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Abstract: Related metabolites can be grouped into sets in many ways, e.g., by their participation
in series of chemical reactions (forming metabolic pathways), or based on fragmentation spectral
similarities or shared chemical substructures. Understanding how such metabolite sets change in
relation to experimental factors can be incredibly useful in the interpretation and understanding
of complex metabolomics data sets. However, many of the available tools that are used to perform
this analysis are not entirely suitable for the analysis of untargeted metabolomics measurements.
Here, we present PALS (Pathway Activity Level Scoring), a Python library, command line tool, and
Web application that performs the ranking of significantly changing metabolite sets over different
experimental conditions. The main algorithm in PALS is based on the pathway level analysis of gene
expression (PLAGE) factorisation method and is denoted as mPLAGE (PLAGE for metabolomics).
As an example of an application, PALS is used to analyse metabolites grouped as metabolic pathways
and by shared tandem mass spectrometry fragmentation patterns. A comparison of mPLAGE with
two other commonly used methods (overrepresentation analysis (ORA) and gene set enrichment
analysis (GSEA)) is also given and reveals that mPLAGE is more robust to missing features and
noisy data than the alternatives. As further examples, PALS is also applied to human African
trypanosomiasis, Rhamnaceae, and American Gut Project data. In addition, normalisation can have a
significant impact on pathway analysis results, and PALS offers a framework to further investigate
this. PALS is freely available from our project Web site.

Keywords: liquid chromatography–mass spectrometry (LC/MS); pathways; molecular family;
Mass2Motif; SVD; matrix decomposition; metabolite sets

1. Introduction

An organism’s metabolism is comprised of all of the chemical reactions involved in
its cells; the small-molecule intermediates and products of these reactions are known as
metabolites. Untargeted metabolomics provides a profile of all detectable metabolites in a
system, allowing the unique chemical fingerprint left behind by the metabolism to be inves-
tigated. Such studies are imperative in understanding changes in biological mechanisms
related to environmental and genetic variations. Mass spectrometry (MS) is one of the
most commonly used techniques for untargeted metabolomics and is often coupled with
chromatographic separation using liquid chromatography (LC). Experimental data from
a typical LC–MS experimental sample are a series of spectra, where signal intensities are
generated for each detected ion. After data preprocessing, a table of chromatographic peaks
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is produced; each peak can be represented by its mass-to-charge ratio (m/z), retention time
(RT), and intensity values. Peaks with a similar m/z and RT can then be grouped across
samples into features, which leads to a matrix of peak intensities, indexed by features along
the rows and samples as the columns. Identification is performed to associate features with
metabolite identities, either by matching the m/z and RT of features with internal library
standards or through fragmentation spectra comparisons against mass spectral databases.

In a cell or organism, metabolites seldom work alone. As result, it it often useful to
analyse related groups of metabolites rather than considering individual metabolites in
isolation. One way to define metabolite sets is through prior knowledge of how metabolites
participate in a series of related chemical reactions, or metabolic pathways. Ranking
biologically relevant pathways through changes in the intensities of associated features
provides high-level information that helps prioritise relevant pathways [1]. An alternative
way of producing metabolite sets is to to group features using spectral similarities, which
can be incredibly useful for helping to identify unknown features. By exploiting the
fragmentation spectra from tandem mass spectrometry, molecular networking [2] uses
such spectral similarities to group metabolites into molecular families (MF). These MFs
potentially correspond to chemical classes and have proved invaluable in enhancing the
putative identifications of unknown metabolites [3,4]. Using tandem MS (MS2) and an
algorithm originally used for text mining, latent Dirichlet allocation (LDA), MS2LDA [5]
features are grouped by co-occurring fragments and neutral losses into Mass2Motifs that
reveal potentially related chemical substructures.

In recent years, enrichment analysis algorithms, originally developed for analysing
large collections of genes or transcripts, have been adapted to metabolomics. These
methods were traditionally used to test gene expression data for functions or processes
that are overrepresented (i.e., enriched) with regard to functional gene sets, pathways, and
networks. Considering differentially expressed (DE) gene sets, two of the most commonly
used types of gene enrichment techniques are overrepresentation analysis (ORA) and
functional class scoring (FCS). ORA approaches rely on testing for the presence or absence
of significantly changing genes in a pathway, using statistical significance tests. FCS
methods, which include gene set enrichment analysis (GSEA) [6] use statistical approaches
to identify gene sets that are significantly enriched or depleted in the pathway. FCS
improves upon ORA by eliminating the need to preselect significantly changing genes,
as well as taking into account how groups of genes can be coexpressed together (instead
of assuming they are independent, as in ORA). One such FCS method is pathway level
analysis of gene expression (PLAGE) [7], which performs singular value decomposition
(SVD) to compute an activity value from expression data in a sample. This has advantages
over other methods in that it is computationally simple while returning high performance
in both sensitivity and specificity [8]. In addition, the PLAGE method does not discriminate
between upward or downward activity, meaning that both increases and decreases in gene
expression contribute to the activity of a pathway.

The nature of metabolomics data can make enrichment analysis for metabolite groups
more challenging than for groups of genes. In particular, an untargeted metabolomics
experiment contains a large diversity of chemical structures with the identity of many
of the features unknown in mass spectral databases. In addition, there is uncertainty in
annotating an MS feature, as a single compound can be matched to multiple features and
vice versa even at a high mass accuracy of 1 ppm [9]. Other more general omics issues,
such as missing data, also influence metabolite pathway reconstruction from metabolomics
data. Finally, being the endpoint of the omics cascade, metabolite signals within a pathway
may fluctuate or, as a result of a dead-end metabolic reaction, different features may change
in opposite directions. As demonstrated in our previous work [5] where the PLAGE
method was successfully applied to the enrichment analysis of Mass2Motifs, decomposing
activity levels via SVD appeared to work well on metabolomics data where noise and
missing data are prevalent. However, no comparisons were made in [5] to assess the
performance and robustness of PLAGE against the alternatives, or to produce a general
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tool that could be used by the metabolomics community to assess the activity level of
metabolite sets, including pathways. While a variety of tools that encompass enrichment
analysis of pathways have been developed, many are Web-based [10–12] or implemented
in the R programming language [13–16]. A comprehensive metabolite set analysis that can
be easily integrated into Python-based workflows and applications remains rare.

