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Abstract: (1) Background: Clozapine is the most effective antipsychotic. It is, however, associated
with many adverse drug reactions. Nose-to-brain (N2B) delivery offers a promising approach. This
study aims to develop clozapine-encapsulated thermosensitive sol–gels for N2B delivery. (2) Methods:
Poloxamer 407 and hydroxypropyl methylcellulose were mixed and hydrated with water. Glycerin
and carbopol solutions were added to the mixture and stirred overnight at 2–8 ◦C. Clozapine 0.1%
w/w was stirred with polysorbate 20 (PS20) or polysorbate 80 (PS80) at RT (25 ◦C) before being added
to the polymer solution. The final formulation was made to 10 g with water, stirred overnight at
2–8 ◦C and then adjusted to pH 5.5. (3) Results: Formulations F3 (3% PS20) and F4 (3% PS80) were
selected for further evaluation, as their gelation temperatures were near 28 ◦C. The hydrodynamic
particle diameter of clozapine was 18.7 ± 0.2 nm in F3 and 20.0 ± 0.4 nm in F4. The results show
a crystallinity change in clozapine to amorphous. Drug release studies showed a 59.1 ± 3.0% (F3)
and 53.1 ± 2.7% (F4) clozapine release after 72 h. Clozapine permeated after 8 h was 20.8 ± 3.0%
(F3) and 17.8 ± 3.1% (F4). The drug deposition was higher with F4 (144.8 ± 1.4 µg/g) than F3
(110.7 ± 2.7 µg/g). Both sol–gels showed no phase separation after 3 months. (4) Conclusions: Binary
PS80-P407 mixed micelles were more thermodynamically stable and rigid due to the higher synergism
of both surfactants. However, binary mixed PS20-P407 micelles showed better drug permeation across
the nasal mucosa tissue and may be a preferable carrier system for the intranasal administration
of clozapine.

Keywords: antipsychotic; cardiomyopathy; clozapine; constipation; hydrogel; hypersalivation;
metabolic syndrome; nose-to-brain delivery; poloxamer gel; polysorbates; postural hypoten-
sion; schizophrenia

1. Introduction

Clozapine is the most effective antipsychotic for treatment-resistant schizophrenia [1].
It is, however, associated with many peripheral adverse drug reactions (ADRs), including
cardiac (myocarditis, cardiomyopathy and postural hypotension), metabolic (metabolic
syndrome, obesity and diabetes), hypersalivation and gastrointestinal (constipation and
ileus) [2,3]. Nose-to-brain (N2B) drug delivery offers a promising approach to the delivery
of antipsychotics to the central nervous system (CNS) in the management of schizophrenia.
This route bypasses the blood–brain barrier (BBB) and hepatic first-pass metabolism, which
may increase the CNS drug availability and reduce peripheral ADRs [4]. In order to
deliver therapeutic doses of clozapine to the olfactory region, the antipsychotic drug
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needs to penetrate the hydrophilic mucus layer, while avoiding mucin adsorption, before
permeating the olfactory membrane [5]. Due to the small volume of the nasal cavity, only
small volumes (100–250 µL [6]) of therapeutic doses can be administered intranasally. It is,
therefore, crucial for the antipsychotic drug to be solubilized before administration in order
to increase the transmucosal nasal absorption and avoid the rapid mucociliary clearance
from the nasal cavity [4].

Well-reported methods to enhance drug solubility include the use of surfactants and
solubilizers [7–9]. Polysorbates are hydrophilic, non-ionic surfactants that are frequently
used as an emulsifying and solubilizing agent in foods, cosmetics and pharmaceutical
formulations [10]. Polysorbate 20 (PS20) and polysorbate 80 (PS80) are approved by the U.S.
Food and Drug Administration (FDA) for intranasal administration, and are often used
to solubilize hydrophobic drugs, such as clozapine. In recent years, poloxamer hydrogels
have received interest as in situ drug delivery vehicles due to their thermoreversibility.
Poloxamer 407 (P407) is among the most commonly used poloxamers, as it remains a
solution at room temperature but forms an in situ gel at physiological temperatures and
at low concentrations. It is a versatile excipient that is widely used in pharmaceutical
formulations due to its low toxicity. Traditional surfactants have a low molecular weight,
whereas P407 is made of triblock copolymers of poly(ethylene oxide)-b-poly(propylene
oxide)-b-poly(ethylene oxide; PEO-PPO-PEO). The high hydrophobic PPO fraction of
P407, along with the polymer molecular weight compared to other types of poloxamers,
has the capacity to increase the drug loading of water-insoluble drugs through direct
solubilization [11].

Designing the most suitable sol–gel formulation for the intranasal delivery of clozap-
ine involves balancing a variety of parameters, including the micellarized drug, particle
size, lipophilicity, formulation pH and molecular interactions between the drug and other
excipients. Herein, we report on the development of clozapine-encapsulated binary polysor-
bate/poloxamer mixed micelles formulated into a thermosensitive sol–gel, intended for
N2B delivery to reduce peripheral ADRs, increase CNS drug bioavailability and improve
patient compliance. Accordingly, the aim of the present study was to investigate the feasi-
bility of the optimized formulations to transport clozapine across nasal mucosa tissues in a
controlled manner for a sustained therapeutic effect.

2. Results and Discussion
2.1. Formulation Development and Optimization

Preliminary sol–gel formulations consisting of 13.5–16.5% w/w P407, without cloza-
pine or additives, were prepared using Milli-Q water and evaluated for Tsol/gel. As seen
in Table 1, the Tsol/gel of the formulations increases as the concentration of P407 decreases.
Sol–gels that demonstrated Tsol/gel of 28 ◦C (i.e., gelling starts at 28 ◦C) were selected so
that the gelation phase is completed around the nasal temperature of 32–34 ◦C [12,13].
Therefore, sol–gels with 15.5% w/w P407 were selected for further investigations.

Table 1. Increasing Tsol/gel with decreasing concentrations of P407.

