
RESEARCH ARTICLE

   Approaches to minimising the epidemiological impact 

of sources of systematic and random variation that may 

affect biochemistry assay data in UK Biobank [version 2; peer 

review: 2 approved]

Naomi E. Allen 1,2*, Matthew Arnold1*, Sarah Parish3*, Michael Hill3, 
Simon Sheard 2, Howard Callen1,2, Daniel Fry2, Stewart Moffat3, Mark Gordon2, 
Samantha Welsh 2, Paul Elliott 4, Rory Collins1,2

1Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, 
OXFORD, Oxon, OX3 7LF, UK 
2UK Biobank, Stockport, Cheshire, SK3 0SA, UK 
3MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, OXFORD, UK 
4MRC Centre for Environment and Health, Imperial College London, London, UK 

* Equal contributors

First published: 24 Sep 2020, 5:222  
https://doi.org/10.12688/wellcomeopenres.16171.1
Latest published: 04 Jan 2021, 5:222  
https://doi.org/10.12688/wellcomeopenres.16171.2

v2

 
Abstract 
Background: UK Biobank is a large prospective study that recruited 
500,000 participants aged 40 to 69 years, between 2006-2010.The 
study has collected (and continues to collect) extensive phenotypic 
and genomic data about its participants. In order to enhance further 
the value of the UK Biobank resource, a wide range of biochemistry 
markers were measured in all participants with an available biological 
sample. Here, we describe the approaches UK Biobank has taken to 
minimise error related to sample collection, processing, retrieval and 
assay measurement. 
Methods: During routine quality control checks, the laboratory team 
observed that some assay results were lower than expected for 
samples acquired during certain time periods. Analyses were 
undertaken to identify and correct for the unexpected dilution 
identified during sample processing, and for expected error caused by 
laboratory drift of assay results. 
Results: The vast majority (92%) of biochemistry serum assay results 
were assessed to be not materially affected by dilution, with an 
estimated difference in concentration of less than 1% (i.e. either lower 
or higher) than that expected if the sample were unaffected; 8.3% 
were estimated to be diluted by up to 10%; very few samples 
appeared to be diluted more than this. Biomarkers measured in urine 
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(creatinine, microalbumin, sodium, potassium) and red blood cells 
(HbA1c) were not affected. In order to correct for laboratory variation 
over the assay period, all assay results were adjusted for date of 
assay, with the exception of those that had a high biological 
coefficient of variation or evident seasonal variability: vitamin D, 
lipoprotein (a), gamma glutamyltransferase, C-reactive protein and 
rheumatoid factor. 
Conclusions: Rigorous approaches related to sample collection, 
processing, retrieval, assay measurement and data analysis have been 
taken to mitigate the impact of both systematic and random variation 
in epidemiological analyses that use the biochemistry assay data in UK 
Biobank.
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Introduction
UK Biobank is a population-based prospective study designed 
to allow the reliable assessment of a wide range of different 
types of exposure (including lifestyle, environment and genes) 
to multiple diseases, including those that cause much morbid-
ity and disability but have not previously been extensively  
investigated1. Recruitment into UK Biobank started in 2007  
(following a successful pilot in 2006), and enrolment of 500,000 
men and women aged 40 to 69 was achieved by mid-2010. 
UK Biobank’s scientific protocol and procedures have been 
approved by the North West NHS research ethics commit-
tee. The resource is also an approved Research Tissue Bank and 
is registered with the Human Tissue Authority, which means 
that researchers who wish to use it do not need to seek separate  
ethics approval (unless re-contact with participants is required).

The assessment visit included the collection of a vast amount 
of self-reported data via a touchscreen questionnaire and nurse 
interview, a wide range of physical measures (e.g. blood pres-
sure, anthropometry, spirometry) and biological samples (blood, 
urine and saliva). Such data depth and breadth was made possi-
ble by implementing purposefully-designed, high-throughput 
processes. This included carefully piloted sample collection and 
processing protocols designed to collect and store participant  
samples for maximum scientific return over the long-term, 
and automation of sample aliquoting and storage to provide a  
consistent and fully auditable process.