In this manuscript, we introduce Pathway Activity Level Scoring (PALS), a compre-
hensive and modular Python tool for metabolite set enrichment. PALS is designed to
look at how metabolic pathways or other groups of metabolites change between differ-
ent experimental conditions. It achieves this by decomposing peak intensities into latent
factors corresponding to observed metabolic changes (activities). Our adaptation of the
PLAGE method, denoted as mPLAGE (PLAGE for metabolomics), was independently
implemented in Python for use in metabolomics. Using mPLAGE, small correlated changes
in a group of metabolites are rated as more interesting than large changes in an individual
metabolite, where other metabolites in the set are not changing. The changes are increases
and/or decreases in feature intensities, but must occur as part of the group. This is par-
ticularly important in situations where enzyme inhibition results in substantial increases
to metabolite abundance before a lesion in a pathway, with concomitant decreases after
the lesion (see [17] for an example). The modularity of PALS also means it is not limited to
pathways, and any user-defined grouping of features (representing metabolite sets) can be
readily analysed. This is demonstrated by assessing the activity levels of metabolite sets
grouped by similarity of fragmentation spectra. The robustness of mPLAGE was evaluated
on both synthetic and real data experiments and compared to both ORA and GSEA meth-
ods. The results demonstrated that the mPLAGE method is robust to noise and missing
values, which is particularly important for metabolomics data. PALS is freely available
at https://pals.glasgowcompbio.org/ (accessed on 5 February 2021) [18]. It can be easily
imported as a Python library, run as a standalone tool or used as a Web application.

2. Results and Discussion
2.1. Synthetic Data Experiments
2.1.1. Synthetic Data Setup

To assess the robustness of mPLAGE, benchmarking experiments were performed.
Initially, these experiments were performed using synthetic data, as the ground-truth of
untargeted metabolomics experiments can be hard to define. In this section, pathways
are described for simplicity, but this procedure could be applied to any set of metabolites.
Seven synthetic pathways were constructed with significant changes (showing clear block
structures between the case and control groups in their peak intensity matrix) between
two experimental conditions, each consisting of four samples. To mimic the inclusion
of formulae that arise due to incorrect identification/annotation, decoy features were
generated using a normal distribution (Supplementary Section S3) and standardised for
input (Supplementary Section S1).

Each of the seven pathways contained a different number of formulae, and each
pathway was named according to the number of features associated with it for clarity,
i.e., pathway names for numbers of features were: Two; Four; Six; Ten; Twenty; Forty;
and Eighty. A one-to-one relationship between an observed feature and a metabolite
was assumed. In addition, 100 background pathways, where each pathway contains
between 5 to 50 metabolites that show no significant changes between the case and control
groups, were generated and added to the synthetic data set. To simulate missing features,
which often occurs in real metabolomics data, features were also randomly removed from
pathways with a uniform probability of 0.2. The performance of mPLAGE was compared to
widely used overrepresentation (ORA) analysis and gene set enrichment analysis (GSEA)
methods (described further in Supplementary Section S4). These alternative methods,
used for benchmarking experiments, are included in the PALS Python library, allowing all
methods to be compared utilising the same database query codes and retrieving identical
pathways from KEGG and Reactome.

https://pals.glasgowcompbio.org
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2.1.2. Evaluation

The following evaluation metrics were implemented to assess the performance of
the different methods. Let T = {Two, Four, Six, Ten, Twenty, Forty, Eighty} be the set of
true answers (the labels of seven pathways with the corresponding number of features
that are actually changing). Each pathway analysis method m will return Pm, a ranking of
significantly changing pathways under some threshold α (set to 0.05 following convention),
where pathways with p-values below α are considered significant (positives).

For a method m, the following counts can now be evaluated: True Positives (TP) = in
Pm and in T; False Positives (FP) = in Pm but not in T; False Negatives (FN): in T but not
in Pm. To obtain single-number summaries, precision and recall are used. Here, precision
(Prec = TP/(TP + FP)) measures pathway ranking relevancy and it often occurs as a
trade-off to recall (Rec = TP/(TP + FN)), which measures how many actual relevant
changing pathways are returned. High precision suggests that a method has a low false
positive rate, while a high recall suggests that the method has a low false negative rate. To
summarise overall performance, the F1 score, which is a harmonic mean of precision and
recall and defined as F1 = (2 ∗ Prec ∗ Rec)/(Prec + Rec), is used.

2.1.3. Synthetic Experiment Results—Increasing the Number of Decoy Features

In this experiment, an increasing number of decoy features were added to the seven
pathways comprised of significantly changing features. This scenario reflects the case
of attempting to find pathways, or sets of metabolites, with high activity levels when
the number of significantly changing metabolites are small compared to noisy data, non-
changing or wrongly annotated metabolites. The level of decoy features are defined in
an increasing order of severity from 0%, 25%, 50%, 100%, 250%, 500%, and 1000% of the
original number of features in the pathway. For example, adding 50% decoy features to
pathway Forty results in the 40 significantly changing features and the addition of 20 new
decoy (nonchanging) features in the pathway. The resulting synthetic data matrix with
the addition of decoy features is then used as input to the methods being compared. This
procedure is repeated 500 times for each level of decoy features.

Assessing changes to the p-values of the true changing pathways with higher number
of decoy features reveals that increasing the number of decoy features generally produces
higher p-values (Figure 1). This suggests that it becomes harder for pathways to be
identified as significantly changing when a greater number of decoy features are present.
At level 0% (where no additional decoy features are present), both ORA and mPLAGE
perform well, returning median p-values of 2 × 10−6 and 0.0049, respectively. GSEA
performs less well with median p-value of 0.0578, which is close to the selected significant
threshold of 0.05 (shown as dotted line in Figure 1). The mean p-values from all methods
increase as the number of decoy features is increased. At level 100%, both ORA and
mPLAGE perform well even when there are as many decoy features as there are actually
changing features, returning median p-values of 0.0083 and 0.0003 for mPLAGE and ORA,
respectively. At higher levels (250%, 500%, and 1000%), GSEA appears most sensitive to
the perturbation, while mPLAGE performs best amongst the methods compared.

