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Abstract

Background: Industrial fermentations can generally be described as dynamic biotransformation processes in which
microorganisms convert energy rich substrates into a desired product. The knowledge of active physiological
pathways, reflected by corresponding gene activities, allows the identification of beneficial or disadvantageous
performances of the microbial host. Whole transcriptome RNA-Seq is a powerful tool to accomplish in-depth
quantification of these gene activities, since the low background noise and the absence of an upper limit of
quantification allow the detection of transcripts with high dynamic ranges. Such data enable the identification
of potential bottlenecks and futile energetic cycles, which in turn can lead to targets for rational approaches to
productivity improvement. Here we present an overview of the dynamics of gene activity during an
industrial-oriented fermentation process with Bacillus licheniformis, an important industrial enzyme producer.
Thereby, valuable insights which help to understand the complex interactions during such processes are provided.

Results: Whole transcriptome RNA-Seq has been performed to study the gene expression at five selected growth
stages of an industrial-oriented protease production process employing a germination deficient derivative of B.
licheniformis DSM13. Since a significant amount of genes in Bacillus strains are regulated posttranscriptionally, the
generated data have been confirmed by 2D gel-based proteomics. Regulatory events affecting the coordinated
activity of hundreds of genes have been analyzed. The data enabled the identification of genes involved in the
adaptations to changing environmental conditions during the fermentation process. A special focus of the analyses
was on genes contributing to central carbon metabolism, amino acid transport and metabolism, starvation and
stress responses and protein secretion. Genes contributing to lantibiotics production and Tat-dependent protein
secretion have been pointed out as potential optimization targets.

Conclusions: The presented data give unprecedented insights into the complex adaptations of bacterial
production strains to the changing physiological demands during an industrial-oriented fermentation. These are,
to our knowledge, the first publicly available data that document quantifiable transcriptional responses of the
commonly employed production strain B. licheniformis to changing conditions over the course of a typical
fermentation process in such extensive depth.
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Background
For several decades, strains of the Bacillus subtilis group
[1] have been exploited for industrial purposes. The scope
of applications includes the production of amylases, prote-
ases and antibiotics by strains of B. subtilis, B. amylolique-
faciens, B. pumilus or B. licheniformis [2]. High capacities
of product secretion, high growth rates, and the GRAS
(generally regarded as safe) status of many strains have
contributed to the employment of these species as bio-
technological workhorses [2]. In general, the production
process can be considered as an energy consuming
biotransformation in which a nutrient rich substrate is
converted into the desired product by a member of the
genus Bacillus.
The productive process examined in this study is based

on the production platform B. licheniformis, which has
been proven to perform well for the production of alkaline
proteases and in particular subtilisins, which are used in all
types of laundry detergents [3]. Therefore, research efforts
have been focused on the B. licheniformis subtilisin fer-
mentation process and the resulting yield of active enzyme.
A major aspect has been monitoring and improvement of
bioprocess parameters such as oxygen transfer rate [4-6],
pH value [7,8], inoculum quality [9] and initial glucose
concentration [10], whereas other studies addressed the
optimization of the fermentation medium [11,12]. Strat-
egies for the molecular biological improvement of subtilisin
[13] and its secretion [14] have been described. Attention
has also been paid to strain optimization by generation
of deletion mutants targeting transfer of genetic mater-
ial [15,16], secretion capability [17], sporulation and
biological containment [18-20]. Investigation of B. liche-
niformis under different stress conditions by proteomics
and microarray-based transcriptomics have been ap-
plied to identify marker genes [21-24], to enable the de-
tection of stressors during a productive fermentation
process. However, rational strain or bioprocess optimization
requires potential targets and therefore the knowledge of
genomic activities during the crucial stages of a fermenta-
tion process under industry-oriented conditions is essential.
An RNA-Seq-based study targeting the identification

of B. licheniformis DSM13 RNA-based regulatory ele-
ments such as non-coding and antisense RNAs under
production-oriented growth conditions has recently been
published by our group [25]. The application of RNA-Seq
allows the quantification of transcripts with a hitherto
unmatched dynamic range spanning several orders of
magnitude [26], therefore enabling in depth analysis of
differential expression between physiological conditions or
developmental states. Further advantages of RNA-Seq are
the low background noise, the provided single base reso-
lution and the high reproducibility [26,27]. Therefore,
RNA-Seq, especially when coupled with other “omics”
techniques like 2D gel-based proteomics, provides the
opportunity for global investigation of microbial gene ex-
pression. However, although recent advantages in RNA-
Seq technology have greatly enhanced the efficiency and
availability of this approach, no such data on industrial fer-
mentations of B. licheniformis have been made publicly
available to this day.
To identify gene activities of B. licheniformis directly

related to the productivity of a subtilisin fermentation
process, we present a high-resolution quantitative and dy-
namic exploration of the transcriptional responses of B.
licheniformis confirmed by proteome data. Special atten-
tion was given to production stage-related adaptions of B.
licheniformis. The RNA abundances and the cytoplasmic
proteome composition of all samples were determined by
RNA-Seq experiments and by 2D gel electrophoresis [25],
respectively. As measure of gene expression, the nor-
malized amount of sequenced nucleotides per gene is
expressed in single-base resolution by the NPKM (nu-
cleotide activity per kilobase of exon model per million
mapped reads) value [25], which is closely related to the
more common RPKM value [28]. These data provide a
first analytical framework to gain better understanding
of the dynamics during such fermentations, and to en-
able the identification of potential physiological and
genetic bottlenecks. Furthermore, the data are intended
as a reference for subsequent comparisons with transcrip-
tome data from other fermentation procedures employing
related Bacillus strains, in order to guide rational ap-
proaches for the optimization of production processes.