Since recruitment ended in 2010, extensive data continue to be 
collected from participants. Subsets of the cohort are invited 
to have a repeat assessment every few years (the first of which 
was performed during 2012–13 on 20,000 participants and the  
second is ongoing during 2016–22 on 100,000 participants who 
are being imaged) to allow for correction of regression dilution 
bias caused by measurement error or intra-individual changes 
in exposures and biomarkers2. A series of web-based question-
naires are routinely sent to all participants with an email address  
(n=330,000) to obtain further information about particular expo-
sures (e.g. diet and food choices, occupation) and health-related 
conditions (e.g. cognition, mental health, pain). Other sub-studies 
designed to capture objective physical measures include physi-
cal activity monitoring (n=100,0003), ongoing assessments of 
multi-modal imaging (target of 100,0004); and cardiac monitor-
ing (target of >30,000). Extensive assessment of exposures is 
combined with comprehensive follow-up and characterisation 
of many different health outcomes, achieved through linkage 

with electronic health records (including death and cancer 
registries, primary and secondary care data), as described  
in detail elsewhere5.

One major way in which UK Biobank continues to enhance 
the utility of the resource is by converting the information  
contained in the biological samples, which are limited and  
depletable, into data that can be readily used by research-
ers worldwide from both academia and industry6. Examples of  
cohort-wide assays that have been performed, or are ongoing, 
include genome-wide genotyping with subsequent imputa-
tion to over 90 million variants7, exome8 and whole genome 
sequencing, telomere length, and NMR-metabolomics. The 
aim is to make UK Biobank not only one of the largest prospec-
tive studies in the world but also one of the most detailed, with  
data on lifestyle, genetics, biomarkers and imaging.

In order to enhance the value of the UK Biobank resource, 
we sought to measure a wide range of biochemical mark-
ers in samples collected at baseline from all 500,000 partici-
pants and among the 20,000 participants who attended a repeat 
assessment visit 4–5 years later (2012–2013). The assays were 
selected by the UK Biobank Enhancements Working Group,  
with additional input from external experts as required. In total, 
34 biomarkers were chosen based on their scientific relevance 
for studying a wide range of diseases, and included established 
risk factors for disease (e.g., lipids for vascular disease, sex  
hormones for cancer), diagnostic measures (e.g., HbA1c for 
diabetes and rheumatoid factor for arthritis) or markers of phe-
notypes that were not otherwise well assessed (e.g., renal and  
liver function). Measurement of all 34 assays was phased; the 
urine samples were assayed between Aug 2014 and Feb 2016, 
red blood cells (HbA1c) between Oct 2014 and March 2016, 
and the serum samples between Nov 2015 and Oct 2017. Inves-
tigation of the pre-analytical and analytical sources of error  
was examined and the data released in May 2019.

This article aims to describe the epidemiological considera-
tions involved in collecting, storing, selecting, assaying and  
analysing a range of biochemistry markers of interest for 
research into common conditions at scale, the issues identified  
during this process, and to make recommendations on how best  
to utilise these data for research purposes.

Methods
Approaches used to reduce variation during sample 
collection and processing
During recruitment of 500,000 participants into UK Biobank, 
2006–2010, a series of biological samples comprising blood 
(about 45 ml), urine (about 9 ml) and, for the last 85,000 partici-
pants, saliva were collected by a phlebotomist or a nurse. Blood 
and urine samples were not available for 0.3% and 1.8% of  
participants, respectively, because either they declined or it was  
not possible to collect for other reasons.

The samples were collected at various times throughout the day, 
depending on the time that participants attended the assessment  

          Amendments from Version 1
An additional table has been added (Table 2) to describe the 
instruments and assays used to measure the biochemistry 
markers, as requested by the reviewer. Minor clarifications to the 
sample procedure have also been included. 

Any further responses from the reviewers can be found at 
the end of the article
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centre. They were collected in different vessels so that a  
variety of preservatives, anti-coagulants and clot accelera-
tors could be used to allow the widest possible range of assays 
that could plausibly be envisaged for the future, with detailed 
input from UK Biobank’s extensive academic collaborative  
network. The collection vessels (vacutainers and collection pots) 
were then processed on a variety of automation systems to create, 
for some sample types, multiple aliquots for long-term storage.  
Sample aliquots (comprising 850 µl sample within 1.4ml tubes) 
from each participant are stored in a fully automated -80°C work-
ing archive and in a manual, liquid nitrogen back-up archive 
located at a separate site (Table 1). Any additional samples 
(such as aliquots of extracted DNA) are stored in manual freez-
ers. This multi-storage approach provides protection from loss 
due to breakdown at a single site, minimises degradation caused 
by freeze-thawing, and enables measurement of analytes that 
are particularly sensitive to temperature over the long-term.  
Extracted DNA samples are stored in manual freezers.

