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Background andObjective.The same range of blood pressure valuesmay reflect different vascular functions, especially in the elderly.
Therefore, a single blood pressure valuemay not comprehensively reveal cardiovascular function.This study focused on identifying
pulse wave features in the elderly that can be used to show functional differences when blood pressure values are in the same range.
Methods. First, pulse data were preprocessed and pulse cycles were segmented. Second, time domain, higher-order statistics, and
energy features of wavelet packet decomposition coefficients were extracted. Finally, useful pulse wave features were evaluated
using a feature selection and classifier design. Results. A total of 6,075 pulse wave cycles were grouped into 3 types according to
different blood pressure levels and each groupwas divided into 2 categories according to a history of hypertension.The classification
accuracy of feature selection in the 3 groups was 97.91%, 95.24%, and 92.28%, respectively. Conclusion. Selected features could be
appropriately used to analyze cardiovascular function in the elderly and can serve as the basis for research on a cardiovascular risk
assessment model based on Traditional Chinese Medicine pulse diagnosis.

1. Introduction

Pulse diagnosis is very important in Traditional Chinese
Medicine (TCM), and research has focused on obtaining
objective evidence for the technique [1, 2]. Pulse waves
include objective information used in TCM pulse diagnosis.
The time domain features of pulse waves have physiologi-
cal significance and reflect the duration and amplitude of
percussion waves, tidal waves, and dicrotic waves. The fre-
quency and time domain features can reflect the disease state
[3], especially in cardiovascular disease [4]. Early research
[5] found that time domain features reflect hypertension.
Recent studies have sought to identify a scientific correlation
between pulse patterns (wiry pulse, slippery pulse, and oth-
ers) and blood pressure using a computational approach. For
example, the association between pulse waves and hemody-
namic parameters has been studied in hypertensive patients
[6, 7], and research has shown that blood pressure values

can be predicted by pulse waves [8]. Pulse waves and blood
pressure values are closely associated [9–11]. According to
TCM, most hypertensive patients have a wiry pulse [8]. A
wiry pulse is also commonly found in normotensive elderly,
especially in those over 60 years old. Moreover, the elderly
are at higher risk for hypertension. In the elderly, it is
unclear how to distinguish between hypertensive patients
taking blood pressure medication and normotensive, using
pulse waves with the same blood pressure values. In our
previous studies, a series of features, including time domain
(TD), energy (𝐸), and higher-order statistics (HOS) features
of wavelet packet decomposition coefficients (WPDC), were
used in pulse classification of health versus subhealth and
atherosclerosis versus nonarteriosclerosis [12]. The results
have proved the feasibility of above features in pulse analysis.
So we hypothesized that time domain (TD), energy (𝐸),
and higher-order statistics (HOS) features of wavelet packet
decomposition coefficients (WPDC) in the pulse wave cycle,
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Figure 1: General flow diagram.

which can identify signal characteristics [13], may reveal
differences in pulse waves within the same range of blood
pressure values in hypertensive and normotensive.

This study focused on individuals over 60 years of
age to identify useful features in the pulse wave cycle
that can demonstrate differences between hypertensive and
normotensive, within the same range of blood pressure
values. In this paper, firstly, the methods were introduced
including the pulse data acquisition, preprocessing and pulse
wave cycle segmenting, and feature extraction. Secondly, the
experiments design and result were described. Thirdly, some
details on experiments result discussion were given. Finally,
the summary was presented.

2. Methods

Pulse data acquisition, preprocessing, pulse wave cycle seg-
mentation, and feature extraction and classifier evaluation
were performed. The general flow diagram is shown in
Figure 1.

2.1. Data Acquisition. Data were collected from elderly vol-
unteer subjects who presented for physical examinations at
the community health service center in Pudong New District
of Shanghai.The subjects were allowed to rest for 3–5minutes
before data collection and were instructed to sit, breathe
quietly, relax the upper arm, extend the forearm, and flex the
shoulder and elbow to about 120∘, with the leftwrist on a pulse
pillow.Then, our specially developed TCMpulse bracelet [14]
was placed over the Guan position in the left hand to capture
the best pulse signals for 10 s.