Results and discussion
In this study, transcriptome and proteome data of se-
lected samples from an industry-oriented fermentation
have been analyzed with focus on physiological changes
during the process. The samples were taken in triplicate
at five time points (sampling points I-V) during growth
within a subtilisin fermentation process of B. lichenifor-
mis MW3Δspo (Figure 1; Additional file 1: Figure S1).
This strain is a germination deficient mutant of B. licheni-
formis DSM13, transformed with an expression plasmid
encoding a subtilisin protease. Sampling point I represents
the growth in presence of glucose, whereas sampling
points II and III correspond to the subsequent phase of
glucose starvation. Sampling points IV and V represent
the productive stages of the process in which the alkaline
protease is synthesized and secreted.
Previously, we curated the annotation of 4172 protein-

coding genes and determined the respective transcript
abundances in all samples [25,29], resulting in NPKM
values from 0 for lacking transcripts to 85.267 for the
most abundant transcripts (Figure 2). Analysis of the
obtained data with baySeq [30] and ANOVA revealed
that 980 and 1016 genes, respectively, are differentially
expressed at the different sampling points. In total, 1395
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Figure 1 Protease production and process parameters. Process
parameters are shown for fermentation L (please refer to Additional
file 1: Figure S1 for replicate fermentations R and M). Oxygen partial
pressure pO2 [%], glucose concentration cGlucose [g/L], supplied
glucose feedGlucose [g/L] and normalized protease activity [%] are
displayed on the left y-axis, whereas acetate concentration cAcetate
[g/L], carbon dioxide content CO2 [%], and ammonium concentration
cNH4+ [g/10 L] are scaled on the right y-axis. The process time t [h] is
given on the x-axis. The sampling points I to V are indicated by light
blue lines. The figure was modified from Wiegand et al. [25] where a
detailed analysis of RNA-Seq data of the same experimental setup
aiming at the identification of regulatory RNAs was performed.
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genes were determined as differentially expressed by at
least one method and utilized for further analysis. Gen-
eric GO slim enrichment analysis [31,32] revealed that
genes assigned to regulation, protein modification and
metabolism, DNA metabolism, cell cycle and translation
are underrepresented within this dataset of differentially
expressed genes. Overrepresented genes were assigned
to protein transport, response to external stimuli, carbo-
hydrate metabolic processes and cell differentiation.
The transcriptome data allowed the assignment of 3567

genes to 23 clusters by k-means cluster analysis based on
the determined differentially expressed genes (Figure 3 and
Figure 4; Additional file 2: Table S1) [36]. Each cluster was
also examined for over- and underrepresented groups of
genes by GO term-based enrichment analysis (Additional
file 2: Table S2) [32,37]. Clusters A-H and N-Q comprise
genes which are more abundant at the early stages of the
process than at the later sampling points. In this group,
overrepresented genes are mainly involved in gene expres-
sion and translation, biosynthetic processes, transport and
metabolism of amino acids, or central carbon metabolism
including glycolysis and TCA cycle. Another pattern can
be found for clusters I-M and R + S which contain genes
displaying higher transcript abundances in the productive
stage of the fermentation (sampling points IV and V). In
clusters with the highest measured transcript abundances
at stage IV (K-M) genes were predominantly involved in
sporulation processes. Transcripts more abundant in stage
V than in stage IV are depicted in clusters I and J and,
among others, encompass genes for phosphate ABC trans-
porter PstABC and nitrate reductase NarGHIJ.
Detailed analyses of transcript and protein abundances

(Additional file 2: Table S3) concerning important factors
of bacterial growth and productivity (amino acid transport
and metabolism, central carbon metabolism, starvation
and stress responses, and protein secretion) will be pre-
sented in the following passages.

Amino acid transport and metabolism
The examined fermentation process was performed in
the presence of a complex nitrogen source initially sup-
plemented with glucose. To elucidate how B. lichenifor-
mis utilizes the supplied peptide substrate, the transcript
(Figure 5 and Figure 6) and protein (Additional file 1:
Figure S2 and Figure S3) abundances of the major amino
acid metabolism-related genes were examined in the
context of their metabolic network.
The genome of B. licheniformis encodes six unambigu-

ous operons encoding peptide ABC transporters (app1,
app2, dpp, opp, BLi00892-96, BLi02527-31) [25,29], four
of them showing transcript abundance under the exam-
ined conditions (Figure 5). The app1 and the opp operon
each encode oligopeptide ABC transporter systems. They
are transcribed during all stages of the fermentation
process, but show top transcript abundances at the earlier
sampling points, particularly at sampling point II (NPKM
values >500). In contrast, the dpp operon encoding a di-
peptide ABC transporter displays increased RNA abun-
dance over time with maximal levels at sampling point IV.
Furthermore, transcripts of the dipeptide/oligopeptide
ABC transporter operon BLi00892-96 are only abundant
at the later fermentation stages. Regarding the RNA abun-
dances of the opp and dpp operons, similar patterns of ac-
tivation and repression during cell growth and sporulation
have been observed in B. subtilis [38-40]. In contrast, the
app1 operon, which is orthologous to the app operon of
B. subtilis, does not resemble the sporulation-dependent
regulation in the model organism [39,40], indicating a dif-
ferent regulation of this operon in B. licheniformis.
The RNA abundances of the ABC transporter operons