Concentration of P407, % w/w Tsol/gel, ◦C

16.5 24.5 ± 0.7
15.5 28.6 ± 0.2
14.5 30.8 ± 1.3
13.5 37.0 ± 0.9

The saturation solubility of clozapine in 15.5% w/w P407 solution was 0.4± 0.04 mg/mL.
Therefore, PS20 or PS80 was used to increase the concentration of clozapine to a final concen-
tration of 1 mg/mL (0.1% w/w). As shown in Table 2, the hydrodynamic particle diameter
of the binary polysorbate/poloxamer mixed micelles was shown to be <<50 nm, with PS20
producing slightly smaller particles (Figure 1) than PS80 (Figure 2). The PDI values were
low for both sets of micelles and were deemed acceptable (≤0.3) [14], indicating uniformly
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dispersed binary mixed micelles (Figure 3). The zeta potential of the binary mixed micelles
without clozapine was−0.2± 0.8 mV for 15.5% w/w P407 and 3% w/w PS20, and 0.3± 0.2 mV
for 15.5% w/w P407 and 3% w/w PS80. The zeta potential of native clozapine particles (as
received) was measured to be−1.0± 0.5 mV, and may have reduced the overall zeta potential
of the drug-encapsulated binary mixed micelles.

Table 2. Hydrodynamic particle diameter, PDI and zeta potential of clozapine in binary mixed micelles.

Binary Mixed
Micelles

Hydrodynamic Particle
Diameter, nm PDI Zeta Potential,

mV
Count

Rate, kcps

15.5% w/w P407 and
3% w/w PS20 18.7 ± 0.2 0.3 ± 0.02 −2.7 ± 1.1 287.1

15.5% w/w P407 and
3% w/w PS80 20.0 ± 0.4 0.3 ± 0.004 −3.0 ± 0.8 337.5

Figure 1. Binary PS20/P407 mixed micelles.

Figure 2. Binary PS80/P407 mixed micelles.
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Figure 3. Size distribution (by intensity) of clozapine-encapsulated binary PS20/P407 and PS80/P407
mixed micelles (n = 3).

2.2. Influence of PS20 and PS80 on Tsol/gel and Turbidity of the Sol–Gel Platform

The addition of PS20 or PS80 in increasing concentrations led to a decreased turbidity
and increased Tsol/gel (Table 3). Formulations with PS20 showed no significant difference
(p = 0.41) in Tsol/gel to those with PS80 at the same concentration. However, the turbidity
was significantly lower for formulations with PS20 (p = 0.04). Sol–gels with 1% w/w PS20
(F1) or 1% w/w PS80 (F2) had similar Tsol/gel to those without polysorbate (Control 1 and
Control 2). However, the turbidity of Control 2 decreased with the addition of 1% w/w
PS20 (F1) and 1% w/w PS80 (F2). The addition of 5% w/w PS20 (F5) or 5% w/w PS80
(F6) had the lowest turbidity. However, both formulations displayed a gelation above the
targeted Tsol/gel of 28 ◦C. F3 and F4 had turbidities ≤25 NTU with Tsol/gels near 28 ◦C, and
were therefore chosen as optimized sol–gel formulations (Figures 4 and 5).

Table 3. Formulations containing a range of PS20 and PS80, and their respective Tsol/gel and NTU values.

Formulation # Solubilizers Tsol/gel, ◦C Turbidity, NTU

Control 1
(without clozapine) - 25.8 ± 0.5 18.4 ± 0.4

Control 2
(with clozapine) - 25.7 ± 0.4 114.3 ± 0.6

F1 1% PS20 25.7 ± 0.6 63.4 ± 0.3

F2 1% PS80 24.8 ± 0.2 67.0 ± 0.9

F3 3% PS20 29.0 ± 0.8 22.0 ± 0.1

F4 3% PS80 28.5 ± 0.2 25.0 ± 0.1

F5 5% PS20 32.4 ± 1.1 18.4 ± 0.4

F6 5% PS80 32.7 ± 0.9 24.2 ± 0.1
# All formulations contain 15.5% w/w P407, 0.5% w/w HPMC, 3% w/w glycerin, 0.1% w/w carbopol and adjusted
to pH 5.5 ± 0.2. All formulations, except Control 1, contain 0.1% w/w clozapine.
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Figure 4. Representative photograph of F3. (A) Sol form at storage temperature 2–8 ◦C. (B) Gel form
at nasal temperature 32−34 ◦C.

Figure 5. Representative photograph of F4. (A) Sol form at storage temperature 2–8 ◦C. (B) Gel form
at nasal temperature 32−34 ◦C.

2.3. Flow Behavior of Optimized Formulations

The flow characteristics of the optimized sol–gels (F3 and F4) are classified ac-
cording to the relationship between shear stress and shear rate [15,16], and compared
to the clozapine gel suspension without any polysorbates (Control 2) at 8 ◦C (storage
temperature) and 34 ◦C (nasal temperature). According to Newton’s Law, shear stress
is defined by the equation below:

τ = η× .
γ (1)

where τ = shear stress, η = viscosity and
.
γ = shear rate. The viscosity of Newtonian

fluids does not change with the shear rate. The rheological studies estimate the formula-
tions’ spreadability at lower temperatures for ease of administration, and their rigidity at
higher temperatures for an increased residence time on the application site. The rheogram
(Figure 6) below shows a linear shear-stress–shear-rate relationship for all three formula-
tions at 8 ◦C, which suggests Newtonian flow-like behavior, indicating that they were in a
solution form [17]. Control 2 showed the lowest fluctuation with an increasing shear rate,
as expected without the presence of viscous PS20 or PS80. F4 showed a higher fluctuation
and resistance to flow compared to F3 with an increasing shear rate, indicating that PS80
forms stronger interchain entanglements with polymer chains at low temperatures. This
suggests that the addition of PS80 showed a poorer spreadability compared to PS20.
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Figure 6. Flow rheogram of Control 2 and optimized sol–gels (F3 and F4) at storage temperature
(8 ◦C) and nasal temperature (34 ◦C).

At 34 ◦C, the polymers exhibited solid-like gels that were resistant to deformation with
shear rates below 200 s−1. These gels require a critical shear stress to break the structure of
the gels to start flowing, with F4 having the highest yield stress of 316.5 Pa, followed by F3
at 247.5 Pa and Control 2 at 207.1 Pa. This suggests that PS80 increases the elasticity and
mechanical strength of the gel more than PS20, which would be expected to enhance the
retention time at the nasal mucosa [18]. As expected, Control 2 behaved more as a weakly
cross-linked gel without the presence of polysorbates. Above 200 s−1, the polymer chains
disentangle along the direction of the shear, and the polymers start to flow steadily with an
increasing shear rate (Figure 6). This implies Bingham pseudoplastic behavior for all three
formulations at the nasal cavity temperature.