Subjects were excluded from analysis if they lacked com-
plete data for control or outcome variables or had significant
heart disease.

A total of 770 subjects met the inclusion criteria and pro-
vided 10 s of pulse data for grouping of pulse wave cycles into
NG,HerG, andHestG categories, according to blood pressure

values. NG subjects had a baseline systolic blood pressure
< 120mmHg or diastolic blood pressure < 80mmHg. HerG
subjects had a baseline systolic blood pressure of 130 to
139mmHg or diastolic blood pressure 80 to 89mmHg. HestG
subjects had a baseline systolic bloodpressure> 140mmHgor
diastolic blood pressure > 90mmHg. Each groupwas divided
into 2 classes by history of hypertension (yes or no). Pulse
wave cycle data were obtained for 10 s in all subjects during
data preprocessing.

2.2. Data Preprocessing. Baseline wandering of original pulse
data was removed with a high-pass filter in the sampling
device. A bandpass from 0.5Hz to 30Hz filter was used to
smooth waves affected by tremor or breathing. A Shannon
Energy Envelope, Hilbert Transform (SEEHT) extractor was
used for the percussion wave and beginning of the pulse wave
cycle, as it was thought to be better than other extractors
for wider, small pulse waves, or sudden changes in wave
amplitude [12, 15]. A pulse wave cycle was defined as the
interval between two initial sets of pulse data.

SEEHT extractor for the percussion was showed in more
detail in [15] (Figure 2). Firstly, a bandpass filter with 1∼
4Hz is designed to exclude other peaks and emphasize the
percussion wave. Secondly, the data after bandpass filter are
transformed by the ShannonEnergy Envelope formula.How-
ever, wrist pulse signals between 1Hz and 4Hz are restrained
by differentiated signals. SEE signals based on differentiated
signals bring abrupt changes because the other waves are
amplified in differentiation. The major local maxima of
smooth SEE indicate approximate locations of the percussion
waves. Hence, for detecting the percussion waves, a low-pass
filtering is used for smoothing SEE to reduce the complexity
of searching the local maxima. Thirdly, Hilbert Transform is
used for finding the peaks. And then, the moving average
filter signals afterHilbert Transform, which removed the low-
frequency drift, locate the peaks by zero-cross point from
positive shaft to negative shaft. Finally, the real peaks of the
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Figure 3: Pulse segmentation results including error parts.

percussion wave are the maximum within 0.25 s in the pulse
data after bandpass filter with 0.5∼30Hz.

Although the SEEHTmethod had shown good results for
extraction of the percussionwave and the beginning of a pulse
wave cycle, an error was observed in segmentation. This is
basically due to morphological diversity in the pulse wave
cycle. To eliminate the influence of segmentation error on the
experimental results, noise in pulse wave cycles was excluded
by visual inspection. For example, in Figure 3, there is a pulse
signal (blue line) with low quality. The red asterisks are the
percussion wave detected by SEEHTmethod.The red cycle is
the start point of a pulse cycle and the end point of prior pulse
cycle. So it is pulse cycle segmentation from one red cycle
to next one. There are three error segmentations (red box)
because of noise, so for every pulse sample segmentations
result, we find out the error parts by visual inspection and
delete that to ensure the effectiveness of pulse cycles in
subsequent research.

2.3. Feature Extraction. To identify differences in pulse wave
cycles between elderly hypertensive and normotensive, TD,
𝐸, and HOS features of WPDC were extracted after prepro-
cessing.
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Figure 4: The healthy elderly pulse wave cycle.

2.3.1. Time Domain Feature Extraction. A standard pulse
wave is made up of 3 components: the percussion wave, tidal
wave, and dicrotic wave. TD features include the duration
and amplitude of the inflection point of 3 waves, which were
extracted using a previously described method named Shap
Threshold Value (STV) method (Figure 4).