seem to reveal a fermentation stage-dependent pattern,
promoting the idea that oligopeptides are imported pri-
marily, whereas dipeptides are presumably consumed
after oligopeptides are exhausted. This transcriptional
pattern may be influenced by the fact that dipeptides
should become more available over time due to the
activity of extracellular protease secreted within the fer-
mentation process. The RNA abundances of further
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Figure 2 Most abundant gene transcripts. Mean NPKM values of the most abundant gene transcripts are plotted against sampling points.
Colored lines indicate classes of similarly abundant transcripts. Grey and black lines represent genes with high RNA abundances in all 15 samples
(NPKM values 1000–5000); black lines additionally indicate genes referred to in the text. Green color marks those genes, whose transcripts are
most abundant (NPKM values >5000) throughout all sampling points, whereas genes with highly abundant transcripts (NPKM values >5000) only
at specific sampling points are shown in orange, red and blue. The most abundant transcript was assigned to lanA2 in sample R-III. This gene
encodes a component of the two-peptide lantibiotic lichenicidin [33] and is transcribed with NPKM values >5000 at all sampling points. Accordingly
high transcript abundance can also be observed for lanA1, which codes for the second prepeptide of this lantibiotic. Further genes with similar abundances
are coding for the BsrG-like peptide (BLi05015) [25,34], the sporulation protein SpoVG, the DNA-binding protein Hbsu, BLi01059 and Veg [35]. The
gene encoding the oxygen detoxification protein SodA, the cold shock responsive genes cspB and cspD, the gene for the elongation factor
Tu, and genes coding for components of the translation machinery are transcribed with NPKM values >1000 at all sampling points. Transcripts
which are highly abundant exclusively in the later, productive stages of the process are associated to spore formation, whereas transcripts which are
highly abundant during the early stages of the process encode ribosomal proteins, proteins of the TCA cycle and ATP synthase subunits. For an
illustration of highly abundant proteins please refer to Additional file 1: Figure S8.
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amino acid transporters are shown in Additional file 1:
Figure S4.

Sampling point I
At this fermentation stage of carbon excess (Figure 1),
transcripts of the operon of the glutamate synthase
(GOGAT) gltAB and the gene of the glutamine synthetase
(GS) glnA are highly abundant (Figure 6). This prompts
the conclusion of a strong glutamate production, which is
fed by 2-oxoglutarate provided by the catabolism of glu-
cose (see Central carbon metabolism). The high transcript
abundance of genes involved in the glutamate-dependent
anabolism of proline, aspartate, alanine and aromatic and
branched-chain amino acids (Figure 5 and Figure 6) indi-
cates that the produced glutamate is utilized for the syn-
thesis of other amino acids [41,42], despite the given
complex amino acid broth.
Further active genes have been assigned to aspartate

degradation for pyrimidine biosynthesis (Figure 3), ar-
ginine and S-adenosyl methionine (SAM) metabolism
for putrescine synthesis, and cysteine degradation re-
leasing sulfur-containing compounds (Figure 5 and
Figure 6).

Sampling point II
Upon glucose exhaustion (Figure 1), the transcriptome
indicates drastic changes in the fluxes of the amino acid
metabolism. Transcripts of genes for glutamate-releasing
catabolic processes are highly abundant, as it can also be
observed for transcripts of genes promoting the degrad-
ation of proline, arginine and branched-chain amino
acids (Figure 5 and Figure 6). In reverse, the transcripts
of the glutamate-consuming pathways abundant at sam-
pling point I have declined. Glutamate now seems to be
metabolized to 2-oxoglutarate by the glutamate dehydro-
genase (GDH) GudB and channeled into the TCA cycle.
Complementarily, the transcripts of GS and GOGAT are
also less abundant [41]. Furthermore, the observed tran-
script abundances indicate that threonine is metabolized
to glycine which is then degraded by the glycine cleavage
complex, in order to gain reducing equivalents and C1
compounds while serine is degraded to pyruvate by L-
serine dehydratase SdaAAAB to provide further energy
sources.

Sampling point III
During the later glucose exhaustion stage (Figure 1)
most genes involved in amino acid metabolism show re-
duced transcript abundances. Elevated abundances are
nearly exclusively found in pathways involved in serine
degradation, such as the above mentioned conversion of
serine to pyruvate, the metabolization to glycine for sub-
sequent degradation by the glycine cleavage complex,
and the conversion to cysteine which is then further
metabolized to pyruvate via the intermediate alanine
(Figure 5 and Figure 6).
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The transcript abundances of purA and purB – and
other genes associated with purine biosynthesis (Figure 3) -
indicate the degradation of aspartate in order to provide
building blocks for this pathway.