2.4. Gel Strengths, Viscosities and Loss Tangent (tan δ) of Optimized Clozapine Sol–Gel Formulations

The G′ modulus (storage modulus) quantifies the energy stored and recovered af-
ter deformation per cycle at a given frequency [17], and is an indirect measure of gel
strength [19,20]. The G′′ modulus (loss modulus) measures the energy dissipated from the
gels at a given oscillatory angle. It can be observed that both the G′ and G′′ moduli and the
viscosities of all three formulations were low at lower temperatures, which indicated that
the formulations were in liquid or ‘sol’ form. As the temperature increased, the formulations
became more elastic and the G’ modulus increased drastically due to the formulations’ solid
gel-like mechanical spectra (G′ > G′′). This is more likely due to the dehydration of the PPO
block leading to the aggregation of orderly packed micelles at higher temperatures [21].
The addition of PS20 or PS80 was seen to delay the gelation response, with PS80 showing
a longer drag than PS20. This was measured using the slope of the G′ modulus curve,
with Control 2 showing the steepest slope of 4737.3 (Figure 7), followed by PS20 with
3859.2 (Figure 8) and PS80 with 3347.2 (Figure 9). The hydrophilic polysorbates in the
formulations may have attracted more water, requiring more heat energy to dehydrate and
solidify the polymer gel matrix.
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Figure 7. Sol–gel transition temperature for Control 2.

Figure 8. Sol–gel transition temperature for F3.

Figure 9. Sol–gel transition temperature for F4.

F4 showed the highest elasticity at the nasal temperature compared to F3, whereas
Control 2 showed the lowest (Table 4). This may be explained by the synergism between
PS20 or PS80 and P407 when micellization occurs. The degree of interaction between
PS80 and P407 may be larger than PS20 and P407. The hydrophobic part of PS80 may
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have better enthalpic interactions with the PPO block of P407, thereby producing greater
thermodynamic micelle stabilization [22]. The dynamic viscosity measures the resistance
to flow at a given oscillating movement [17]. F4 showed the highest viscosity at the
nasal temperature, followed by F3 and Control 2 (Table 5). This is due to the higher
hydrophobicity and thicker consistency of PS80 in F4 leading to a greater resistance to
flow in a gel-structured state, compared to PS20 for F3 and no polysorbates for Control 2.
The value of the phase angle (tan δ = G′′/G′) is used to understand the internal structure
of the formulations, which describes the ratio between the viscous components and the
elastic components [23]. The tan δ was more than 1 (G′′ > G′) at lower temperatures for all
formulations, demonstrating liquid-like (viscous) properties. As the temperature increased,
the tan δ became less than 1 (G′′ < G′), showing solid-like (elastic) properties (Table 6).
Therefore, the smaller the tan δ, the higher the elasticity of the formulation [17]. F4 showed
more elastic properties than F3 and Control 2 (Tables 4 and 6).

Table 4. Mean G’ modulus of Control 2, F3 and F4 at different temperatures.

Formulation
Mean G′

Modulus at 8 ◦C,
Pa

Mean G′

Modulus at
25 ◦C, Pa

Mean G′

Modulus at
32 ◦C, Pa

Mean G′

Modulus at
34 ◦C, Pa

Control 2 0.4 ± 0.04 178.6 ± 3.3 8362.8 ± 468.4 8566.3 ± 454.0
F3 0.57 ± 0.1 0.4 ± 0.01 7881.3 ± 501.1 8746.3 ± 494.5
F4 0.3 ± 0.02 0.4 ± 0.04 8015.4 ± 454.0 9014.6 ± 491.4

Table 5. Mean viscosities of Control 2, F3 and F4 at different temperatures.

Formulation Mean Viscosity
at 8 ◦C, Pa·s

Mean Viscosity
at 25 ◦C, Pa·s

Mean Viscosity
at 32 ◦C, Pa·s

Mean Viscosity
at 34 ◦C, Pa·s

Control 2 0.03 ± 0.01 0.4 ± 0.03 0.3 ± 0.2 0.9 ± 0.2
F3 0.06 ± 0.02 0.1 ± 0.04 1.1 ± 0.3 1.2 ± 0.3
F4 0.1 ± 0.1 0.2 ± 0.3 1.2 ± 0.2 1.2 ± 0.2

Table 6. Mean tan δ of Control 2, F3 and F4 at different temperatures.

Formulation Mean tan δ at
8 ◦C

Mean tan δ at
25 ◦C

Mean tan δ at
32 ◦C

Mean tan δ at
34 ◦C

Control 2 2.2 ± 0.2 3.3 ± 0.8 0.2 ± 0.01 0.2 ± 0.02
F3 2.5 ± 1.1 3.0 ± 0.2 0.2 ± 0.04 0.1 ± 0.003
F4 1.2 ± 0.4 2.8 ± 1.6 0.1 ± 0.002 0.1 ± 0.01