Inspection of individual significant pathways of varying sizes (Figure 2) revealed that
the mean p-values returned by all methods generally decreases with an increasing number
of changing features in a pathway. This suggests that the greater the number of metabolites
that are changing together, the higher ranked that pathway would be. As a result of the
small number of metabolites in the pathway, all methods struggle to correctly identify
pathways Two and Four as significantly changing at any level of added decoy features and
generally perform better on the larger pathways Twenty, Forty, and Eighty. This reveals
that the larger the number of changing features identified in a pathway (or metabolite set),
the more tolerant the method is to nonchanging (random) features.
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Figure 1. Adding nonchanging decoy features to the seven known changing pathways T =

{2, 4, 6, 10, 20, 40, 80}. The percentage of decoy features represents the number of additional noisy
features added to a pathway as a percentage of the original number of features in that pathway. The
boxplots show the spread of the p-values calculated from the pathways, including the median (solid
horizontal line). The red dashed line indicates a p-value threshold of 0.05. The results show that
increasing noise levels generally produces higher p-values, making it harder to detect significantly
changing pathways. mPLAGE is more robust compared to other methods in returning lower p-values
in the presence of noise.
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Figure 2. Mean p-values from overrepresentation analysis (ORA), gene set enrichment analysis
(GSEA), and pathway level analysis of gene expression for metabolomics (mPLAGE) calculated for
each significantly changing synthetic pathway at different levels of decoy features added. Across all
levels of added decoy features, it is easier to identify larger pathways as significantly changing than
smaller pathways. mPLAGE generally returns lower p-values than ORA and GSEA.

For all pathways across all levels of added decoy features, mPLAGE returns lower
p-values compared to ORA and GSEA, which means that more significantly changing
metabolite sets can be detected. This is similar to findings reported by Evangelou et al. [19]
that compare methods for competitive tests for pathway analysis of gene sets and found
that the power of all tested methods increased with the size of the pathway. Finally, F1
score performance was evaluated. This summarises overall retrieval ability, taking into
account the number of true positives, false positives, and false negatives of the methods
being tested. Using this metric, it could be seen that the performance of ORA and mPLAGE
were roughly similar using 0–100% levels of non-changing features (Figure 3). At higher
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levels of added decoy features of 250%, 500%, and 1000%, the F1 scores of mPLAGE were
consistently higher than ORA and GSEA. These results showed that a greater number of
true positive pathways could be identified with mPLAGE than with ORA or GSEA. GSEA
performed worst among the three methods tested, particularly showing its sensitivity to
nonchanging or decoy features.
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Figure 3. Overall performance of the different pathway ranking methods. Distribution of the F1 for
each method under increasing levels of decoy features is shown with outliers displayed as small
diamonds. The performance of mPLAGE and ORA are roughly similar using 0–100% decoy levels,
but mPLAGE performs better returning greater F1-scores at higher decoy levels.

2.1.4. Synthetic Experiment Results—Increasing Missing Features

Additionally, the effect of introducing an increasing number of missing features from
the pathways was explored. For this experiment, the level of decoy features was fixed
to 100% in order to allow for an equal number of changing and nonchanging features.
The percentage of features randomly missing from the data was indicated by p, and this
value was varied from 20%, 40%, 60%, and 80% of the full data set. The different pathway
ranking methods were run 500 times for each data set with each having a different value of
p. The results in Figure 4 show that as the number of missing features increases, mPLAGE
consistently returns lower mean p-values with smaller variances than ORA or GSEA. This
suggests that mPLAGE is generally more robust to missing features than the alternative
methods tested. These results were also supported by the F1 score performance (Figure 5),
where mPLAGE generally performed best even when large numbers of features were
missing from the data.

2.2. Real Data Experiments

To evaluate the performance of the proposed method on actual complex biological data,
PALS was used to analyse metabolomics data obtained from a study on human African
trypanosomiasis (HAT) introduced in [20]. The causative agent of HAT is the parasite
Trypanosoma brucei, which is transmitted to a human/mammalian host by the bite of the
tsetse fly. Two data sets of samples collected from human blood plasma and cerebrospinal
fluid (CSF) are available from the study, denoted as the Plasma and CSF (cerebrospinal
fluid) data sets, respectively. The control group consists of parasite-free patients, while the
two case groups are those with stage 1 (S1, parasites present in blood/lymphatics) or stage
2 (S2, parasites found in the CSF) trypanosomiasis.
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Figure 4. Resulting p-values from removing features from significantly changing pathways. The
percentage of features randomly removed from the pathways increases from 20% to 80% and ORA,
GSEA, and mPLAGE are compared. The red dashed line indicates a p-value threshold of 0.05. The
results show that mPLAGE performs better, returning lower p-values compared to the alternatives,
even in the presence of a large number of missing features.
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Figure 5. Overall performance of the different pathway ranking methods with missing features.
Distribution of the F1 scores for each method under an increasing proportion of missing features
(20% to 80%) is shown. The results show that mPLAGE performs better, returning greater F1-scores
at higher proportions of missing features.

2.2.1. Case Study

Using the HAT data with PALS allows for complex clinical data to be explored and
demonstrates how PALS can be used to draw relevant biological conclusions. The Plasma
and CSF data sets from the HAT study, comprising of 20/17 control (C) samples and
20 samples from both S1 and S2, respectively, were uploaded and processed through the
Polyomics Integrated Metabolomics pipeline (PiMP) [21]. PALS was easily integrated into
PiMP and set to run automatically at the end of a data analysis workflow. PALS results
from the HAT data revealed that a greater number of significantly changing pathways
(p-value < 0.05) were found between the disease stages for the CSF than Plasma data (52/74,
42/128, and 42/143 for Plasma/CSF when comparing S1:C, S2:C, and S1:S2, respectively).
In all of the comparisons, CSF samples have a greater number of changing pathways than
those seen in the Plasma data. In particular, there is a notable difference in the changing
pathways between the S1:C and S2:C/S1:S2 in the CSF. This can be explained by the fact
that the parasites are only present in the CSF in S2 parasitemia and consequently more
metabolic changes are expected in the CSF from S2 patients.
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Looking at metabolic differences between S1 and S2 samples, the top-ranking PALS
pathways in the CSF were heavily biased towards amino-acid metabolism (Supplementary
Table S5). Changes in these pathways make sense for two reasons: firstly, because all
parasites scavenge nutrients from their hosts and T. brucei is predicted to be auxotrophic
for the amino acids arginine, glycine, histidine, isoleucine, leucine, lysine, phenylalanine,
tryptophan, tyrosine, and valine [22], and secondly because it is unlikely that parasites will
be present in the CSF of patients with a S1 infection. To support this finding, individual
amino acids identified in the experiment were examined, and it was revealed that all of the
amino acids required by T. brucei (listed above) (excluding glycine, which was undetected)
were found to be decreasing in the CSF of patients with S2 of the disease (Supplementary
Table S6). Interestingly, running the Plasma data through PALS did not show any bias
towards amino acid metabolism, suggesting that the parasites potentially have a much
more marked effect on the amino acid biosynthesis and availability on their host when it
reaches the CSF.