Sampling points IV & V
In the productive stages of the fermentation process
(Figure 1), the determined RNA abundances show that the
amino acid metabolism has progressed to the glutamate-
consuming synthesis of proline and the nitrogen-rich
amino acids arginine and histidine (Figure 6). The reason
for this reaction may lie in the previous high induction of
genes mediating the degradation of proline and arginine
during the earlier stage of glucose exhaustion. The glu-
tamate required for these anabolic reactions is delivered
by the glutamate dehydrogenase GdhA [43], and the
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GOGAT/GS system which becomes slightly re-induced
upon amino acid consumption and the applied glucose
feed [41].
Further pathways whose transcripts are abundant at

these fermentation stages include the synthesis of threo-
nine via the anabolism of homoserine, and the conver-
sion of valine to alanine (Figure 5 and Figure 6). Also,
the transcripts of genes for the degradation of lysine are
highly abundant; as members of the σE regulon, they are
activated by the initiation of sporulation [44]. In addition
to the high transcript abundance of sporulation-related
genes shown in Figure 3, this is evidence for active
sporulation within the fermenter population.
Of course, the conditions in the fermenter do not cause

a response to nitrogen limitation as described by Voigt
et al. [21]. However, the shut-down of branched-chain
amino acid degradation during the phase of glucose ex-
haustion at sampling point III might be accounted to a
limitation effect, as in B. subtilis the orthologous transcrip-
tional regulator for activation of this pathway is induced by
the presence of such amino acids [45]. Additionally, as
transcripts of several amino acid synthesis pathways of are
abundant during the later fermentation stages, these amino
acids are seemingly not available in excess.

Central carbon metabolism
The production process was initially supplemented with
glucose. Upon depletion of this sugar and its derivates, a
pulsed glucose feed was established in order to enhance
the available energy. Thus, enzymes relevant for sugar
catabolism (Figure 7; Additional file 1: Figure S5) and
sugar transport (Additional file 1: Figure S6) are required
to maintain an optimal energy supply throughout the
fermentation. The transcriptional changes of those en-
zymes were analyzed at the different sampling points
and will be described in the following passages.
Sampling point I
Shortly before the total depletion of the initially supplied
glucose (Figure 1), the genes for glycolytic enzymes are
highly transcribed (NPKM values from 359 to 2473). High
transcript abundance has also been recorded for the genes
of the oxidative pentose phosphate pathway and the TCA,
but not for the embedded glyoxylate bypass [29] (Figure 7).
Furthermore, the alsSD operon for acetoin synthesis
and the phosphate acetyltransferase gene pta for acetate
production were maximally transcribed, indicating the
channeling of carbon to the production of overflow
metabolites (Figure 1) [46]. However, varying transcript
abundances of the acetate kinase gene (ackA), also in-
volved in acetate synthesis, were observed. This is due
to slightly asynchronous samples for this fermentation
stage (Figure 1; Additional file 1: Figure S1) and restricts
the determination of reproducible NPKM values for this
gene and sampling point (Figure 7).
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(See figure on previous page.)
Figure 7 Transcriptome of the central carbon metabolism. Heat map representation of Z-score transformed NPKM values of genes
involved in central carbon metabolism. Genes with an assigned antisense RNA [25] are marked in blue, genes with NPKM values <25 at
all sampling points are indicated by dark grey boxes and statistically not significant values are indicated by light grey boxes. Yellow
frames indicate reactions with multiple assigned enzymes of which only one is strictly necessary. For the corresponding proteome data
please refer to Additional file 1: Figure S5.
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Sampling point II
After exhaustion of the carbohydrate source (Figure 1),
the transcript abundances of the genes of acetate and
acetoin synthesis decline (NPKM values <72) (Figure 7).
This regulatory effect can be explained by the fact that
the expression of the acetate synthesis genes pta and
ackA is influenced by CcpA triggered carbon catabolite
activation, as shown for B. subtilis [47-49], which ceases
with glucose depletion. Furthermore, the acetoin synthe-
sis operon alsSD is activated by the transcriptional regu-
lator AlsR in the presence of acetate [50,51]. Therefore,
it exhibits reduced transcription when acetate concen-
tration decreases due to the dissimilation of the products
formed during overflow metabolism (Figure 1). The
dissimilatory reaction is caused by the termination of
carbon catabolite repression, allowing an increasing
transcript abundance of acsA (Figure 7), which encodes
an acetyl-CoA synthetase for the conversion of acetate to
acetyl-CoA [52]. Transcript abundance of the acuABC op-
eron, which has been shown to lead to in- and reactivation
of AcsA in B. subtilis [53,54], is also increased upon cessa-
tion of carbon catabolite repression (Additional file 1:
Figure S7). However, an influence of this operon on the
acetate or acetoin metabolism of B. licheniformis has not
been revealed [55]. Furthermore, the transcript abundance
of the acoABCL operon has strongly increased (NPKM
values >2500) (Figure 7). The expression of the corre-
sponding transcriptional activator gene, acoR, depends on
induction by acetoin [55,56]. Therefore, a high concen-
tration of acetoin is indicated by the high transcript
abundance of this operon. In contrast, the gene of the
acetoin reductase/2,3-butanediol dehydrogenase budC
is only weakly transcribed (NPKM value <60) through-
out the production process. Thus, it appears that no sig-
nificant 2,3-butanediol production occurred under the
given conditions.
Negative regulatory effects could be observed for the

genes of the gapA and the pdh operon (Figure 7), which
are repressed as reaction to glucose starvation [21]. In
contrast, the genes coding for the isocitrate lyase AceA
and the malate synthase AceB, reach their top level of
transcript abundances at this sampling point. Both genes
belong to the glyoxylate bypass, allowing B. licheniformis
not only to gain energy by C2 compound oxidation, but
also to grow on acetate and acetoin as sole carbon sources
by bypassing the oxidative, CO2 evolving steps of the TCA
cycle [55,57]. Additionally, the high transcript abundance
of the other genes of the TCA cycle enables the utilization
of 2-oxoglutarate provided from amino acid catabolism
(see Amino acid transport and metabolism).
In general, the registered changes in metabolism dur-

ing this process stage are in good accordance with re-
sults presented by a previous study on glucose starvation
in B. licheniformis [21]. However, this is the first time
that expression of these production-relevant genes [3] is
shown during growth of B. licheniformis in rich medium.