2.5. DSC and TGA of Optimized Formulations

DSC and TGA analyses were performed in order to evaluate the thermal kinetics of the
optimized formulations. The physical mixture of Control 2 was evaluated in comparison to
the formulated Control 2, whereby clozapine 0.1% w/w was added to the sol–gel platform,
stirred using a spatula for 10 s and immediately analyzed. The first endothermic peak
(1) in the DSC thermogram (Figure 10) shows the melting point of P407. As expected, the
addition of clozapine powder increased the melting point of the polymer sol–gel platform
from 54.9 ◦C (Control 1) to 56.6 ◦C (Control 2), but not for the physical mixture of Control 2
(54.2 ◦C). On the other hand, the addition of clozapine dissolved in PS20 and PS80 liquids
decreased the melting point of the sol–gel to 53.2 ◦C (F3) and 52.7 ◦C (F4), respectively. The
endothermic peak (2) of the raw clozapine curve represents the melting point of the drug
at 185.2 ◦C. The physical mixture of Control 2 reduced the melting point of clozapine and
showed a broad endothermic peak at 180.1 ◦C, whereas Control 2 showed a broader peak
at 169.9 ◦C. F3 and F4 did not show any melting peaks, indicating drug encapsulation or
amorphous dispersions of clozapine in the sol–gels. The exothermic peaks at (3) in the DSC
curve (ranged between 147–245 ◦C for Control 1, 179–248 ◦C for Control 2, 171–266 ◦C for
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F3 and 169–270 ◦C for F4) represent auto-oxidation, which corresponds with the weight
loss in the TGA curve. This may be due to the eruption of POE chains, consequently
producing oxidative byproducts and volatile degradants [24]. The absence of an exothermic
peak at (3) for the physical mixture of Control 2 indicates a lack of interaction between
the polymer sol–gel platform and clozapine. The addition of PS80 produced shorter POE
chains upon cleavage compared to the addition of PS20, as evident through the fronting
of the exothermic peak (3) [25]. The optimized formulations, F3 and F4, showed that the
addition of PS20 or PS80 produced weaker exothermic reactions (Figure 10). In the TGA
thermogram, the onset of weight loss was also delayed, with F4 occurring at a higher
temperature than F3 (Figure 11). This implies that more heat energy is required to set about
oxidation with the addition of PS80 as compared to PS20. Although unsaturated fatty
acids are more susceptible to oxidation compared to their saturated counterparts [26], the
higher heat energy required to rupture the polymer chains could be explained by the higher
thermodynamic micelle stabilization of PS80 and P407. From the data, it can be concluded
that the auto-oxidation is primarily caused by the cleavage of the POE chains, and the
longer hydrocarbon structure (C17) of the oleate moiety in PS80 prolonged degradation
compared to the shorter hydrocarbon chain (C11) of the laureate moiety in PS20.

Figure 10. DSC thermogram. (1) indicates the melting peaks of P407, (2) melting peaks of clozapine,
and (3) oxidative degradation peaks of the formulations.

Figure 12 shows the first derivative thermogravimetry (DTG) of the TGA plots. From
Figure 12A, it can be observed that the major degradation peak of clozapine occurred
at 328.4 ◦C at a rate of −1.7%/◦C. The physical mixture of clozapine and the polymer
matrix (Control 2) showed two decomposition processes in the DTG plot at rates slower
than clozapine alone (−1.1%/◦C at 338.2 ◦C and −0.9%/◦C at 377 ◦C). In Figure 12B, the
decomposition of all excipients took place in one step, and the absence of the DTG curve
of clozapine in F3 and F4 confirms the amorphic nature of the drug in the formulations.
The polymer matrix without clozapine (Control 1) degraded at a rate of −2.1%/◦C at
229.5 ◦C. The addition of PS80 showed a slower degradation rate of −1.6%/◦C at 258.1 ◦C
compared to PS20 (−1.8%/◦C at 248.3 ◦C). The decomposition of the formulations at such
high temperatures indicates a high thermal stability, with F4 being sturdier than F3.
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Figure 11. TGA thermogram.

Figure 12. TGA (solid line) and DTG (dashed line) of (A) clozapine and physical mixture of Control 2,
and (B) clozapine, Control 1, F3 and F4.

2.6. XRD Analysis

The XRD patterns of clozapine, Control 1, Control 2, physical mixture of Control 2,
F3 and F4 are displayed in Figure 13. The crystalline clozapine showed strong peaks at
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diffraction angle 2θ (10.5◦, 17.4◦ and 19.4◦). Control 1 (without clozapine) showed two
peaks at 19.3◦ and 23.4◦, which represent characteristic peaks of P407 [27]. The crystalline
peaks of clozapine at 10.5◦ and 19.3◦ were detectable in the physical mixture of Control
2, although the intensities were decreased due to the dilution effect of the formulation.
The peak of clozapine at 10.5◦ was not evident on the diffractogram of Control 2 but the
increased intensity of the peak at 19.3◦ may indicate a combination of both clozapine
and P407 after stirring overnight. Both F3 and F4 did not show any crystalline peaks of
clozapine, demonstrating that clozapine was amorphic in PS20 and PS80, respectively.

Figure 13. XRD patterns of clozapine, Control 1, Control 2, physical mixture of Control 2, F3 and F4.
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2.7. In Vitro Drug Release Study

Figure 14 shows the release profiles of clozapine from the optimized sol–gels (F3 and
F4) and compared to the clozapine solution at 34 ◦C. The cumulative percentage release
of clozapine was 86.8 ± 1.1% at 8 h for the clozapine solution. Contrarily, the sol–gels
showed a slow, extended cumulative release of clozapine, with F4 (53.1 ± 2.7%) being
slower than F3 (59.1 ± 3.0%) at 72 h (p = 0.01). The release rates of clozapine from F3
(76.3 ± 3.8 µg/cm2 h−1, p < 0.05) and F4 (69.8 ± 3.5 µg/cm2 h−1, p < 0.05) were also shown
to be significantly slower than that of the clozapine solution (337.9 ± 7.2 µg/cm2 h−1).
These findings demonstrate that PS80 increased the rigidity of the formulation, leading to a
lower amount of the drug and a slower rate of drug release from the polymer gel matrix at
34 ◦C. The increased residence time between clozapine and the nasal mucosa is desirable to
prevent drug degradation via mucociliary clearance and the rapid turnover of mucus in
the nasal cavity [28].

Figure 14. Cumulative percentage of clozapine released from clozapine solution, F3 and F4 gel matrix
at 34 ◦C.

The R2 was highest in the Korsmeyer–Peppas model for both F3 and F4, and was
therefore considered to be the best model (Table 7). All experimental release data for F3 and
F4 were plotted and fitted into Equation (8), since both curves fall within the 60% cut-off
value at 72 h [29,30]. The n was calculated to be 0.5 < n < 1 for both F3 and F4. This indicates
that the in vitro dissolution study showed a non-Fickian, anomalous behavior release of
clozapine from the sol–gel at 34 ◦C [31], which involved a combination of mechanisms,
including the swelling of the polymer matrix and/or relaxation of polymeric chains, and
drug diffusion or solvent transport across the sol–gel [30].