It is known that when T. brucei reside in the human bloodstream, they are exposed to
high levels of glucose, which they rely on for their energy metabolism [23]. This reliance
on glucose changes when the parasites are resident in the insect midgut, as they have a less
readily available supply of glucose, and instead switch to amino acids as their main carbon
source [24]. Little is known about the metabolism of the parasites in the CSF, so it may
be possible that amino acid usage is required to supplement the lower levels of glucose
in the CSF (4.5 mM and 3 mM in Plasma and CSF, respectively [25]). Another reason that
uptake of amino acids is evident in the CSF samples but not in the Plasma samples could
be a result of amino acid concentrations being much lower in the CSF (4–50-fold lower for
the nine amino acids than T. brucei are auxotrophic for [25]), and consequent salvaging of
the nutrients by the parasites is more noticeable in the CSF.

2.2.2. Real Data Experimental Setup

The HAT case study results demonstrate how the mPLAGE method in PALS identified
significantly changing pathways that can be explained and interpreted as biologically
relevant. In this section, the robustness of the different pathway ranking methods on this
data is assessed. In a manner similar to the synthetic experiment, a range of missing feature
proportions p was set from 20% to 80%.

After processing in PiMP, the complete Plasma and CSF data produced 15,584 and
8154 features, of which 1647 and 1132 had associated metabolite annotations, respectively.
Therefore, p times the total number of features were randomly removed, and the rest
were used as input for pathway analysis. Assuming that a particular pathway ranking
Pm returned by a method m on the complete data will be better than the ones obtained
from the reduced data (with missing features), results from the complete data could be
used as the true answers for evaluation. Here, true answers T are restricted to be the set of
significant pathways above a threshold of 0.05 for their mPLAGE and ORA p-values, and a
larger threshold of 0.25 for GSEA (following the suggestion in [6]).

Given T and Pm, performance in terms of precision, recall, and F1 score can be com-
puted as described in Section 2.1.2. This evaluation procedure was repeated 500 times.
Comparisons were performed between the Stage1/Control groups on the Plasma data and
between the Stage2/Control groups on the CSF data, where more changing pathways are
expected to be found in the data set between the case and control groups as the disease
progresses. The results are reported in Section 2.2.3.

2.2.3. Robustness on Real Data

For all methods, it can be noted that the F1 score decreases as the proportion of missing
features increase (Figure 6). This suggests that it becomes harder for all tested methods to
reconstruct the original pathway ranking results obtained from the full data when fewer
input features are available. On both the Plasma and CSF data, the pathway decomposition
in mPLAGE performs best, demonstrating the most robust tolerance to missing features,
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followed by ORA. In both data sets, GSEA performs worst as a result of its sensitivity to
noise. The results obtained for GSEA on the HAT data agree with those obtained for the
synthetic data experiment.

At the highest proportion of missing features (80%) with the Plasma data, mPLAGE
achieves a mean F1 score of 0.48, while ORA and GSEA obtain scores of 0.20 and 0.08,
respectively (Supplementary Table S7). Similarly, on the CSF data, mPLAGE achieves an F1
score of 0.60 while ORA and GSEA obtain 0.50 and 0.16, respectively. ORA, on average,
returns higher mean precision values among the benchmarked methods, but the better F1
score of mPLAGE can be attributed to its generally superior recall performance while still
offering competitive precision in comparison to ORA. The results here suggest that even
when there are many missing features, mPLAGE is able to recover more original pathways
in the full data using a small fraction of the features present in the original peak data,
returning a higher number of true positives and fewer false positives and false negatives.

20 40 60 80
Missing Features (%)

0.0

0.2

0.4

0.6

0.8

1.0

F
1

Plasma

20 40 60 80
Missing Features (%)

CSF
ORA

GSEA

mPLAGE

Figure 6. F1 score results from the plasma and cerebrospinal fluid (CSF) samples from the human
African trypanosomiasis (HAT) data set for varying percentages of missing features (proportion of
full data set). A higher F1 score means that the method is able to recover more of the original set
of significant pathways correctly, even in the presence of missing features. The results show that
mPLAGE performs better than the alternatives on real data.

2.3. Analysis of Metabolite Sets: Molecular Families and Mass2Motifs

To demonstrate the analysis of other types of metabolite sets, PALS was used to assess
the activity levels of potentially unknown metabolites grouped into molecular families
(MFs) through their fragmentation spectral similarities, and into Mass2Motifs based on
shared fragment and neutral loss features.

For the MF analysis, Global Natural Products Social Molecular Networking (GNPS)
example data were taken from the American Gut Project [26]. From this, a subset of data
was chosen from volunteers who had consumed different amounts of plant-based food. In
this study, 35 significantly changing MFs (p-value ≤ 0.05) containing 10 or more molecules
were found between the case (eating >30 plant-based foods a week) and control (<10 plant-
based foods a week) groups. Of particular interest is one significantly changing MF (p-value
≤ 0.001) that was identified by PALS, consisting of 23 molecules that have steroid-related
GNPS library hits. The intensities of the associated MS peaks in this steroid-related MF
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were found to be higher in the control group (for more details, see Supplementary Section
S8), which could be a result of the abundance of steroids in meat, fish, and eggs in their
diet. Most other significant MFs did not contain GNPS library hits but could represent
potentially novel chemical classes.

To anaylse Mass2Motifs, a data set from the GNPS-MS2LDA workflow, consisting of
70 Rhamnacea species from two clades and various genera, was used [4]. In the original
study, 25 Mass2Motifs were manually characterized and their distribution over the Rham-
naceae clades examined. The statistical significance of the results were easily obtained
using PALS, whereas all previous efforts relied on manual interpretation.