STVmethod, whichwas described inmore detail in pages
32–35 of [12], mainly contains two steps. First is that the pulse
wave cycles are classified into eight pulse cycles (in Figure 5)
by the shape according to expert experience and domain
knowledge. Second step is detecting the inflection point in
every shape using different threshold values.

Most TD features have clear physiological significance.
In this study, 20 TD features (Figure 4) were chosen for
analysis including 6 duration features (𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡), 5
amplitude features (ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ1/𝑡1, ℎ3/ℎ1, ℎ4/ℎ1), 4
width features (𝑤31, 𝑤51, 𝑤31/𝑡, 𝑤51/𝑡), and 2 area features
(As, Ad). The meaning of above features is showed in Table 1.
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Table 1: TD features.

Id TD features Meaning
1 𝑡1 The duration of the percussion wave
2 𝑡2 The duration of the beginning of the tidal wave
3 𝑡3 The duration of the crest of the tidal wave
4 𝑡4 The duration of the beginning of the dicrotic wave
5 𝑡5 The duration of the crest of the dicrotic wave
6 ℎ1 The amplitude of the percussion wave
7 ℎ2 The amplitude of the beginning of the tidal wave
8 ℎ3 The amplitude of the crest of the tidal wave
9 ℎ4 The amplitude of the beginning of the dicrotic wave
10 ℎ5 The amplitude of the crest of the dicrotic wave
11 𝑤31 The width in 1/3 amplitude of the percussion wave
12 𝑤51 The width in 1/5 amplitude of the percussion wave
13 𝑤31/𝑡 The ratio of 𝑤31 and t
14 𝑤51/𝑡 The ratio of 𝑤51 and t
15 ℎ1/𝑡1 The ratio of ℎ1 and 𝑡1
16 ℎ3/ℎ1 The ratio of ℎ3 and ℎ1
17 ℎ4/ℎ1 The ratio of ℎ4 and ℎ1
18 𝑡 A pulse cycle duration
19 As The systolic pulse wave area in 𝑡4
20 Ad The diastolic pulse wave area between the end of 𝑡4 and the end of 𝑡
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Figure 5: Eight pulse cycles shapes.

2.3.2. Wavelet Packet Decomposition. The discrete wavelet
transform (DWT) only decomposes low-frequency com-
ponents (approximations: A). The wavelet packet method,
which is an expansion of the DWT method, can increase
a wide variety of skills and power of the wavelet transform
[16].Wavelet packet decomposition (WPD) utilizes both low-
frequency and high-frequency components (details: D). In
WPD, the approximation achieved from the first level is

split into new detail and approximation components, and
this process is then repeated. Mother wavelet functions are
important for wavelet packet coefficients and classification
accuracy of extracted features. It was reported that the best
feature set was obtained with the db6 wavelet function [17].
Therefore, this study chose the db6 wavelet function as
the mother wavelet function to estimate the wavelet packet
coefficients. The number of decomposition levels was set at
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Figure 6: Wavelet packet analysis of pulse wave cycles with 4 levels (A: approximations, D: details; subscript (1, 2, 3, 4): levels of WPD).

4. Therefore, 30 subbands were obtained for the fourth level
of WPD. Figure 6 shows the fourth level of the WPD tree of
pulse wave cycles.

2.3.3. Higher-Order Statistics and Energy Entropy. Higher-
order statistics (HOS) have been applied successfully to
extract features for classification [13]. In signal processing,
many signals, especially nonlinearities, cannot be examined
properly by second-order statistical methods. Therefore,
higher-order statistical methods have been developed. While
first- and second-order statistics contain mean and variance,
nonlinear combinations of higher-order moments contain
cumulants [18].

Let 𝑋(𝑛) is real, discrete time random process. The
moments of 𝑋(𝑛) are defined as the coefficients in Taylor
series expansion of the moment generating function [19].