Sampling point III
At this stage of the fermentation process, the C2 com-
pounds were completely depleted and the cells entered a
short phase of reduced metabolic activity (Figure 1). The
genes coding for glycolytic enzymes also involved in glu-
coneogenesis, which have shown decreased transcript
abundances at sampling point II, are slightly increased
(Figure 7). This is confirmed by the amount of the corre-
sponding proteins (Additional file 1: Figure S5). Further-
more, transcripts of exclusively gluconeogenic genes gapB
and glpX show their maximal abundances at this sampling
point (Figure 7). Phosphoenolpyruvate (PEP), the building
block for gluconeogenesis, seems to be converted from
oxaloacetate, as the gene for the phosphoenolpyruvate
carboxykinase PckA is maximally transcribed. Contrarily,
the genes for the phosphoenolpyruvate synthases Pps1,
Pps2 and Pps3 [25], promoting PEP synthesis from pyru-
vate, show only low levels of transcript abundance (NPKM
values <25). Additionally, the genes of the non-oxidative
pentose phosphate pathway show their highest transcript
abundances during the phase of glucose starvation (sam-
pling point II and III). This regulatory effect is in accord-
ance with previous observations in B. licheniformis [21],
and is remarkable as no glucose-dependent regulation of
this pathway has been found in B. subtilis [58].
Taken together, the observations indicate that the C2

compounds catabolized via the glyoxylate bypass are uti-
lized for the generation of glucose and other sugars.

Sampling points IV & V
The last two samples were taken during the subtilisin
production stage of the fermentation process. At these
sampling points, glucose was added to the fermenter in
pulsed feeding steps and channeled to energy metabolism
via glycolysis and TCA cycle (Figure 7). Although the
RNA abundances of both pathways are reduced compared
to the previous sampling points, they are still abundant
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(NPKM values >100). Similar results were also obtained
for the transcript abundances of genes involved in glu-
coneogenesis and the non-oxidative pentose phosphate
pathway. These findings, together with the above de-
scribed glutamate-consumption by anabolic amino acid
pathways during the late stages of the fermentation
process, indicate that the pulsed supply with glucose
during this fermentation stage is not only sufficient for
provision of reducing equivalents, but also for facilita-
tion of 2-oxoglutarate formation needed for glutamate
synthesis.

Starvation and stress responses
Bacterial cells react to declining nutrient concentrations
or changing environmental conditions by exhibiting well
orchestrated starvation or stress responses. To elucidate
whether B. licheniformis suffers of any of these situations
during the fermentation process, we compared the ob-
tained transcriptomic and proteomic data to described
starvation and stress responses of B. licheniformis and B.
subtilis [23,24,59-62].
In B. licheniformis, oxidative stress induced by hydro-

gen peroxide results in increased RNA abundances of
the PerR, Spx, Fur, and SOS regulon [23]. In our study,
we found the PerR as well as the Spx regulon (Figure 8)
temporarily induced during the early stages of the fer-
mentation process (sampling points I to III). The tran-
script as well as the gene product of the superoxide
dismutase-encoding sodA were highly abundant at all
sampling points (see also Figure 2 and Additional file 1:
Figure S8), leading to an accumulation of the SodA pro-
tein over time. A similar pattern of transcript abundance
and protein accumulation could also be observed for the
putative thiol peroxidase Tpx, but not for the vegetative
catalase KatA. In contrast to these results, the Fur regu-
lon and the SOS regulon did not show distinct RNA
abundances. In B. subtilis, the SOS regulon has been
described to be more responsive to hydrogen peroxide
than to superoxide exposure [59]. Therefore, and also
considering the high transcript abundance of sodA, we
infer a cellular response to a potentially toxic superoxide
load at the early stages of the fermentation process.
Strikingly, we found the lan gene cluster [33,63], which

encodes the genes for lantibiotic production and immun-
ity, to show a high transcript abundance during the early
stages of the fermentation process (Additional file 1:
Figure S9). The highly abundant transcripts of the licheni-
cidin prepeptide genes lanA2 and lanA1 depicted in
Figure 2 are members of this cluster. Although the tran-
script abundances decline at the later fermentation stages,
they remain on a high level, indicating a substantial liche-
nicidin production during the fermentation process. In
consistence with the elevated lichenicidin challenge, cell
envelope stress responsive operons like liaRSFGHI [24]
display transcript abundances during the early stages of
the process (Additional file 1: Figure S10). In the following
stages, the level of transcripts declines to NPKM values
still >100; corresponding to the high levels of lantibiotic-
coding mRNA over the complete fermentation process. It
remains elusive why the cells channel energy to the
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production of antimicrobial compounds and the corre-
sponding immunity response while grown in pure culture.
The performed cluster analysis indicated emerging tran-

script abundances for sporulation-dependent genes at
sampling point IV (Figure 3; Additional file 1: Figure S11).
In general, sporulation is observed as a complex, energy-
consuming response to nutrient limitation, which is acti-
vated by the master regulator of sporulation Spo0A [64].
Obviously, sporulation is rather unproductive in terms of
industrial fermentation and thus undesired during such
processes. Unfortunately, it has been shown that deletion
of Spo0A does not only result in a sporulation-deficient
phenotype, but also in increased cell lysis [65]. In B.
subtilis, it has been shown that activation of Spo0A is
influenced by a cascade of different regulatory systems,
including the potassium leakage-sensing kinase KinC
[66,67]. Strikingly, one known effect of two-peptide lanti-
biotics like the aforementioned lan cluster is indeed the
induction of potassium leakage [68,69]. Thus, our data
indicate a lichenicidin-mediated sporulation induction
within the fermentation. The deletion of the lan system
may present a promising approach to strain optimization,
as this should lead to reduced levels of phosphorylated
Spo0A with less probability of exceeding the sporulation-
inducing threshold.
A detailed inspection of iron starvation and heat shock

response did not reveal any distinct activation patterns
(Additional file 1: Figure S12 and Figure S13), whereas a
notable phosphate starvation response could be identi-
fied at the latest stage of one fermentation (Additional
file 1: Figure S14).