Table 7. Mathematical models for drug release kinetics of F3 and F4.

Formulation
Zero-Order First-Order Hixson–Crowell Korsmeyer–Peppas

R2 R2 R2 R2 n

F3 0.961 0.985 0.981 0.997 0.628
F4 0.956 0.987 0.980 0.998 0.639

2.8. Ex Vivo Drug Permeation Study

Sheep nasal mucosa represents similar histological and morphological structures to
human nasal mucosa and can thus be used for permeation studies [31–34]. Ex vivo per-
meation studies were conducted across excised sheep nasal tissues mounted onto vertical
Franz diffusion cells to determine the transmucosal delivery of F3 and F4, and compared to
a simple solution of clozapine. Figure 15 shows the cumulative drug permeated through
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the mucosa as a function of time. There was no permeation observed in the first 0.5 h for
the clozapine solution, F3 and F4. The results revealed a burst drug release at 4–6 h for
the clozapine solution (78.8 ± 3.0%), whereas F3 and F4 showed a sustained delivery of
clozapine up to 8 h. At 8 h, 81.9 ± 2.0% of the clozapine solution was permeated through,
whereas only 20.8 ± 3.0% and 17.8 ± 3.1% of clozapine permeated from F3 and F4, respec-
tively. This demonstrated that PS80 prolonged the permeation process, assumedly due to
the higher gel rigidity of F4 at 34 ◦C.

Figure 15. Cumulative percentage of clozapine permeation across nasal mucosal tissues from clozap-
ine solution, F3 and F4 gel matrix at 34 ◦C (n = 3 ± SD).

The permeability parameters for the 0.1% clozapine solution (control), F3 and F4
are listed in Table 8. The steady state flux for the clozapine solution was approximately
3–4 times higher than F3 and F4, which can be expected without the presence of the poly-
mer gel matrix at 34 ◦C. The apparent permeability of the clozapine solution was high,
which indicates its suitability for intramucosal nasal delivery. The addition of PS20 was
significantly higher than PS80 for the steady state flux (p = 0.02), apparent permeabil-
ity (p = 0.02), diffusion coefficient (p = 0.02) and cumulative clozapine permeated at 8 h
(p = 0.002). Based on the data in Sections 2.7 and 2.8, it is evident that the rate-limiting step
for both formulations is in the permeation process.

Table 8. Ex vivo permeation characteristics of clozapine across sheep nasal mucosal tissues (n = 3± SD).

Formulation JSS (µg cm−2 h−1) Papp × 10−3 (cm h−1) D × 10−4 (cm2 h−1) C8 (µg cm−2)

Clozapine
solution 139.91 ± 4.01 269.06 ± 7.34 12.50 ± 0.35 851.27 ± 11.02

F3 40.79 ± 2.05 * 74.51 ± 3.74 * 3.46 ± 0.17 * 220.40 ± 7.10 *
F4 32.99 ± 3.01 †,* 60.60 ± 5.53 †,* 2.81 ± 0.26 †,* 186.77 ± 3.01 †,*

* p < 0.05 relative to clozapine solution. † p < 0.05 relative to F3.

2.9. Nasal Mucosal Tissue Deposition of Optimized Sol–Gels

Figure 16 shows the deposition of clozapine from F3 and F4 up to 8 h. The reten-
tion of clozapine in the nasal mucosa was significantly higher with F4 compared to F3 at
4 h (101.35 ± 1.04 µg/g vs. 53.05 ± 9.60 µg/g, p = 0.001), 6 h (111.21 ± 2.16 µg/g vs.
61.51 ± 0.69 µg/g, p < 0.001) and 8 h (144.82 ± 1.41 µg/g vs. 110.74 ± 2.74 µg/g,
p < 0.001), but not at 2 h (44.07 ± 1.54 µg/g vs. 27.68 ± 18.97 µg/g, p = 0.21). This could
be due to a lag phase, where no drug was permeated in the first 0.5 h and the controlled
diffusion of clozapine from the polymer gel matrix occurred through the tissues 2 h post-
application. The lower permeation of F4 may be attributed to its higher drug retention in the
mucosal tissues.
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Figure 16. Clozapine deposition in sheep nasal mucosa from F3 and F4 up to 8 h (n = 3 ± SD).
*** p ≤ 0.001.

2.10. Drug Stability Study

As shown in Table 9, the stability study data indicated that the drug content decreased
to approximately 86–88% at 8 ◦C, 76% at 25 ◦C and 69–73% at 40 ◦C over 3 months. At higher
temperatures, the desolvation, dehydration and evaporation of water in P407 solutions
take place, and POE crystals may precipitate in the gel during dehydration, affecting the
solubility of clozapine in the formulation over time [35]. The zeta potential values of the
binary mixed micelles were low at −2.7 ± 1.1 mV for PS20-P407 and −3.0 ± 0.8 mV for
PS80-P407. The stability of the micelles could be attributed to the hydrophilic groups of
P407 and polysorbates, which may have provided a protective barrier and promoted steric
stabilization by retarding Ostwald ripening and coalescence [36,37]. Upon visual inspection
and on centrifugation at 12,000 rpm for 30 min at 4 ◦C, the sol–gels exhibited no phase
separation after each time point.

Table 9. Drug stability study of F3 and F4 over 3 months.

Time 0th Month 1st Month 2nd Month 3rd Month

At 8 ◦C

F3 1.06 ± 0.002 0.94 ± 0.01 0.93 ± 0.11 0.91 ± 0.01
F4 1.05 ± 0.02 1.14 ± 0.02 0.92 ± 0.15 0.92 ± 0.004

At 25 ◦C

F3 1.06 ± 0.06 0.89 ± 0.01 0.83 ± 0.002 0.81 ± 0.01
F4 1.06 ± 0.06 0.87 ± 0.01 0.82 ± 0.004 0.81 ± 0.001

At 40 ◦C

F3 1.03 ± 0.03 0.86 ± 0.04 0.87 ± 0.003 0.71 ± 0.002
F4 0.97 ± 0.02 0.87 ± 0.04 0.75 ± 0.001 0.71 ± 0.01

Clozapine has a low water solubility of 11.8 µg/mL at 25 ◦C [38–40]. This study
demonstrated that 15.5% P407 alone increased its solubility to 0.36 ± 0.04 mg/mL. The
optimized sol–gels, which were also incorporated with 3% PS20 or 3% PS80, increased the
solubility of clozapine by over 80-fold. Moreover, clozapine has a pKa of 7.5 [38–40], which
makes it more polar and ionizable in acidic environments, such as that of the nasal cavity.
The binary polysorbate/poloxamer mixed micelles in this study produced the desired
particle size for N2B delivery, as they were considerably smaller than the 100–700 nm axon
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diameter (in humans) [41]. This may potentially alleviate peripheral ADRs by minimizing
drug exposure in peripheral tissues without compromising the drug’s therapeutic effect.