𝜙𝑥 (𝑤) = 𝐸 [exp (𝑗𝑤𝑥)] . (1)

For zeromean discrete time signals, moments and cumulants
are defined as [13]

𝑚
2 (𝑖) = 𝐸 [𝑋 (𝑛) , 𝑋 (𝑛 + 𝑖)] ,

𝑚
3
(𝑖, 𝑗) = 𝐸 [𝑋 (𝑛) , 𝑋 (𝑛 + 𝑖) ⋅ 𝑋 (𝑛 + 𝑗)] ,

𝑚
4
(𝑖, 𝑗, 𝑘)

= 𝐸 [𝑋 (𝑛) , 𝑋 (𝑛 + 𝑖) ⋅ 𝑋 (𝑛 + 𝑗) ⋅ 𝑋 (𝑛 + 𝑘)] ,

(2)

where 𝐸[⋅] is defined as the expectation operation and𝑋(⋅) is
the random process.

The second characteristic function of𝑋(𝑛), defined as [13]

𝑋(𝑤) = ln𝜙𝑥 (𝑤) = ln𝐸 [exp (𝑗𝑤𝑥)] , (3)

is called the cumulant generating function, and the coeffi-
cients in its Taylor expansion are the 𝑛th-order cumulants

of 𝑋(𝑛), represented as 𝑐
𝑛
(𝜏
1
, 𝜏
2
, . . . , 𝜏

𝑛
). The cumulants are

defined as [13]

𝑐2 (𝑖) = 𝑚2 (𝑖) ,

𝑐3 (𝑖, 𝑗) = 𝑚3 (𝑖, 𝑗) ,

𝑐4 (𝑖, 𝑗, 𝑘) = 𝑚4 (𝑖, 𝑗, 𝑘) − 𝑚2 (𝑖)𝑚2 (𝑗 − 𝑘)

− 𝑚2 (𝑗)𝑚2 (𝑘 − 𝑖)

− 𝑚2 (𝑘)𝑚2 (𝑖 − 𝑗) .

(4)

The second-, third-, and fourth-order cumulants are calcu-
lated for each pulse cycle taking lag 0, which means that
the value of 𝑖, 𝑗, 𝑘 equals zero. The zero-lag cumulants have
special names: 𝑐

2
(0) is the variance and is denoted by 𝜎2;

𝑐3(0, 0) and 𝑐4(0, 0, 0) are denoted by 𝛾3𝑥 and 𝛾4𝑥 known as
skewness and kurtosis, respectively.

In this study, the HOS methods are used to extract new
and fewer number of features from thewavelet packet decom-
position coefficients There were 30 subbands for the 4 levels
as noted. Three features were extracted for each subband
using HOS. We calculate HOS methods, second-, third-, and
fourth-order cumulants including using cumulants functions
in MATLAB 2013a:

HOS second = cum2est (𝑥, 0, length (𝑥) , 0, 'biased') ,

HOS third = cum3est (𝑥, 0, length (𝑥) , 0, 'biased') ,

HOSfour = cum4est (𝑥, 0, length (𝑥) , 0, 'biased') .

(5)

In addition, Shannon entropy was used to calculate the
energy of WPDC with the following entropy function in
MATLAB 2013a:

𝐸 = wentropy (𝑥, ''shannon'') , (6)

where 𝑥 represents the wavelet packet decomposition coef-
ficients of every pulse cycle. Thus, 30 𝐸 features (𝐸1,
𝐸2 ⋅ ⋅ ⋅ 𝐸30) and 90 HOS features (HOS1,HOS2 ⋅ ⋅ ⋅HOS90)
were obtained for analysis.
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Input: f[n] //features sets including 20 TD, 90 HOS, and 30 𝐸 features, 𝑛 = 120
Output: f s[m] //features sets after features selection by CfsSubsetEval,𝑚 is the count of selected features.
Begin // Bestfirst process beginning