Consistent with [4], PALS revealed that Mass2Motifs annotated with flavonoid-related
substructures (i.e., rhamnocitrin, kaemfperol, flavonoid core framgent, and emodin) are all
differently expressed between the Rhamnus and Ziziphus genera with features generally
overrepresented in Rhamnus (for more details, see Supplementary Section S9). Similarly,
the substructure set containing cyclopeptidic alkaloids was found to be overrepresented
in Ziziphus. Differential metabolite sets for other genera could also be easily examined
using PALS (for example, the Xylose or Arabinose moiety substructure was found to be
differentially expressed between Ventilago and Rhamnus).

Finally, looking at Mass2Motifs in the American Gut Project data, 11 significant
Mass2Motifs were prioritised using PALS, with one DE Mass2Motif being more abundant
in “plant-eaters” and annotated as related to ferulic acid (12 members)—a molecule that
is typically found in plants and could be linked to plant-based foods in this data set (see
Supplementary Section S8 for more details).

3. Materials and Methods
3.1. Preparing Intensity Matrix

As input to activity level decomposition using mPLAGE (see Section 3.4), a peak
intensity matrix X is constructed for each metabolite set, defined here as a collection of
features that have been grouped in some manner, e.g., forming a particular metabolic
pathway or molecular family. In X, each row represents a single feature and each column
is a sample, grouped into user-defined factors/conditions. In such multisample LC–MS
data sets, it is common to find missing data points across the samples. To address this, data
imputation is performed on the intensity matrix as follows: if all of the samples in a single
experimental factor have intensities of zero, these are replaced by a minimum intensity
value (which can be set by the user), and if only some of the sample values in a factor are
zero, then these are replaced by the mean value of the nonzero samples in that factor. As
an option for data normalisation, the intensity matrix is subsequently transformed to log
space and standardised using the preprocessing module in Scipy [27] such that each factor
has a zero mean and unit variance across the samples. This has been shown to give good
results in preserving the distribution of p-values of significantly changing metabolites [28].

3.2. Retrieving Pathway Data

Metabolites, pathways, and the mapping of metabolites to pathways are obtained in
PALS by querying from a local copy of the KEGG database [29] or by querying a Reactome
instance running on top of a local Neo4j graph database (Figure 7A). For Reactome, queries
are created using Cypher, the query language used in the Neo4j graph database that hosts
the Reactome data, to retrieve pathway information. Reactome is regularly updated, with
the entire database available from the Reactome website https://reactome.org/ (accessed
on 5 February 2021) [30].

The presence of isomeric and isobaric compounds (same mass, different structure/
molecular formula, respectively) in a sample means that multiple features with close m/z
values can be annotated with the same molecular formula, although their associated peaks
are actually produced by different compounds in the MS. Resolving the actual molecular
identities of annotated features is a challenging problem, even at a high resolution [9].
To ensure coverage, PALS represents compounds using their chemical formulae when

https://reactome.org/
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mapping features to pathways. Features are annotated as compound formulae and these
are linked to the metabolites in the metabolite set/pathway of interest. To minimise false
positive identifications of compounds from features, only those annotated as the most
commonly observed adducts were selected: protonated (M+H)+ and deprotonated (M-H)−

from positive and negative ionisation modes, respectively.

Pathway

Formula 1
Feature 271

Feature 601

Formula 2
Feature 114

Feature 2928

Formula 3
Feature 116

Feature 3080
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Feature 3081

Feature 1006

Feature 1007

Formula 5 Feature 1006
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2 peak intensities

Case Control

Compute t-statistics
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Permutation 
Test

p-values of 
metabolite 

sets

Fe
at

ur
e 

id
s

log(peak intensities)

Activity level 
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D. Computing Activity Level (mPLAGE) of Metabolite Sets

Figure 7. Overall schematic of Pathway Activity Level Scoring (PALS) using pathways and molecular
families as an example of metabolite sets. (A) Database queries of pathways. Different databases
(Reactome and KEGG) can be used to query pathways in PALS. Features are mapped to pathways
through their formula annotations. For a set of compounds, all features sharing the same formula
annotations of those compounds are used to construct the input intensity matrix for mPLAGE.
(B) GNPS queries of molecular families or Mass2Motifs, potentially representing unknown chemical
classes or substructures. (C) The intensities of features are extracted from peak data and assigned to
experimental groups (D) The feature intensity matrix and mPLAGE method for a metabolite set. In
the matrix, feature intensity levels are shown as a heat map ranging from blue (high) to red (low)
peak intensities. The feature intensity matrix is decomposed via SVD to obtain the activity level
(AL) scores from a set of metabolites in a sample. The collective AL scores are used to calculate the
subsequent mPLAGE p-values between the different factor groups. The dashed green line is used to
split samples grouped as different factors.

3.3. Retrieving Molecular Family and Mass2Motif Data

The decomposition approach employed by mPLAGE is not limited to the analysis
of pathways. In fact, any user-defined grouping of features, where each metabolite set
can be represented as the intensity matrix X (features vs. samples), can be used for for
activity level decomposition. Here, two other approaches for producing metabolite sets
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by grouping features in a data-dependent fashion, in contrast to pathways that rely on
prior knowledge, are described. The first method uses molecular networking (FBMN, [31])
to cluster peak fragmentation spectra by their similarities and produce the groups of
peaks known as molecular families (MF). The second method employs a topic-modelling
approach (MS2LDA, [5]) to generate groups of peaks (called Mass2Motifs) based on the
shared presence of fragment and neutral loss features in their fragmentation spectra. Both
FBMN and MS2LDA are accessible as workflows from Global Natural Products Social
Molecular Networking (GNPS, [2]), which provides community resources to run large-scale
molecular networking and annotations of spectra. To analyse both MFs and Mass2Motifs,
Python code is provided in PALS to retrieve information on the metabolite sets as well as
the peak intensity table from GNPS (Figure 7B). This is then used to extract features and
construct the input matrices for mPLAGE analysis (Figure 7C).