Protein secretion
In the Gram-positive model organism B. subtilis, secre-
tion of subtilisin is directed via the secretory (Sec) path-
way [14]. Subtilisin is synthesized as preproenzyme [70]
containing a Sec-dependent signal peptide [14] and a
propeptide, which serves as intramolecular chaperone
[71]. The nascent protein chain is recognized by the signal
recognition particle (SRP) and transferred to the mem-
brane [72] where it is forwarded to the Sec translocase and
transported across the membrane [73]. After cleavage of
the signal peptide, the subsequent protein folding into pro-
subtilisin is aided by the propeptide [74] and the extracyto-
plasmic chaperone PrsA [75]. Following the autoprocessed
cleavage of the propeptide, it is degraded in trans and the
active enzyme is released into the extracellular space [71].
The heat map depicted in Figure 9A shows the RNA
abundances of the required orthologous genes in B.
licheniformis. Interestingly, the transcript abundances of
these genes decline in the late stages of the process in
which the main amount of subtilisin is secreted. This ob-
servation is also supported on protein level by the abun-
dance of PrsA, which declines at the later sampling
points (Additional file 2: Table S3). The only exception
to this pattern is the highly abundant SRP component
scr (4.5S RNA) which shows increased RNA abundance
at the later sampling points.
In contrast to genes of the Sec pathway, the transcript

abundances of the genes of the twin-arginine transloca-
tion (Tat) system TatAyCy double from sampling point I
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to II (Figure 9B) and increase further to maximal abun-
dance (NPKM values 1221 and 1155) at the latest sam-
pling point. In contrast to TatAyCy, transcripts of the
second Tat system TatAdCd do not show any abundance
during the fermentation process. Five proteins were
predicted to contain a corresponding Tat signal peptide.
However, the pattern of transcript abundances of these
proteins does not indicate that they are the main secre-
tion targets for the strongly transcribed TatAyCy system.
It has recently been shown that the extracellular B. sub-
tilis lipase BSU02700, which is Sec-dependently secreted
under standard conditions, is translocated by the B. sub-
tilis Tat pathway in a hyper-secreting strain [80]. Hence,
this phenomenon has been assumed to be an overflow
mechanism [80]. Considering the RNA abundances shown
for the secretion machinery in this study (Figure 9), it is
tempting to speculate that this overflow mechanism may
also play a role in the secretion of subtilisin in B. licheni-
formis. The fact that no typical Tat signal peptide is at-
tached to the subtilisin proenzyme seems to argue against
this hypothesis. However, it was shown that the conserva-
tion of the RR motif of the signal peptide [81] is not essen-
tial for Tat-dependent secretion [82,83]; an RK motif, as
present in the Subtilisin Carlsberg prepeptide, can like-
wise facilitate Tat-dependent secretion (Additional file 1:
Figure S15) [82,83]. The blurred boundaries of Tat- and
Sec-dependent secretion are additionally pointed out by
the facts that proteins with a Tat signal peptide can, vice
versa, be secreted by the Sec pathway and that the Tat
system is accessible for originally Sec-dependent pro-
teins fused to Tat signal peptides [84,85]. This was demon-
strated by the detection of TatAyCy-dependent export of
active subtilisin [85] and gives reason to assume that
Tat-dependent subtilisin secretion is not an obstacle for
proper folding of the enzyme.
In B. subtilis, a CssRS-dependent response to protein

secretion stress triggered by both, homologous and
heterologous proteins, has been described [86-88]. The
two-component regulatory system CssRS reacts to secre-
tion stress by activating the transcription of htrA and
htrB [87], which encode membrane-anchored serine pro-
teases that trigger refolding or degradation of misfolded
or aggregated proteins [89]. The here determined RNA
abundances of the genes of the CssR regulon are given
in Figure 9C. High transcription rates can be observed
for the genes of the serine proteases HtrA and HtrB at
the first sampling point, but these rates decline at later
stages of the process. This reaction could be due to vari-
ous reasons: (i) even highly synthesized pre-subtilisin
does not aggregate in the cells, (ii) the cells are highly
tolerant to large amounts of (aggregated) pre-subtilisin
or (iii) the preprotein is efficiently exported in the late
production stages, maybe even supported by the Tat
pathway.
Conclusion & outlook
The presented data give unprecedented insights into the
complex adaptations of the bacterial production strain B.
licheniformis DSM13 to the changing physiological de-
mands during an industrial-oriented fermentation using
the example of a detergent protease production process.
We thereby provide reference data for a better under-
standing and possible optimization of industrial fermenta-
tion processes.
These insights enabled us to pinpoint physiological ad-