Results[n]=KNN(f[n]) //get the results of KNN classification for every features in f[n]
f sort[n]=Sort(f[n], Results[n]) //sort the features by classification result by descend

// Bestfirst process ending
f temp=f sort[1] // f tem is the selcted feature in every step
for M∈f sort [2:end] //M is the features in f sort

// for every𝑀, using KNN classification judge the effectiveness of 𝑀
[classifiction resultBefor, classifiction resultAfter] =KNN(f temp, M)
if classifiction resultAfter>classifiction resultBefor //𝑀 is effective when adding𝑀 to f temp for classifation.

if Correlation(f temp,M)<0.5 //M and all features in f temp are uncorrelated
f temp(end+1)=M //M are inputted in f temp

end
end

end
f s= f temp

End

Algorithm 1: CfsSubsetEval and BestFirst.

2.4. Feature Selection. CfsSubsetEval and BestFirst were used
for feature selection; these are built-in attribute evaluator and
search methods in WEKA 3.8. CfsSubsetEval evaluates the
worth of a subset of features by considering the individual
predictive ability of each feature along with the degree of
redundancy. Subsets of features that are highly correlated
with the class while having low intercorrelation are preferred.
The BestFirst method searches the space of attribute subsets
by greedy hillclimbing augmented with a backtracking facil-
ity. Setting the number of consecutive nonimproving nodes
allowed control of the level of backtracking. BestFirst may
start with an empty set of attributes and search forward,
with a full set of attributes and search backward, or at any
point and search in both directions. The process is shown as
Algorithm 1.

2.5. Classification. 𝑘-Nearest Neighbor (𝑘-NN) [20], which
is the most effective and common nonparametric method
in pattern recognition classification, was used for evaluation
of the effectiveness of all features. 𝑘-NN is independent
of statistical distribution of training examples and classifies
objects by computing their distance to the training examples
in the feature space. The object is assigned to the class most
common among its 𝑘-Nearest Neighbors. In this study, when
𝑘 = 1, the object is simply assigned to the class of its nearest
neighbor.

To compare the results of classification, the statistical
definitions used were as follows:

(i) TP: true positive, number of positives;
(ii) TN: true negative, number of negatives;
(iii) FP: false positive, number of negatives;
(iv) FN: false negative, number of positives;
(v) ROCA: receiver operating characteristic curve area,

in which the 𝑥-axis and 𝑦-axis are the False Positive
Rate (FPR) andTrue Positive Rate (TPR), respectively.

In this study, positive means hypertension history, and
negative means nonhypertension history. Finally, accuracy
(ACC), sensitivity (SE), specificity (SP), andROCAware used
as evaluation indicators. The relevant formulas are shown as
follows:

SE = TP
TP + FN

× 100%,

SP = TN
TN + FP

× 100%,

ACC = TN + TP
TP + TN = FN + FP

× 100%,

FPR = 1 − SP,

TPR = SE.

(7)

3. Experimental Results

After data preprocessing and noise removal, 6,075 pulse wave
cycles were analyzed for the NG, HerG, and HestG groups,
and the hypertension history and nonhypertension history
classes. The 6 data sets are detailed in Table 2.

In every experiment, 20 TD features, 90 HOS features,
and 30 𝐸 features were selected with 10-fold cross-validation.
The occurrence frequency of these features was designated
as OF. For example, a 5-fold selected feature was chosen 5
times in 10-fold selection (OF = 5/10 × 100 = 50%). All chosen
features with different OFs were divided into different com-
binations by eliminating lower values. Finally, 1-NNwas used
to verify different feature combinations. The experimental
software platform for 1-NN and feature selection was Weka
3.8. All features were extracted in MATLAB 2013a.

3.1. Feature Selection Results. Using 10-fold selection, 26
features were selected in experiment 1 for NG, 9 features in
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Table 2: Pulse wave cycle distribution.