P407 (EO100PO65EO100) contains a PPO/PEO composition ratio of 0.34 and has a
critical micelle concentration (CMC) of 0.7% w/v at 25 ◦C, 0.1% w/v at 30 ◦C and 0.025%
w/v at 35 ◦C (11). P407 sol–gels are negative thermoresponsive polymers [42], making it a
good solvent below the lower critical solution temperature (LCST). Above the LCST, phase
separation occurs and P407 polymers become hydrophobic and insoluble in aqueous solu-
tions [42]. The phase behavior of P407 is dependent on its concentration and temperature.
Above the CMC and critical micellization temperature (CMT), the micellization of P407 is
driven by the hydrophobic PPO block due to entropy [11]. The synergism of the binary
polysorbate/poloxamer surfactant mixture decreased the overall CMC due to enthalpy,
and the enthalpic interactions between the two surfactants produced a system that is more
thermodynamically stable, generating stronger micellar sol–gels. The two polysorbates
used in this study have the same polar group but different hydrophobic segments. There-
fore, the differences seen between F3 (Figure 17) and F4 (Figure 18) can be attributed to the
alkyl moieties and their arrangement within the core of the P407 micelles [22].

Figure 17. Chemical structure of PS20.

Figure 18. Chemical structure of PS80.

Oleic acid in PS80 has more carbon atoms, thus producing more hydrophobic in-
teractions with the PPO core of P407. However, the double bond at C9 was reported to
form weaker interactions with micelles due to steric hindrance [22]. On the other hand,
the saturated moiety of lauric acid may have improved micellar packing, although the
weaker synergism observed with F3 compared to F4 could be offset by the lower number of
hydrocarbon chains of lauric acid. This is proven by the small difference in Tsol/gel between
F3 and F4. Moreover, the hydrophilic–lipophilic balance (HLB) of PS20 is higher than PS80,
which makes PS80 more favorable to the PPO units of P407.

3. Conclusions

The addition of PS20 or PS80 markedly improved the drug loading, micellar packing,
increased stabilization and mechanical strength of the P407-based sol–gel formulations.
Formulation F4 was found to be more elastic than F3 at the nasal temperature due to the
higher synergism of binary PS80-P407 mixed micelles, producing more thermodynamically
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stable and rigid micellar sol–gels than PS20-P407. The variations in encapsulation, drug
release and drug permeation recorded between F3 and F4 did not consider the particle
size, PDI and zeta potential, as they were not significantly different. Using the Korsmeyer–
Peppas model, our results showed a non-Fickian, anomalous behavior release of clozapine
from the sol–gel at 34 ◦C, which involved a combination of mechanisms, including polymer
swelling and drug diffusion. The permeation of clozapine in F3 through the nasal mucosa
tissue was shown to be better, with more of the drug retained within the tissue post-
administration of F4. Therefore, binary PS20-P407 mixed micelles in a sol–gel system may
be a preferable carrier system for intranasal clozapine delivery to the brain compared to
binary PS80-P407 mixed micelles.

4. Materials and Methods

Clozapine (>98% purity) was purchased from Adooq Bioscience (Irvine, CA, USA).
P407, hydroxypropyl methyl cellulose (HPMC E4M) and glycerin were purchased from
Sigma-Aldrich (Castle Hill, NSW, Australia). PS20, PS80 and carbopol 934 NF were pur-
chased from PCCA (Matraville, NSW, Australia). Hydrochloric acid (HCl), sodium hydrox-
ide (NaOH), potassium chloride (KCl), calcium chloride dihydrate (CaCl2·2H2O), sodium
chloride (NaCl) and methanol were of analytical grade and purchased from Sigma-Aldrich
(Castle Hill, NSW, Australia). Orthophosphoric acid was purchased from Thermo Fisher
Scientific (Brisbane, QLD, Australia) and potassium dihydrogen orthophosphate anhy-
drous was purchased from Chem-Supply (Gillman, SA, Australia). Milli-Q water was used
as a formulation vehicle.

4.1. Sol–Gel Preparation

The sol–gels were prepared using the cold method [43] as described by
Pandey et al. [44] with slight modifications. Briefly, 15.5% w/w P407 and 0.5% w/w
HPMC were dry mixed before sufficient volume of Milli-Q water was added to hydrate
the mixture. Separately, a stock solution of 1% v/v carbopol in Milli-Q water was
prepared. Then, 3% w/w glycerin and 0.1% w/w of the carbopol solution were added
to the mixture, and stirred thoroughly (400 rpm) for 6 h at 2–8 ◦C. At the same time,
0.1% w/w clozapine was stirred in 1%, 3% or 5% w/w PS20 or PS80 at room temperature
before being mixed with the polymer solution, and the final weight of the formulation
was made up to 10 g with Milli-Q water and stirred thoroughly (400 rpm) overnight
at 2–8 ◦C. The final sol–gel mixture was adjusted to pH 5.5 ± 0.2 with 0.1 M HCl or
0.1 N NaOH.

4.2. Determination of Clozapine Saturation Solubility in ‘Sol’ form of 15.5% w/w P407

An excess amount of clozapine was added to 15.5% w/w P407 and stirred overnight
(400 rpm) at 2–8 ◦C. Samples were centrifuged at 12,000 rpm at 4 ◦C for 45 min using a re-
frigerated centrifuge (Eppendorf Centrifuge 5804 R, Hamburg, Germany). The supernatant
liquid was collected and filtered using a 0.45 µm, 25 mm PTFE Syringe Membrane Filter
(PhaseSep Pty Ltd., Doncaster East, VIC, Australia), and the concentration of clozapine was
measured using HPLC [45,46].

