0.05/55 in the descending aorta, is colored blue. The top five positively and negatively 

correlated genes are labeled.
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Figure 4 |. Single nucleus RNA sequencing analyses in human aorta.
Single nucleus RNA-seq was performed on paired ascending and descending thoracic aortic 

tissue from three humans. a, Uniform manifold approximation and projection (UMAP) 

revealed 12 main clusters. Each dot represents an individual nucleus, colored and labeled 

by putative cell type as identified from Leiden clustering. b, The top five most selectively 

expressed genes for each cluster were identified as those with the largest fold-change 

difference in expression comparing the given cluster with all other clusters, only considering 

genes expressed in at least 30% of nuclei and with a Benjamini-Hochberg corrected P < 
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0.01. The shade of the dot represents the average log2 expression for a gene across all 

nuclei in a given cluster and the size of the dot represents the percentage of nuclei in the 

cluster with non-zero expression. The cell type labels were created by comparing selectively 

expressed genes in each cluster of nuclei with the literature. c,d, Cell-type specificity of 

genes with expression data supported by the TWAS in the ascending (c) and descending (d) 

aorta. The size of each square represents the average log2(Expr) for a gene across all nuclei 

in a given cluster. The color represents the log fold-change comparing the expression of 

the given gene in each cluster to all other clusters based on a formal differential expression 

model. A dot represents significant up- or down-regulation in the given cluster based on 

a Benjamini-Hochberg correction for multiple testing at FDR < 0.01. Expr, normalized 

nucleus-level expression calculated as the number of counts of a gene divided by the total 

number of counts in the nucleus and multiplied by 10,000; FC, fold-change.
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Figure 5 |. Cumulative incidence of thoracic aortic aneurysm or dissection stratified by polygenic 
score.
The cumulative incidence (1 minus the Kaplan-Meier survival estimate) of a diagnosis of 

aortic aneurysm or dissection (y-axis) is plotted against the number of years since UK 

Biobank enrollment (x-axis). Individuals in the top tenth percentile of the polygenic score 

for ascending aorta size are shown in red; the remaining 90% are shown in gray. The 95% 

confidence intervals (from the cumulative hazard standard error) are represented with lighter 

colors.
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Table 1 |

Baseline characteristics of UK Biobank GWAS participants

Women Men

Mean (or n) s.d. (or %) Mean (or n) s.d. (or %)

n 20,909 19,842

Age at time of MRI 64.0 7.6 65.3 7.8

BMI (kg/m2) 25.9 4.6 27.0 3.9

Height (cm) 163 6.2 176 6.6

Weight (kg) 68.5 12.7 83.6 13.3

Systolic blood pressure (mmHg) 132 18 139 17

Diastolic blood pressure (mmHg) 79.4 9.7 83.6 9.6

American standard drinks/week 4.9 5.5 6.1 7.1

Smoking status

 Current 1,055 5% 1,470 7%

 Never 13,413 64% 11,216 57%

 Prefer not to answer 37 0% 35 0%

 Previous 6,400 31% 7,118 36%

 Unknown 4 0% 3 0%

Pack years of smoking 3.6 9.1 5.9 13.0

Ascending aorta diameter (cm) 3.04 0.31 3.32 0.34

Descending aorta diameter (cm) 2.29 0.18 2.55 0.21

Demographic information is shown for UK Biobank participants with genetic and cardiac MRI data that passed quality control as detailed in the 
sample flow diagram in Extended Data Figure 2. For count data, values shown are n (%). For continuous data, values shown are mean (s.d.).
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Table 2 |