3.4. Decomposing Metabolite Set Activity Levels Using mPLAGE

The initial activity level (AL) score for a set of metabolites is computed using singular
value decomposition (SVD) following the method described for PLAGE [7], and adapted
for metabolomics data (mPLAGE), as described. Similar to the way that gene expression
data can be decomposed into metagenes and activity levels in PLAGE [7], the intensity
matrix X can be used to determine an AL score for a compound in a pathway or set of
metabolites in mPLAGE. This is calculated as the level of the first metacompound from the
SVD of the peak intensity matrix (Figure 7D) as follows. Given an intensity matrix X for a
group of metabolites (where rows are the features annotated with formulae and columns
are the samples in the data set), the decomposition of X can be written as X = UΣV where
columns in U are the orthonormal left singular vectors representing “metacompounds”, Σ
contains the diagonal matrix of singular values arranged in descending order, and rows
in V are the right singular vectors representing the contribution of the corresponding
metacompounds to each sample. The AL score in a sample j is given by vj, where v is
the first row in V, which is a vector of coefficients representing the activity levels of the
first metacompound in U (having the largest singular value) across samples. The singular
values σ in Σ scale the metacompounds so that the original data X can be constructed—in
fact, the square of each σi is a measure of the variance accounted for by each metacompound
i. For more details, see [7].

To perform activity level analysis, two experimental factors are compared—for ex-
ample, a control versus a condition. This is achieved by using the AL scores obtained
from the decomposition step to calculate the t-statistic for each metabolite set across the
varying experimental factors (Figure 7D). As in [7], random permutations of the sample
labels are performed to obtain the null distributions of t-statistics. However, it is observed
that the tail end of the distribution of permuted t-statistics occasionally contains some ex-
treme values that could skew results. As part of mPLAGE, an enhancement to the original
PLAGE approach is introduced which produces better calibrated p-values. The minimum
and maximum t-statistics from each permutation test are modelled using the generalised
extreme value (GEV) distribution [32], with parameter fitting using maximum-likelihood
estimation. The t-statistic of a pathway or set of metabolites is then evaluated against the
fitted density in order to produce the final mPLAGE p-values of the metabolite sets.

3.5. Software Implementation

To facilitate the use of the activity analysis described in this project, PALS (Pathway
Activity Level Scoring) software was developed. PALS can be run either as a standalone tool,
imported as a Python library, or used via a Web interface allowing users with a wide range
of expertise and requirements to use it (input format detailed in Supplementary Section
S1). To assist beginners, a Web interface is provided to run PALS in an intuitive and user-
friendly manner (refer to Supplementary Section S2 for more details). Intermediate users
can run PALS as a standalone command-line tool and incorporate PALS into a workflow
as part of a custom script. In this mode, feature and annotation CSV files are input on the
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command line along with experimental design parameters, and a variety of other available
parameters, accessible through command-line options (detailed in Supplementary Section
S2). Pathway ranking results are output as a CSV file listing pathways, or metabolite
sets, and their p-values. Expert users can also incorporate the PALS library directly in
their Python application or use it in an interactive data analysis environment such as
Jupyter Notebook [33]. A comprehensive tutorial describing how to use PALS as a library
is available from the project Web site.

4. Conclusions

This work describes PALS, a comprehensive system that can be used to prioritise
metabolite sets, that is freely available at https://pals.glasgowcompbio.org/ (accessed on 5
February 2021). From PALS, users obtain the ranking of changing pathways, or user-defined
sets of metabolites, between experimental factors. Database queries that map compounds
to pathways are integrated into the system using either KEGG or Reactome databases,
while code is also available to automatically retrieve measurement data and metabolite sets
of molecular families and Mass2Motifs from GNPS and perform activity measurements.
Manuscripts comparing pathway ranking methods for metabolomics are still relatively rare.
One such manuscript [34] compares the performance of overrepresentation analysis (ORA)
tools, revealing that tools using ORA for analysis give consistently similar results while
incorrect versions of the databases can affect the results more. With PALS, a systematic
comparison using synthetic and real data was performed for the mPLAGE method against
two different and widely used methods for pathway ranking in metabolomics ORA and
GSEA. Comparing these different methods show that mPLAGE is consistently more robust
in the presence of noisy and missing features, a common problem in LC–MS peak data. In
addition, by choosing to use PALS with the Reactome DB, users can consistently access the
most recent version of the DB, avoiding any version issues.

It is also worth emphasising that unlike many tools surveyed here that specifically deal
with pathways, PALS could be easily used to prioritise metabolite sets derived from many
sources, whether based on knowledge (pathways) or driven by fragmentation data (molec-
ular families and Mass2Motifs). To our knowledge, this is a unique capability not present
in other tools. PALS also presents a comprehensive Python-based library that can be easily
run in several modes: as a standalone tool, an interactive Web application (PALS Viewer), or
a Python library. This allows PALS to be embedded in many different contexts: as part of a
larger Web application, or a custom Python-based workflow and scripts, or to be imported
directly into interactive computing environments like Jupyter. As a demonstration of its util-
ity and versatility, the PALS library has been integrated and actively used in several projects
such as PiMP [21], FlyMet (flymet.org (accessed on 5 February 2021) [35]), and WebOmics
(webomics.glasgowcompbio.org (accessed on 5 February 2021) [36]). To support these
projects, PALS was extended to analyse not just metabolite sets, but also gene sets as
well as protein sets from Reactome, since the mPLAGE approach used for activity level
decomposition could easily generalise to other types of omics data too.

Supplementary Materials: A variety of additional text, tables and figures are available online at
https://www.mdpi.com/2218-1989/11/2/103/s1. Supplementary Section S1: File format and
data imputation, Supplementary Section S2: Running PALS, Supplementary Section S3: Synthetic
data generation, Supplementary Section S4: Benchmark methods, Supplementary Table S5: Top 30
ranking pathways from the HAT CSF dataset, Supplementary Table S6: Metabolites annotated in the
KEGG aminoacyl-tRNA biosynthesis pathway, Supplementary Table S7: Precision and recall on real
HAT data, Supplementary Section S8: Analysis of Differentially Expressed Molecular Families and
Mass2Motifs from the AGP Dataset, Supplementary Section S9: Analysis of Differentially Expressed
Mass2Motifs from the Rhamnaceae Dataset.
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and R.D. All authors have read and agreed to the published version of the manuscript.

https://pals.glasgowcompbio.org
http://flymet.org/
https://webomics.glasgowcompbio.org/
https://www.mdpi.com/2218-1989/11/2/103/s1
https://www.mdpi.com/2218-1989/11/2/103/s1


Metabolites 2021, 11, 103 14 of 15

Funding: R.D. and J.W. were funded by the Wellcome Trust (105614/Z/14/Z). KMcL was funded by
Innovate UK (102511). J.J.J.v.d.H. was funded by an ASDI eScience grant, grant no. ASDI.2017.030,
from the Netherlands eScience Center—NLeSC.