aptations within the bioprocess, many of which could be
confirmed by proteome analysis. Cluster analysis clearly
revealed strong growth phase dependencies of many
genes as well as some phase-independent genes. RNA as
well as protein abundances of the central carbon metabol-
ism and the amino acid metabolism are in accordance
with the initial glucose-driven metabolism. Main changes
in the corresponding pathways regard the overflow metab-
olism and the subsequent catabolism of the thereby pro-
duced C2 compounds as well as the alternating synthesis
and degradation of glutamate and its derivates. Changes in
RNA abundances reflect a transition of sustenance from
more complex molecules like peptides and oligomers to
amino acids. This emphasizes the importance of the se-
creted protease and its activity on the substrate as a func-
tional component of the productive fermentation.
By comparing our data to previous transcriptome

studies focusing on stress conditions, we were able to re-
liably identify potential stress factors within the process.
A detailed inspection of the associated transcripts re-
vealed oxidative stress and increasing phosphate limita-
tion as important factors. Notably, the transcripts of the
lichenicidin biosynthesis-related genes lanA1 and lanA2
are highly abundant throughout all sampling points. The
high abundances of the complete lan gene cluster and
the majority of sporulation-involved genes indicate a sub-
stantial production of antimicrobial compounds and a re-
sponsive, KinC-enhanced induction of sporulation. This
energy-consuming behavior is clearly not supportive in
terms of productivity.
An interesting finding concerning protein secretion

pathways is the increase in abundance of the Tat path-
way components tatAY and tatCY from sampling point I
to V, which is in contrast to the abundance patterns of
genes of the Sec secretory system. Thus, the cells seem to
increase the overall secretion capacity during the produc-
tion process by including non-typical secretory pathways.
The presented findings enabled the identification of

important physiological and genetic switches of B. liche-
niformis which limit the overall productivity. The data
indicate several opportunities to improve the strains per-
formance in the production of subtilisin. The observed
adaptions to the changing substrate supply during the
successive metabolization of media components suggest
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that an optimization of the non-optimal amino acid com-
position or phosphate supply may lead to better reproduci-
bility, increased efficiency, cycle time reduction, and finally
a diminished employment of resources. Optimization of
the deployed strain should also be achieved by the intro-
duction of genetic modifications. For instance, the ob-
served strong expression of the lan gene cluster which
encodes an undesirable cell wall stress inducing byproduct
marks it as promising target for a gene deletion. Another
approach might be the modulation of the subtilisin signal
peptide to channel subtilisin to the putative Tat-dependent
secretion pathway.

Methods
Bacterial strains and fermentation
The samples for the proteome analysis were derived from
fermentation experiments carried out for Bacillus licheni-
formis MW3Δspo described earlier. For detailed descrip-
tion of fermentation conditions, sampling points and
sequencing of the transcriptome please refer to Wiegand
et al. [25].

Preparation of cytosolic protein extracts
50 mL of harvested cells were supplemented with 0.5 mL
of protease inhibitor (3758.1, Carl Roth, Germany) directly
upon sampling. Centrifugation was carried at 4500× g and
4°C for 10 min. The supernatant was removed and the
cells were stored at −80°C.
For preparation of the cytosolic protein extracts the

insoluble components of the fermentation medium were
removed from the bacterial pellet by washing at least
three times in ice cold 100 mM Tris/HCl, pH 7.5 buffer
at 10000× g and 4°C for 10 min. After the last washing
step the pellet was resuspended in 600 μL TE buffer
(10 mM Tris/HCl, pH 7.5, 1 mM EDTA) containing
1.4 mM phenylmethylsulfonyl fluoride (PMSF). After
addition of 250 μL glass beads (0.25-0.5 mm) the cells
were disrupted by using RiboLyser cell mill (30 s at
6800 rpm, 5 min on ice, 30 s at 6800 rpm; Hybaid, UK).
Glass beads and cell debris were removed by two centri-
fugation steps at 13000× g and 4°C for 30 min. To re-
move ions, which could disturb the isoelectric focusing,
the protein extracts were purified with Amicon Ultra
3 K Centrifugal Filters (Millipore, Germany). The pro-
tein concentration of the protein extracts was deter-
mined using Roti®NanoQuant (Carl Roth, Germany).

Two dimensional gel electrophoresis, imaging and
quantification
Isoelectric focusing (IEF) of the cytosolic protein extracts
was performed according to [90]. IPG BlueStrips 4–7
(SERVA, Germany) were loaded with 150 μg protein ex-
tract, which was adjusted to 340 μL with 2 M thiourea/
8 M urea buffer and 34 μL CHAPS solution (20 mM
DTT, 1% w/v CHAPS detergent) and rehydrated over
night. IEF was carried out on a Multiphor II unit
(Amersham Pharmacia Biotech) employing the following
step gradient: 150 V for 150 Vh,300 V for 300 Vh, 600 V
for 600 Vh, 1500 V for 1500 Vh, and a final phase of
3000 V for 57.5 kVh at 20°C. Before separation in the
second dimension the IPG strips were incubated in 3.5 mL
equilibration buffer A (2.4 M urea, 12% v/v glycerol, 4% v/v
0,5 M Tris pH 6.8, 55.5 mM SDS, 9 mM DTT) and equili-
bration buffer B (2.4 M urea, 12% v/v glycerol, 4% v/v
0,5 M Tris pH 6.8, 55 mM SDS, 9 mM DTT, 97 mM ioda-
cetamide, 0.15 mM bromphenol blue), each for 15 min on
an orbital shaker. Electrophoresis of the proteins was car-
ried out on 12.16% acrylamide/0.34% bisacrylamide gels at
40 W for 1 h and 16 W for additional 16.5 h at 12°C.
Gels were stained with Flamingo™ Fluorescent Gel Stain
(Bio-Rad Laboratories, USA) following the manufacturer’s
instructions. The gels were imaged with a Typhoon Imager
9400 (GE Health Care, UK). Spot detection was performed
semi-manually with the Delta2D software version 4.1
(Decodon, Germany). Spot quantification was also done
with the Delta2D software as described by Wolf et al. [91].
Quantities for proteins represented by more than one
distinct spot are given for each spot separately.