GWAS loci for the ascending thoracic aorta

SNP CHR BP Effect allele Other 
allele EAF INFO BETA P Nearest gene Prior

rs2871651 1 9434969 C T 0.58 0.99 −0.042 5.80E-12 SPSB1

rs67631072 1 38461821 C T 0.45 0.99 0.041 1.40E-12 SF3A3

rs3768274 1 41951383 C T 0.50 0.98 −0.040 6.70E-12 EDN2

rs11207420 1 59646524 G A 0.73 1.00 −0.042 1.30E-10 FGGY Vasan et al. 
2009

rs72727759 1 185663021 T C 0.74 0.99 −0.041 2.10E-09 HMCN1

rs35534155 1 237207943 A ATT 0.19 0.90 −0.047 9.70E-09 RYR2

rs6707048 2 19720468 T C 0.32 1.00 0.084 3.50E-41 OSR1

rs138963986 2 145752940 G A 0.93 0.96 0.068 4.00E-08 ZEB2

rs12992231 2 148799710 C A 0.64 1.00 −0.039 8.10E-09 MBD5

rs16849225 2 164906820 C T 0.77 1.00 −0.053 1.90E-15 FIGN

rs12052878 2 238227594 G A 0.69 1.00 −0.045 1.10E-11 COL6A3

rs11712199 3 14858226 G A 0.91 0.99 0.069 1.40E-12 FGD5

rs9847006 3 41755359 T C 0.83 1.00 −0.075 3.80E-20 ULK4 Guo et al. 
2016

rs545996255 3 58100423 G GT 0.70 0.97 0.057 5.10E-18 FLNB

rs2306272 3 66434643 T C 0.71 1.00 −0.043 1.50E-11 LRIG1

rs55914222 3 128202943 G C 0.97 0.99 0.179 3.90E-22 GATA2

rs1108450 3 186995297 T G 0.83 0.99 −0.050 1.50E-09 MASP1

rs16998073 4 81184341 A T 0.71 1.00 −0.036 3.50E-08 FGF5

rs67846163 4 174656889 A G 0.77 0.99 −0.072 2.30E-24 HAND2

rs73766539 5 81722919 C T 0.79 1.00 0.048 6.80E-10 ATP6AP1L

rs72787618 5 95591331 A G 0.63 0.99 0.099 3.20E-58 PCSK1

rs17470137 5 122531347 G A 0.73 1.00 −0.058 5.80E-19 PRDM6 Vasan et al. 
2009

rs76888257 5 169809901 C T 0.90 1.00 0.062 1.30E-08 KCNMB1

rs496236 6 11641601 A G 0.46 1.00 0.034 7.20E-10 ADTRP

rs1630736 6 12295987 C T 0.54 0.99 −0.046 8.30E-15 EDN1

rs12199346 6 36641546 C A 0.76 1.00 −0.046 2.00E-10 CDKN1A

rs6459130 6 56055564 G T 0.44 1.00 −0.033 3.30E-10 COL21A1

rs1570350 6 143592386 A G 0.56 0.99 −0.059 2.90E-22 AIG1

rs13203975 6 152333104 G A 0.89 0.99 0.070 3.30E-13 ESR1

rs79215950 7 35277067 G A 0.62 1.00 0.065 7.80E-23 TBX20

rs6974735 7 73428222 A G 0.55 1.00 −0.111 7.90E-77 ELN

rs1583081 7 85034227 G T 0.58 1.00 −0.075 2.40E-36 SEMA3D

rs483916 8 9793601 A C 0.48 0.99 0.044 1.30E-12 MSRA

rs11785562 8 23391493 G A 0.80 0.97 −0.043 3.70E-10 SLC25A37
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SNP CHR BP Effect allele Other 
allele EAF INFO BETA P Nearest gene Prior

rs9721183 8 75781818 C T 0.63 0.95 0.048 1.40E-14 PI15

rs16876090 8 108363596 G A 0.91 0.99 −0.080 1.40E-15 ANGPT1

rs562291939 8 120709336 T C 1.00 0.80 0.744 5.10E-26 ENPP2

rs10111085 8 122646152 G T 0.71 0.99 0.048 2.00E-12 HAS2

rs34557926 8 124607159 C T 0.63 0.99 −0.060 2.90E-22 FBXO32

rs112342612 8 141047976 AAC A 0.40 0.95 −0.035 3.30E-09 TRAPPC9

rs4978966 9 113662374 C T 0.79 1.00 0.049 2.50E-11 LPAR1

rs1757223 10 18514999 G A 0.24 0.99 0.042 2.00E-09 CACNB2

rs16916931 10 63813744 A T 0.69 0.98 0.045 1.20E-12 ARID5B

rs7090111 10 65077994 C G 0.58 1.00 0.044 3.10E-13 JMJD1C

rs71482305 10 96119130 C T 0.84 1.00 0.079 6.30E-23 NOC3L

rs1340837 10 97542035 A G 0.59 1.00 0.031 4.90E-09 ENTPD1

rs11196083 10 114500004 G T 0.77 1.00 −0.049 1.60E-11 VTI1A

rs77889556 11 17498057 G A 0.83 0.91 −0.056 8.40E-12 ABCC8

rs3741025 11 30851976 C T 0.43 0.99 0.041 1.70E-10 DCDC1

rs111412755 11 69819139 C T 0.91 0.98 −0.093 7.80E-20 ANO1 Wild et al. 
2017

rs12286728 11 113022450 G C 0.90 1.00 0.056 3.10E-08 NCAM1

rs747249 11 130271647 A G 0.36 0.99 −0.044 1.30E-12 ADAMTS8

rs61907983 12 15448631 C T 0.91 0.97 0.062 2.60E-08 RERG

rs2307024 12 22005003 T G 0.59 0.99 0.054 2.30E-18 ABCC9

rs56298756 12 62777565 G T 0.89 1.00 −0.082 8.40E-16 USP15

rs10400419 12 66389968 T C 0.45 0.95 0.036 2.50E-09 LLPH
Vasan et al. 
2009, Wild 
et al. 2017