Blood pressure Hypertension history Pulse wave cycle count Age
(mean ± std) Male/female

Normal
(NG)

No 619 72 ± 5 1 : 1.63
(235 : 384)

Yes 195 73 ± 5 1.24 : 1
(108 : 87)

Higher
(HerG)

No 534 71 ± 6 1 : 1.34
(228 : 306)

Yes 517 71 ± 6 1.01 : 1
(259 : 257)

Highest
(HestG)

No 1779 72 ± 6 1 : 1.46
(724 : 1055)

Yes 2431 72 ± 6 1 : 1.62
(927 : 1504)

Total 6075 72 ± 6 1 : 1.45
(2,481 : 3,594)
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Figure 7: Histogram of selected features and OF in NG, HerG, and HestG.

experiment 2 for HerG, and 15 features in experiment 3 for
HestG. The selected features and OF values are shown in
Table 3 and Figure 7.

3.2. Classification Results. All chosen features with different
OF values were divided into different combinations by elim-
inating the lower OF in every experiment. For example, 26
features were selected inNG, including 10with 10%OF, 5with
20% OF, 3 with 30% OF, 1 with 40% OF, 3 with 90% OF, and
4 with 100% OF. Accordingly, NG experimental results were

divided into 5 groups. The first group eliminated 10 features
with 10% OF and retained the remaining features. Therefore,
the last group only contained the 4 features with 100% OF.
The grouping in HerG and HestG was the same as in NG.
Moreover, based on all feature subgroups and all selected
feature subgroups, NG, HerG, and HestG experiments were
divided into 7, 6, and 9 subgroups, respectively.

1-NN was used in every subgroup of experiments to
evaluate the effectiveness of the features groups. The clas-
sification results for NG, HerG, and HestG are shown in
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Table 3: Selected features in NG, HerG, and HestG groups.

Experiment
group ID Feature OF (%)

Experiment 1
NG

1 Age 90
2 BMI 100
3 𝑡1 30
4 𝑡2 20
5 𝑡4 10
6 ℎ1 10
7 ℎ4 30
8 ℎ5 10
9 𝑤31 30
10 𝑤51 10
11 𝑤31 𝑡 10
12 𝑤51 𝑡 100
13 𝑡 100
14 HOS1 10
15 HOS28 20
16 HOS29 90
17 HOS44 10
18 HOS55 20
19 HOS58 10
20 HOS61 40
21 HOS81 100
22 𝐸13 10
23 𝐸15 90
24 𝐸19 20
25 𝐸20 10
26 𝐸21 20

Experiment 2
HerG

1 age 100
2 BMI 70
3 ℎ1 40
4 𝑤51 10
5 ℎ1 𝑡1 60
6 𝐴𝑠 100
7 HOS45 100
8 HOS84 10
9 𝐸1 10

Experiment 3
HestG

1 age 90
2 BMI 100
3 𝑡4 60
4 𝐴𝑠 80
5 𝑡 100
6 HOS7 10
7 HOS8 20
8 HOS11 10
9 HOS14 10
10 HOS19 10
11 HOS29 50
12 HOS43 10
13 HOS65 50
14 𝐸1 30
15 𝐸3 20

Tables 4, 5, and 6, respectively. To highlight the features of
optimal combinations, line charts are shown in Figures 8, 9
and 10, respectively.
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Figure 8: Classification results for every group in NG.
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Figure 9: Classification results for every group in HerG.

4. Discussion

In the NG experiment, 7 features were selected for best
performance: age, BMI, 𝑤51/𝑡, 𝑡, HOS29, HOS81, and 𝐸15
(Figure 8); these were found at least 9 times in 10-fold selec-
tion (OF ≥ 90). Using the same rules, the best performance
features in theHerG experimentwere age, BMI, ℎ1, ℎ1/𝑡1,𝐴𝑠,
and HOS45, and the best performance features in the HestG
experiment were age, BMI, 𝑡4, 𝐴𝑠, 𝑡, HOS8, HOS29, HOS65,
𝐸1, and 𝐸3.