4.3. Preparation of Simulated Nasal Fluid (SNF)

SNF was prepared by dissolving KCl 1.29 mg/mL, NaCl 7.45 mg/mL and CaCl2·2H2O
0.32 mg/mL with Milli-Q water, and was adjusted to pH 5.5 ± 0.1 with 0.1 M HCl and
0.1 N NaOH [47,48].

4.4. Rheology Studies

Rheological evaluations of all sol–gel formulations were performed using a Discovery
Hybrid Rheometer HR-3 (TA Instruments, New Castle, DE, USA) with a 40 mm parallel
plate geometry and a sample gap of 200 µm. The gelation temperature (Tsol/gel), G’ modu-
lus, G” modulus and loss tangent (tan δ) of the sol–gels were evaluated using oscillatory
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measurements, with a temperature ramp between 8 ◦C to 40 ◦C and ramp rate of 5 ◦C/min
at 1.0 Pa (stress) and 1.0 Hz (frequency). The dynamic viscosity of the sol–gels was mea-
sured using flow measurements, with a temperature ramp between 8 ◦C to 40 ◦C and ramp
rate of 5 ◦C/min at 2.0 rad/s (angular velocity). The flow behavior of the sol–gels was
evaluated at 4 ◦C (storage temperature) and 34 ◦C (nasal temperature), with a flow ramp
between 10 s−1 to 1000 s−1. The strength of the gels at nasal temperature was recorded
using the G’ modulus as a measurement of stiffness. All measurements were carried out
in triplicate and the resultant curves were generated directly from the manufacturer’s
computer TRIOS software (TA Instruments, New Castle, DE, USA).

4.5. Determination of Turbidity

The turbidity of the sol–gels when in liquid form was performed using a Hach
TU5200 EPA Turbidimeter (Hach Company, Loveland, COL, USA) measuring in neph-
elometric turbidity units (NTU) with a Class 2 laser product and 650 nm (EPA 0.43 mW)
optical light source. The sol–gels were left at room temperature and any air bubbles
were removed before evaluation. The scattered light was collected at a 90◦ angle to the
incident light and 360◦ around the sample vial. The turbidity sensor was calibrated
using three Stablcal® turbidity standards (10, 20, 600 NTU). The relative clarity of the
sol–gels was measured in triplicate.

4.6. Particle Size, PDI and Zeta Potential

The hydrodynamic particle diameter, PDI, and zeta potential of clozapine in the binary
polysorbate/poloxamer mixed micelles were measured using dynamic light scattering
(DLS) with Zetasizer Nano ZS (Malvern Instruments, Malvern, UK). Diluted samples
(1:10) were pipetted into disposable cuvettes for particle size and PDI measurements, and
disposable DTS1070 folded zeta cells (Malvern Instruments, Malvern, UK) for zeta potential
measurements. The detection scattering angle was set at 173◦ (25 ◦C) with equilibration
time at 60 s. Measurements were carried out in triplicate and recorded as the mean ± SD of
three independent runs.

4.7. High Performance Liquid Chromatography (HPLC) Analysis and Quantitation of Clozapine

The concentration of clozapine was analyzed using a RP-HPLC equipment (Shimadzu
Nexera-i LC-2040C, Kyoto, Japan) equipped with a low pressure quaternary gradient
pump, along with a dual wavelength UV detector (at 234 nm), auto sampler (10 µL injection
volume) and column oven (maintained at 25 ◦C). The chromatographic data were processed
using LC solution 1.24 SP1 software. The quantification analysis was performed under
isocratic conditions with a C18 column (Phenomenex Gemini C18 150 × 2 mm, 3 µm). The
mobile phase consisted of methanol and phosphate buffer (3.4 mM potassium dihydrogen
orthophosphate buffer, pH 2.0 adjusted with 10% v/v o-phosphoric acid) in the ratio of
65:35 (v/v). The flow rate was 0.2 mL/min and the retention time of clozapine was found
to be 3.3 min. The concentration of clozapine was calculated using a standard calibration
curve (R2: 0.9998) over the concentration range of 1–50 µg/mL. The lower limit of detection
(LOD) was 0.03 µg/mL and the lower limit of quantification (LOQ) was 0.1 µg/mL.

4.8. Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA)

The sol–gels were frozen with liquid nitrogen for an hour and then lyophilized using
a VirTis BenchTop Pro with Omnitronics™ freeze dryer (SP Industries, Warminster, PA,
USA) at −102 ◦C (50 Hz) and ≤20 mT for 24 h. The powdered sol–gels of approximately
4–5 mg were transferred into aluminum crucibles and the thermal analysis of the sol–gels
was carried out using a Mettler Toledo TGA/DSC 2 equipment (Mettler Toledo, Columbus,
OH, USA). Heating runs were performed under compressed air, with a heating rate of
10 ◦C/min over 25–600 ◦C (49). STARe software was used to generate the thermal curves
by measuring heat output (DSC) and mass loss (TGA) as temperature is increased.
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4.9. X-ray Power Diffraction (XRD) Analysis

X-ray diffraction was carried out to identify phases in the powdered sample, with data
collected using a Bruker D8 Advance MKII XRD X-ray diffractometer (Bruker, Billerica,
MA, USA) equipped with a Cu source, a LynxEye detector and operated at 40 kV and
40 mA. Diffraction patterns were recorded by continuous scans from 5 to 45◦ 2T, with a
step size of 0.04◦ and 15 rpm rotation at a scan rate of 0.4◦ s per step. The resulting patterns
were imported into Diffrac EVA version 5.1, where phases were identified using the PDF-4
2020 ICDD database [49].