rs7302816 12 89950320 A C 0.80 0.98 −0.043 2.50E-08 GALNT4

rs2363080 12 94140463 C G 0.56 0.99 0.037 4.30E-10 CRADD

rs11112482 12 105738183 C G 0.77 0.99 −0.039 2.10E-08 C12orf75

rs61937394 12 116756670 T G 0.81 0.91 0.042 1.60E-08 MED13L

rs7994761 13 22871446 A G 0.78 0.99 0.109 1.30E-52 FGF9

rs2687941 13 50760363 T C 0.55 0.99 −0.032 3.70E-08 DLEU1

rs4905134 14 94459845 A G 0.50 0.99 0.055 5.40E-20 ASB2

rs3803359 15 40662748 G A 0.83 1.00 −0.044 7.50E-09 DISP2

rs2118181 15 48915884 T C 0.90 0.99 −0.082 2.30E-16 FBN1

LeMaire et 
al. 2011, 
Guo et al. 
2016, van 
‘t Hof et al. 
2016

rs1441358 15 71612514 T G 0.66 1.00 0.053 8.10E-17 THSD4

rs369339295 16 56322945 A AAG 0.68 0.97 0.042 1.50E-10 GNAO1

rs62053262 16 69969299 C G 0.95 0.99 0.187 4.00E-42 WWP2
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allele EAF INFO BETA P Nearest gene Prior

rs546590249 16 71104575 A C 0.99 0.38 0.275 2.70E-08 HYDIN

rs7500448 16 83045790 A G 0.75 0.98 −0.045 2.90E-11 CDH13

rs16965180 16 88989862 A G 0.65 0.99 0.063 1.20E-21 CBFA2T3

17 2088848 CCAGA C 0.68 1.00 −0.063 6.80E-24 SMG6
Vasan et al. 
2009, Wild 
et al. 2017

rs78180894 17 7483662 G C 0.93 0.94 −0.072 6.60E-09 CD68

rs7215383 17 12182246 A G 0.25 0.99 0.078 4.90E-29 MAP2K4

rs6505216 17 29206421 G T 0.77 0.92 0.053 2.00E-11 ATAD5

rs76954792 17 30033514 C T 0.77 0.98 0.044 3.90E-09 COPRS

rs264203 18 10882121 A C 0.38 0.99 −0.035 2.50E-08 PIEZO2

rs7257694 19 30314666 C T 0.60 0.99 −0.039 3.00E-10 CCNE1

rs3063286 20 10488552 T TTA 0.47 0.94 0.034 2.20E-09 SLX4IP

rs6075516 20 19455985 G A 0.75 0.97 0.040 6.30E-09 SLC24A3

rs28451064 21 35593827 G A 0.87 0.96 0.051 4.20E-08 KCNE2

rs4402860 22 40554445 A T 0.80 1.00 0.057 7.30E-14 TNRC6B

The lead SNPs from the GWAS for the diameter of the ascending thoracic aorta. SNP, the rsID of the variant, where available; for variants 
that are not in dbSNP, this column is left blank. BP, genomic position, keyed to GRCh37. EAF, effect allele frequency. INFO, imputation INFO 
score. BETA, effect size per effect allele on the inverse normal transformed trait. P, the BOLT-LMM association P value. Prior, known from prior 

publications addressing common genetic variation linked to aortic size, aortic aneurysm, or aortic dissection25–29.
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Table 3 |