Age and BMI in the classification results of the 3
experiments all showed good performance, consistent with
other reports. There were different trends among selected
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Figure 10: Classification results for every group in HestG.

Table 4: Classification results for every group in NG.

All features All selected features OF ≥ 20 OF ≥ 30 OF ≥ 40 OF ≥ 90 OF ≥ 100
ACC 92.87 95.21 96.56 96.81 97.79 97.91 88.21
SP 96.12 96.45 97.58 97.09 98.06 98.22 92.25
SE 82.56 91.28 93.33 95.9 96.92 96.92 75.38
ROCA 0.892 0.933 0.957 0.966 0.976 0.974 0.841

Table 5: Classification results for every group in HerG.

All features All selected features OF ≥ 40 OF ≥ 60 OF ≥ 70 OF ≥ 100
ACC 85.34 95.15 95.24 95.05 90.96 76.5
SP 82.96 94.76 94.94 94.76 91.01 75.84
SE 87.81 95.55 95.55 95.36 90.91 77.18
ROCA 0.852 0.95 0.951 0.947 0.912 0.758

TD features between normal values in the hypertension and
nonhypertension groups. For example, in the NG experi-
ment, an increase in age was accompanied by an increase
in 𝑊51/𝑡 in the group with normal blood pressure values
and a history of hypertension (Figure 11(a)), but there was no
consistent change in those without a history of hypertension
(Figure 11(b)).

Most of the selected HOS and 𝐸 features of WPDC had
low-frequency components. One feature from the first level,
2 from the second level, 1 from the third level, and 4 from
the fourth level (Figure 12) were selected as best features.
The selected features included 3 third cumulants, 2 fourth
cumulants, and 3 𝐸 features.

Each subband level after WPD contained second-, third-
, and fourth-order cumulants. Red box denotes selected
features in NG; blue box denotes selected features in HerG;
green box denotes selected features in HestG.

In TCM theory, the pulse type changes from slippery
to wiry with age. The consensus among TCM physicians is
that hypertensive patients have a wiry pulse. Research has
shown a correlation between the rank of a wiry pulse and
different levels of hypertension. Two types of wiry pulse
(healthy elderly wiry pulse and hypertensivewiry pulse) show

a distinct difference. The classification accuracy showed a
decreasing trend as blood pressure values increased (97.91%
in HG, 95.24% in HerG, and 92.28% in HestG). Because
of the normal blood pressure values in the NG group,
there are essentially 2 classes of a wiry pulse: the healthy
elderly wiry pulse and the hypertensive wiry pulse. However,
in the HerG and HestG groups, the pulse wave in those
without a hypertension history reflected the features of a
hypertensive wiry pulse. Thus, the classification accuracy in
the HerG group was lower than that in the NG group, and the
accuracy in the HestG group was lower than that in the HerG
group. The features selected in the classification all achieved
accuracy of greater than 92.28% in the 3 groups. Although
the features of a hypertensive wiry pulse were present in
2 classes (hypertension and nonhypertension history) in
the HerG and HestG groups, the selected features can also
reflect cardiovascular function under conditions of sustained
hypertension.

5. Conclusion

In elderly individuals, pulse wave cycle features in the same
blood pressure range show significant differences according
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Figure 11:𝑊51/𝑡 change in NG.
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Figure 12: Selected HOS and 𝐸 features of WPDC.

to hypertension history. Recognition rates of over 90%
have been achieved in classification experiments using the
selected features. This shows that not all equivalent blood
pressure levels represent the same cardiovascular function.
Meanwhile, the TD, HOS, and energy features of WPDC
can be used to evaluate cardiovascular function according to
blood pressure values.

This study shows that management of health risk requires
more than blood pressure medication in elderly individuals
with hypertension. Changes in pulse wave and blood pressure
values should be used in an evaluation index. Future research
will focus on findingmore effective features for assessment of
blood vessels and analysis of the relationship between pulse
features and central arterial pressure.
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