Data Availability Statement: The data referenced in Section 2.2 is available at https://www.ebi.ac.
uk/metabolights/MTBLS413 (accessed on 5 February 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khatri, P.; Sirota, M.; Butte, A.J. Ten years of pathway analysis: Current approaches and outstanding challenges. PLoS Comput.

Biol. 2012, 8, e1002375. [CrossRef] [PubMed]
2. Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.;

et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking.
Nat. Biotechnol. 2016, 34, 828–837. [CrossRef] [PubMed]

3. Ernst, M.; Kang, K.B.; Caraballo-Rodríguez, A.M.; Nothias, L.F.; Wandy, J.; Chen, C.; Wang, M.; Rogers, S.; Medema, M.H.;
Dorrestein, P.C.; et al. MolNetEnhancer: Enhanced molecular networks by integrating metabolome mining and annotation tools.
Metabolites 2019, 9, 144. [CrossRef] [PubMed]

4. Kang, K.B.; Ernst, M.; van der Hooft, J.J.; da Silva, R.R.; Park, J.; Medema, M.H.; Sung, S.H.; Dorrestein, P.C. Comprehensive mass
spectrometry-guided phenotyping of plant specialized metabolites reveals metabolic diversity in the cosmopolitan plant family
Rhamnaceae. Plant J. 2019, 98, 1134–1144. [CrossRef] [PubMed]

5. van Der Hooft, J.J.J.; Wandy, J.; Barrett, M.P.; Burgess, K.E.; Rogers, S. Topic modeling for untargeted substructure exploration in
metabolomics. Proc. Natl. Acad. Sci. USA 2016, 113, 13738–13743. [CrossRef]

6. Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.;
Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.
Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [CrossRef] [PubMed]

7. Tomfohr, J.; Lu, J.; Kepler, T.B. Pathway level analysis of gene expression using singular value decomposition. BMC Bioinform.
2005, 6, 225. [CrossRef] [PubMed]

8. Tarca, A.L.; Bhatti, G.; Romero, R. A comparison of gene set analysis methods in terms of sensitivity, prioritization and specificity.
PLoS ONE 2013, 8, e79217. [CrossRef] [PubMed]

9. Kind, T.; Fiehn, O. Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at
less than 1 ppm. BMC Bioinform. 2006, 7, 234. [CrossRef] [PubMed]

10. Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent
and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [CrossRef] [PubMed]

11. Kessler, N.; Neuweger, H.; Bonte, A.; Langenkämper, G.; Niehaus, K.; Nattkemper, T.W.; Goesmann, A. MeltDB 2.0—Advances of
the metabolomics software system. Bioinformatics 2013, 29, 2452–2459. [CrossRef]

12. Kamburov, A.; Cavill, R.; Ebbels, T.M.; Herwig, R.; Keun, H.C. Integrated pathway-level analysis of transcriptomics and
metabolomics data with IMPaLA. Bioinformatics 2011, 27, 2917–2918. [CrossRef]

13. Chong, J.; Xia, J. MetaboAnalystR: An R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 2018,
34, 4313–4314. [CrossRef]

14. Yu, G.; He, Q.Y. ReactomePA: An R/Bioconductor package for reactome pathway analysis and visualization. Mol. Biosyst. 2016,
12, 477–479. [CrossRef]

15. Ulgen, E.; Ozisik, O.; Sezerman, O.U. pathfindR: An R package for comprehensive identification of enriched pathways in omics
data through active subnetworks. Front. Genet. 2019, 10, 858. [CrossRef] [PubMed]

16. Palombo, V.; Milanesi, M.; Sferra, G.; Capomaccio, S.; Sgorlon, S.; D’Andrea, M. PANEV: An R package for a pathway-based
network visualization. BMC Bioinform. 2020, 21, 46. [CrossRef]

17. Vincent, I.M.; Creek, D.; Watson, D.G.; Kamleh, M.A.; Woods, D.J.; Wong, P.E.; Burchmore, R.J.; Barrett, M.P. A molecular
mechanism for eflornithine resistance in African trypanosomes. PLoS Pathog. 2010, 6, e1001204. [CrossRef] [PubMed]

18. PALS Website. Available online: https://pals.glasgowcompbio.org/ (accessed on 10 February 2021).
19. Evangelou, M.; Rendon, A.; Ouwehand, W.H.; Wernisch, L.; Dudbridge, F. Comparison of methods for competitive tests of

pathway analysis. PLoS ONE 2012, 7, e41018. [CrossRef] [PubMed]
20. Vincent, I.M.; Daly, R.; Courtioux, B.; Cattanach, A.M.; Biéler, S.; Ndung’u, J.M.; Bisser, S.; Barrett, M.P. Metabolomics identifies

multiple candidate biomarkers to diagnose and stage human African trypanosomiasis. PLoS Neglected Trop. Dis. 2016, 10, e0005140.
[CrossRef]

21. Gloaguen, Y.; Morton, F.; Daly, R.; Gurden, R.; Rogers, S.; Wandy, J.; Wilson, D.; Barrett, M.; Burgess, K. PiMP my metabolome:
An integrated, web-based tool for LC-MS metabolomics data. Bioinformatics 2017, 33, 4007–4009. [CrossRef]

22. Chaudhary, K.; Roos, D.S. Protozoan genomics for drug discovery. Nat. Biotechnol. 2005, 23, 1089–1091. [CrossRef] [PubMed]
23. Creek, D.J.; Mazet, M.; Achcar, F.; Anderson, J.; Kim, D.H.; Kamour, R.; Morand, P.; Millerioux, Y.; Biran, M.; Kerkhoven, E.J.; et al.

Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope
labelled glucose. PLoS Pathog. 2015, 11, e1004689. [CrossRef] [PubMed]

https://www.ebi.ac.uk/metabolights/MTBLS413
https://www.ebi.ac.uk/metabolights/MTBLS413
http://doi.org/10.1371/journal.pcbi.1002375
http://www.ncbi.nlm.nih.gov/pubmed/22383865
http://dx.doi.org/10.1038/nbt.3597
http://www.ncbi.nlm.nih.gov/pubmed/27504778
http://dx.doi.org/10.3390/metabo9070144
http://www.ncbi.nlm.nih.gov/pubmed/31315242
http://dx.doi.org/10.1111/tpj.14292
http://www.ncbi.nlm.nih.gov/pubmed/30786088
http://dx.doi.org/10.1073/pnas.1608041113
http://dx.doi.org/10.1073/pnas.0506580102
http://www.ncbi.nlm.nih.gov/pubmed/16199517
http://dx.doi.org/10.1186/1471-2105-6-225
http://www.ncbi.nlm.nih.gov/pubmed/16156896
http://dx.doi.org/10.1371/journal.pone.0079217
http://www.ncbi.nlm.nih.gov/pubmed/24260172
http://dx.doi.org/10.1186/1471-2105-7-234
http://www.ncbi.nlm.nih.gov/pubmed/16646969
http://dx.doi.org/10.1093/nar/gky310
http://www.ncbi.nlm.nih.gov/pubmed/29762782
http://dx.doi.org/10.1093/bioinformatics/btt414
http://dx.doi.org/10.1093/bioinformatics/btr499
http://dx.doi.org/10.1093/bioinformatics/bty528
http://dx.doi.org/10.1039/C5MB00663E
http://dx.doi.org/10.3389/fgene.2019.00858
http://www.ncbi.nlm.nih.gov/pubmed/31608109
http://dx.doi.org/10.1186/s12859-020-3371-7
http://dx.doi.org/10.1371/journal.ppat.1001204
http://www.ncbi.nlm.nih.gov/pubmed/21124824
https://pals.glasgowcompbio.org/
http://dx.doi.org/10.1371/journal.pone.0041018
http://www.ncbi.nlm.nih.gov/pubmed/22859961
http://dx.doi.org/10.1371/journal.pntd.0005140
http://dx.doi.org/10.1093/bioinformatics/btx499
http://dx.doi.org/10.1038/nbt0905-1089
http://www.ncbi.nlm.nih.gov/pubmed/16151400
http://dx.doi.org/10.1371/journal.ppat.1004689
http://www.ncbi.nlm.nih.gov/pubmed/25775470


Metabolites 2021, 11, 103 15 of 15

24. Mantilla, B.S.; Marchese, L.; Casas-Sánchez, A.; Dyer, N.A.; Ejeh, N.; Biran, M.; Bringaud, F.; Lehane, M.J.; Acosta-Serrano, A.;
Silber, A.M. Proline metabolism is essential for Trypanosoma brucei brucei survival in the tsetse vector. PLoS Pathog. 2017,
13, e1006158. [CrossRef] [PubMed]

25. Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.; Dong, E.; et al. HMDB
3.0—The human metabolome database in 2013. Nucleic Acids Res. 2012, 41, D801–D807. [CrossRef] [PubMed]

26. McDonald, D.; Hyde, E.; Debelius, J.W.; Morton, J.T.; Gonzalez, A.; Ackermann, G.; Aksenov, A.A.; Behsaz, B.; Brennan, C.;
Chen, Y.; et al. American gut: An open platform for citizen science microbiome research. MSystems 2018, 3, e00031-18. [CrossRef]

27. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;
Bright, J.; et al. SciPy 1.0—Fundamental Algorithms for Scientific Computing in Python. arXiv 2019, arXiv:1907.10121.

28. Li, B.; Tang, J.; Yang, Q.; Li, S.; Cui, X.; Li, Y.; Chen, Y.; Xue, W.; Li, X.; Zhu, F. NOREVA: Normalization and evaluation of
MS-based metabolomics data. Nucleic Acids Res. 2017, 45, W162–W170. [CrossRef] [PubMed]

29. Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [CrossRef]
30. Reactome Website. Available online: https://reactome.org/ (accessed on 10 February 2021).
31. Nothias, L.F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M.;

et al. Feature-based Molecular Networking in the GNPS Analysis Environment. Nat. Methods 2020, 17, 905–908. [CrossRef]
[PubMed]

32. Charras-Garrido, M.; Lezaud, P. Extreme value analysis: An introduction. J. Soc. Fr. Stat. 2013, 154, 66–97.
33. Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.E.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.B.; Grout, J.; Corlay, S.;

et al. Jupyter Notebooks-a publishing format for reproducible computational workflows. In Proceedings of the 20th International
Conference on Electronic Publishing, Göttingen, Germany, 7–9 June 2016; pp. 87–90.

34. Marco-Ramell, A.; Palau-Rodriguez, M.; Alay, A.; Tulipani, S.; Urpi-Sarda, M.; Sanchez-Pla, A.; Andres-Lacueva, C. Evaluation
and comparison of bioinformatic tools for the enrichment analysis of metabolomics data. BMC Bioinform. 2018, 19, 1. [CrossRef]
[PubMed]

35. FlyMet Website. Available online: http://flymet.org/ (accessed on 10 February 2021).
36. WebOmics Website. Available online: https://webomics.glasgowcompbio.org/ (accessed on 10 February 2021).

http://dx.doi.org/10.1371/journal.ppat.1006158
http://www.ncbi.nlm.nih.gov/pubmed/28114403
http://dx.doi.org/10.1093/nar/gks1065
http://www.ncbi.nlm.nih.gov/pubmed/23161693
http://dx.doi.org/10.1128/mSystems.00031-18
http://dx.doi.org/10.1093/nar/gkx449
http://www.ncbi.nlm.nih.gov/pubmed/28525573
http://dx.doi.org/10.1093/nar/28.1.27
https://reactome.org/
http://dx.doi.org/10.1038/s41592-020-0933-6
http://www.ncbi.nlm.nih.gov/pubmed/32839597
http://dx.doi.org/10.1186/s12859-017-2006-0
http://www.ncbi.nlm.nih.gov/pubmed/29291722
http://flymet.org/
https://webomics.glasgowcompbio.org/

	Introduction
	Results and Discussion
	Synthetic Data Experiments
	Synthetic Data Setup
	Evaluation
	Synthetic Experiment Results—Increasing the Number of Decoy Features
	Synthetic Experiment Results—Increasing Missing Features

	Real Data Experiments
	Case Study
	Real Data Experimental Setup
	Robustness on Real Data

	Analysis of Metabolite Sets: Molecular Families and Mass2Motifs

	Materials and Methods
	Preparing Intensity Matrix
	Retrieving Pathway Data
	Retrieving Molecular Family and Mass2Motif Data
	Decomposing Metabolite Set Activity Levels Using mPLAGE
	Software Implementation

	Conclusions
	References