GWAS loci for the descending thoracic aorta

SNP CHR BP Effect allele Other 
allele EAF INFO BETA P Nearest gene Prior

rs35584696 1 89145392 C CT 0.44 1.00 −0.033 3.80E-09 PKN2

rs527725 1 201752429 A C 0.60 0.97 0.036 1.20E-11 NAV1

rs7255 2 20878820 T C 0.45 1.00 0.045 4.80E-17 GDF7

rs202119031 2 179744659 CAG C 0.87 1.00 0.045 3.80E-08 CCDC141

rs7580831 2 238219499 C A 0.68 1.00 −0.037 5.20E-10 COL6A3

rs11707002 3 8580237 C G 0.55 0.99 0.031 2.40E-08 LMCD1

rs5848609 3 41802815 G GTTA 0.84 0.99 −0.041 4.50E-08 ULK4 Guo et 
al. 2016

rs56004178 3 58101471 G A 0.70 0.99 0.038 3.10E-10 FLNB

rs2055981 3 114203969 T C 0.36 0.99 −0.032 1.70E-08 ZBTB20

rs698099 3 186987941 G A 0.17 1.00 0.060 2.20E-16 MASP1

rs6855532 4 7908237 C T 0.57 1.00 0.030 2.70E-08 AFAP1

rs60991988 4 54801228 T G 0.89 0.99 −0.047 3.70E-08 FIP1L1

rs3733336 4 81207963 A G 0.64 0.90 −0.034 5.10E-09 FGF5

rs6853490 4 95544718 A G 0.58 0.98 0.031 1.00E-08 PDLIM5

rs9285863 5 108071655 T C 0.66 0.99 −0.036 4.20E-10 FER

rs35564079 5 172670611 C CT 0.71 0.97 −0.035 3.00E-08 NKX2-5

rs2853975 6 31382717 A T 0.71 0.99 −0.042 2.60E-12 MICA

rs733590 6 36645203 T C 0.65 1.00 −0.035 2.20E-10 CDKN1A

rs4707174 6 85987918 A C 0.70 0.98 −0.036 5.30E-10 NT5E

6 87836772 ACACACACACC A 0.65 0.77 0.035 3.40E-08 ZNF292

rs2107595 7 19049388 G A 0.84 0.99 0.079 5.80E-27 TWIST1

rs343044 7 35508859 A G 0.20 0.99 −0.047 1.50E-12 TBX20

rs36086322 8 75735030 C T 0.93 1.00 0.059 8.40E-09 PI15

rs574214679 8 120244723 A G 1.00 0.71 0.413 1.10E-08 MAL2

rs10740811 10 30167754 G A 0.41 1.00 0.057 6.40E-25 SVIL

rs2901761 10 95895127 G A 0.59 1.00 0.058 1.70E-25 PLCE1

11 117085914 CTTA C 0.94 1.00 −0.068 6.60E-10 PCSK7

rs10894192 11 130266117 T A 0.42 0.98 −0.030 4.90E-08 ADAMTS8

rs4759275 12 57525756 G A 0.58 1.00 0.035 8.10E-11 STAT6 Guo et 
al. 2016

rs10744777 12 112233018 T C 0.66 1.00 −0.035 8.80E-10 ALDH2

rs12889267 14 21542766 A G 0.83 1.00 0.048 2.90E-11 ARHGEF40

rs422068 14 23864804 T C 0.64 1.00 0.036 1.10E-09 MYH6

rs12590407 14 24835115 G A 0.29 1.00 0.034 1.40E-08 NFATC4

rs12890024 14 94469801 A G 0.62 0.98 0.038 2.10E-11 OTUB2

rs12913300 15 40655444 C T 0.83 1.00 −0.052 1.20E-12 DISP2
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SNP CHR BP Effect allele Other 
allele EAF INFO BETA P Nearest gene Prior

rs17352842 15 48694211 C T 0.81 1.00 −0.037 2.20E-08 FBN1

LeMaire 
et al. 
2011, 
Guo et 
al. 2016, 
van ‘t 
Hof et al. 
2016

rs1048661 15 74219546 G T 0.66 0.99 −0.038 2.30E-11 LOXL1 Vasan et 
al. 2009

rs116901435 15 79059695 C T 0.58 0.98 −0.032 7.90E-09 ADAMTS7

rs62053262 16 69969299 C G 0.95 0.99 0.087 3.50E-12 WWP2

rs894871 17 77910932 A G 0.68 0.98 −0.032 7.50E-09 TBC1D16

rs8094206 18 46317137 G A 0.89 0.98 0.052 2.00E-09 CTIF

rs55678414 19 2177625 T G 0.94 1.00 0.088 6.70E-15 DOT1L

rs2303040 19 39138608 T C 0.51 0.99 −0.037 9.50E-11 ACTN4

rs1673096 19 41042755 A G 0.52 0.99 0.031 3.20E-08 SPTBN4

rs11668847 19 46210365 T G 0.48 0.98 0.033 5.30E-10 FBXO46

rs76496822 20 10687240 G T 0.96 0.99 −0.072 4.00E-08 JAG1

rs76530933 23 135204774 G T 0.73 0.94 −0.030 3.10E-08 FHL1

The lead SNPs from the GWAS for the diameter of the descending thoracic aorta. SNP, the rsID of the variant, where available; for variants 
that are not in dbSNP, this column is left blank. BP, genomic position, keyed to GRCh37. EAF, effect allele frequency. INFO, imputation INFO 
score. BETA, effect size per effect allele on the inverse normal transformed trait. P, the BOLT-LMM association P value. Prior, known from prior 

publications addressing common genetic variation linked to aortic size, aortic aneurysm, or aortic dissection25–29.
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