4.10. In Vitro Drug Release Study

In vitro drug release studies were performed using a Logan DHC-6T vertical Franz
diffusion apparatus (Logan instruments, Somerset, NJ, USA). Clozapine solution (0.1%
w/w) was used as control, prepared in 1 mL 0.1 M HCl and made up to 10 g with Milli-Q
water (adjusted to pH 5.5 with 0.1 N NaOH). The donor compartment was filled with
1.5 mL of the optimized sol–gel or clozapine solution, and the receiver compartment
was filled with 12 mL of SNF. Snake skin dialysis membranes (Thermo Fisher Scientific,
Brisbane, QLD, Australia) with a 3.5 kDa MWCO were soaked in SNF for 15 min prior to
experimentation. Membranes having effective areas of 1.5 × 1.5 cm2 exposed to the test
formulations/solutions were then mounted between the donor cap and receiver body. The
temperature of the chamber was kept at 34 ± 1 ◦C with standard stirring speed. Samples
of 0.5 mL were collected from the receiver compartment at 0, 0.5, 1, 2, 4, 8, 12, 24, 48 and
72 h, and replaced with fresh SNF of equal volume after each sampling. The samples were
placed in a −80 ◦C refrigerator until analysis using HPLC. The release study experiments
were performed in triplicate.

4.11. Ex Vivo Drug Permeation Study

Ex vivo drug permeation of the optimized sol–gels was carried out using Franz
diffusion apparatus using excised sheep nasal mucosal tissues [31,50], which were obtained
from The University of Queensland (UQ)’s School of Veterinary Science (Gatton, QLD,
Australia) following a process supervised by veterinary officials in accordance with the
Ethics Committee of Animal Experimentation at UQ (Ethics Approval No. 2021/AE000143).
The mucosal specimens, with effective surface area of 1.5 × 1.5 cm2, were mounted onto
the Franz diffusion apparatus, with the mucosal surface facing the donor compartment
and serosal side facing the receptor compartment. The donor compartment was filled with
500 µL of the optimized sol–gels or clozapine solution (as described above), and the receiver
compartment was filled with 12 mL of SNF to ensure sink conditions. The temperature of
the chamber was kept at 34 ± 1 ◦C with standard stirring speed. The tissues were allowed
to stabilize for 30 min prior to loading of the optimized sol–gels. Sample aliquots of 0.5 mL
were collected from the receiver compartment at 0, 1, 2, 4, 6, 8 h and replaced with fresh
SNF of equal volume after each sampling. The samples were placed in a−80 ◦C refrigerator
until analysis using HPLC. The experiments were carried out in triplicate and the data were
fitted into Fick’s second law of diffusion equation to determine the permeability parameters
of clozapine in the sol–gels across the sheep nasal mucosa, where Ct is the cumulative drug
permeated at time t, Cd is concentration of clozapine in the donor chamber (0.5 mg), K is
the partition coefficient (log P) of clozapine, L is the diffusion path length and D is the
diffusion constant, which was calculated using Equation (3) [31,51].

Ct = Cd·(KL)

{
D
L2 ·t−

1
6
− 2

π2

∞

∑
n=1

(−1)n

n2 ·exp(− D
L2 ·n

2·π2·t)
}

(2)

D = Papp · L/K (3)
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The apparent permeability coefficient, Papp, was calculated using Equation (4), and
the steady state flux, Jss, was calculated using Equation (5), where S represents the cross-
sectional area of flow.

Papp = Jss/Cd (4)

Jss = ∆Ct/∆t·S (5)

4.12. Mathematical Modelling of In Vitro and Ex Vivo Drug Release Kinetics

The in vitro and ex vivo drug release data were fitted to mathematical models, includ-
ing zero-order, first-order, Hixson–Crowell and Korsmeyer–Peppas, to predict the kinetics
and release mechanism of clozapine from the sol–gel polymer matrix [30]. For zero-order
kinetics, the release of clozapine can be described using Equation (6), where C0 is the initial
concentration of clozapine released (usually, C0 = 0) and K0 is the zero-order constant.

Ct = C0 + K0t (6)

For first-order kinetics, Equation (7) was used to describe the release of clozapine from
the polymer gel matrix, where K1 is the first-order constant.

Log Ct = Log C0 + (K1t/2.303) (7)

Equation (8) illustrates the release of clozapine using the Hixson–Crowell model,
where KHC is the Hixson–Crowell constant.
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For Korsmeyer–Peppas kinetics, drug release can be described using Equation (9),
where F represents the fraction of drug released at time t, Mt is the amount of drug released
at time t, M∞ is the amount of drug released at infinity, Km is the Korsmeyer–Peppas
constant and n is the diffusion or release component [31]. In this model, if n = 0.5 (Fickian
Case I), the drug release is driven by diffusion, and when n = 1 (non-Fickian Case II), the
drug release is governed by polymer swelling or relaxation of polymeric chains. When
0.5 < n < 1 (non-Fickian anomalous), the drug release process is indicated by both diffusion
and swelling of the polymer matrix. If n > 1 (non-Fickian Super Case II), the drug release is
said to be due to the tension and breaking of the polymer [30].

F = (Mt/M∞) = Km·tn (9)

The obtained regression (R2) values were used to verify the release of clozapine from
the sol–gel formulations, and the highest correlation coefficient was considered to be the
best model.

4.13. Nasal Mucosal Tissue Deposition of Optimized Sol–Gels

The mucosal tissues were then collected at 2, 4, 6 and 8 h following exposure of the
optimized sol–gels or control solution. The collected tissues were washed with Milli-Q
water, blotted with filter paper, wrapped in aluminum foil and stored at −80 ◦C until
analysis. On the day of analysis, the tissues were thawed and dried with filter paper. They
were then frozen with liquid nitrogen and grinded using a mortar and pestle. Acetonitrile
was added to the powdered tissues to make 100 mg/mL of tissue homogenate. The
samples were vortexed for 10 s and centrifuged at 10,000 rpm for 5 min. The supernatant
was collected for HPLC analysis to determine the concentration of clozapine deposited in
the nasal tissues [44].

4.14. Drug Stability Study

The optimized sol–gel formulations were subjected to drug stability study for a period
of three months at low temperature (2–8 ◦C), room temperature (25 ◦C) and elevated



Gels 2022, 8, 38 20 of 22

temperature (40 ◦C). Phase separation was determined after refrigerated centrifugation
(12,000 rpm for 30 min at 4 ◦C) at one, two and three months for each temperature to
observe for time-dependent changes in drug content [30,52].

4.15. Data Analysis

The data analysis was measured using t-test to determine statistical differences be-
tween individual means. In all analyses, a two-tailed p-value < 0.05 denotes significance.
All analyses were performed using GraphPad Prism v9.
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