Identification of proteins from 2D gel spots
Selected protein spots were excised from 2-D gels using
a spot cutter (Bio-Rad, USA). Digestion with trypsin and
spotting on the MALDI-target was achieved using the
Ettan Spot Handling Workstation (GE Health Care, UK)
employing the manufacturers’ protocol. Mass spectrom-
etry was carried out with a Proteome Analyzer 4800 (Ap-
plied Biosystems, USA) according to Wolf et al. [91]. The
spectra were recorded in a mass range from 900 to
3700 Da with a focus mass of 1600 Da. An internal cali-
bration was performed automatically when the autolytic
fragments of trypsin with the mono-isotopic (M + H)+

m/z at 1045.556 or 2211.104 reached a signal to noise
ratio (S/N) of at least 20.
Peak lists were created by using the script of the GPS

Explorer TM Software Version 3.6 (Applied Biosystems,
USA) with the following settings: mass range from 900
to 3700 Da, peak density of 15 peaks per 200 Da, mi-
nimal area of 100 and maximal 60 peaks per spot. The
peak list was created for an S/N ratio of 15. MALDI-
TOF-TOF measurements were carried out for the five
strongest peaks of the TOF-spectrum. Using a random
search pattern, 25 sub-spectra with 125 shots per sub-
spectrum were accumulated for one main spectrum. The
mono-isotopic arginine (M +H)+ m/z at 175.119 or ly-
sine (M +H)+ m/z at 147.107 was used for internal cali-
bration (one-point-calibration) when it reached a signal
to noise ratio (S/N) of at least 5. Peak lists were created
with the following settings: mass range from 60 to
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precursor – 20 Da, peak density of 15 peaks per 200 Da,
minimal area of 100 and maximal 65 peaks per precur-
sor. The peak list was created for an S/N ratio of 10. For
data base search the Mascot search engine version 2.4.0
(Matrix Science Ltd, UK) with a specific Bacillus liche-
niformis (http://www.uniprot.org/uniprot/?query=Bacil-
lus+licheniformis&sort=score) database was used.

Statistical data analysis
NPKM (nucleotide activity per kilobase of exon model
per million mapped reads) values [25] were computed
for every protein-coding gene in all samples as a measure
of RNA abundance. Based on the NPKM values analysis
of differential expression was performed with baySeq [30]
and one-way ANOVA [92]. Genes were assumed to be dif-
ferentially expressed with a resulting baySeq likelihood
value >0.9 or an ANOVA-based p-value <0.01 (False Dis-
covery Rate (FDR) 2%).

k-means clustering
k-means clusters were generated to identify fermentation
stage-dependent trends in gene expression. (i) To ensure
that the data of each replicate are sufficiently reliable, t-
tests [93] were performed using TM4 MeV v4.8 software
[36]. At least three out of the five samples had to have a
p-value <0.15 to be taken into further analysis. (ii) For
setting up the clusters only transcripts with baySeq like-
lihood values >0.99 were applied to the next step. (iii)
Means of the replicates of each sampling point were cal-
culated and z-score transformation was performed to gain
a mean expression value of 0 and a standard deviation of
1 [94]. Clusters A to K and M to S were generated with
TM4 MeV v4.8 [36] employing k-means clustering with
Euclidian distances after estimating the cluster number by
Figure of merit (FOM) analysis [94]. Clusters were cured
manually. (iv) Finally, expression profiles of all other genes
(p-value <0.15) were added to the determined clusters.
Therefore Gene Distance Matrices were computed with
TM4 MeV v4.8 [36] in Euclidian distance for all remaining
transcripts and the respective cluster means as point of
reference. Transcripts were assigned to the previously
determined clusters dependent on their scaled distance
value. In general the scaled distance value had to be
<0.3, exceptions are clusters G and Q with a scaled dis-
tance value <0.6. 312 of the remaining 332 expression
profiles could be assigned to the newly defined clusters
L and T - W.

GO
Gene Ontology terms [37] have been assigned to the
genome of B. licheniformis using Blast2GO [32]. Enrich-
ment analysis for every cluster was performed with the
implemented Gossip [95] package running a two-tailed
Fisher’s Exact Test (FDR 0.05). Go terms over- or
underrepresented were sorted to their respective child
or parent using OBO-Edit. To enable a broad overview
of enriched groups Generic GO slims [31] also were
assigned and analyzed with Blast2GO.

Heat maps
Color codes presented in the heat maps are based on z-
score transformed mean NPKM values for the transcrip-
tome and mean spot quantities for the proteome. Figures 5,
6 and 7 were designed utilizing the CellDesigner™ v4.2
software [96] and employing the databases of SubtiWiki
[76], BioCyc [97], KEGG [98] and IMG [99].

Tat signal prediction
Proteins with RR and KR motifs of Tat signal peptides
where predicted employing the TatP v1.0 software [100].
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