The sample handling procedures9 were the result of extensive  
consultation and piloting to ensure that they were likely to be 
fit for purpose and feasible at scale10. For example, the pilot 
studies showed that, while compliance with providing a fast-
ing sample was high, there was little difference in the time since 
last food recorded at the assessment centre. Moreover, a small 
number of participants who were advised not to fast (e.g., those  
with diabetes) did so for potentially serious periods. As a result, 
providing a fasting sample was not a requirement of the main 
phase of recruitment. The pilot studies also showed that a very 
wide range of assays could be performed in whole blood and 
urine samples maintained at 4°C for up to 36 hours prior to 

processing and storage9,11. As such, the samples were minimally 
processed at the assessment centres, with most of the processing  
conducted at the central laboratory using more efficient auto-
mated systems. The use of a standardised sample handling  
protocol ensured that all samples were treated in the same man-
ner and thus will be similarly affected by any pre-analytical 
sample processing effects, should they exist. The processing per-
formed immediately at the assessment centre involved inverting 
the plasma and serum tubes to mix the preservative/anti-coagulant  
with the blood (in a consistent fashion for all tubes) and 
then allowing the serum tube to clot at room temperature for  
30 minutes. The lithium heparin and silica clot accelerator tubes  
contained a gel plug that formed a barrier to cellular material 
but allowed the plasma/serum to pass through during centrifuga-
tion (at 4°C), thereby producing sample separation. All tubes 
were refrigerated (with the exception of the acid citrate dextrose 
tube, which was held at room temperature) until the end of the 
day when they were wrapped with cool packs and temperature  
logging devices and transported to UK Biobank’s central  
processing and archiving facility in Stockport.

Because of the high throughput at the central laboratory (about 
6,000 sample vacutainers were separated into about 25,000  
aliquots every day), samples were predominantly processed 
using custom-designed industrial-scale automation systems that 
generated about 15 million 1.4 ml aliquots for the full cohort 
(with only a small proportion manually aliquoted). The exten-
sive use of automation ensured that all samples were processed  
quickly (an average of 24 ± standard deviation of 2.5 hours 
between venepuncture and sample storage), with about the same 
delay after collection. This was achieved by ensuring that the 
samples were processed at the central facility in the same chron-
ological order in which they were collected. The use of automa-
tion also allowed for a carefully controlled data trail linking 
each aliquot correctly to the participant from whom they were 
derived and facilitating rapid retrieval of specific samples (at a 
maximum rate of about 1,500 aliquots per day) accurately and at  
low cost10.

Approaches used to reduce variation at the design 
stage of the project
Performing cohort-wide assays (i.e. in all of the participants 
at the same time) facilitates good quality control by reducing 
measurement error and laboratory drift that might occur with 
the use of different assay methods, reagents and equipment in 
different laboratories at different times. For example, some of 
the best available evidence on associations of biomarkers for 
cardiovascular disease12,13 and cancer14,15 comes from pooled 
analyses of individual person data from multiple studies (since  
none was large enough on its own to be reliable). However, 
because the measurements from the individual studies were 
performed in different laboratories with different assays at  
different times, it is difficult to determine whether variations 
between the study-specific results reflect assay variation or 
real differences between study populations16. Availability of a 
standardized panel of biomarker measures in the UK Biobank 
population eliminates these sources of variability and allows 
direct comparisons of biomarker levels to be made across  
the whole cohort. In addition, performing cohort-wide assays is 

Table 1. Sample collection and maximum number of 
aliquots created for each sample type.

Sample collection tube Fractions Number of 
aliquots (1.4 ml)

-80°C -196°C

EDTA x2 Plasma 6 2

Buffy coat 1 1

Red cells - 2

Lithium heparin (PST) Plasma 3 1

Silica clot accelerator (SST) Serum 3 1

Acid citrate dextrose DMSO blood - 2

EDTA Haematology - -

Urine Urine 4 2

Tempus tube (RNA) Whole blood 6 -

Saliva Mixed saliva 2 -

Total 25 11 
EDTA: Ethylenediaminetetraacetic acid; PST, plasma separator tube; SST, 
serum separator tube.
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a much more cost-effective strategy of increasing the usability of 
the resource at an early stage when compared with the costs of 
multiple retrievals and assays of samples in nested case-control  
comparisons based on different subsets of the participants.

Approaches used to reduce variation during sample 
retrieval
In order to avoid biases in epidemiological comparisons – that 
is, to ensure that assay drift, reagent batch effects and other sys-
tematic measurement errors do not systematically differ between 
samples in subsequent case-control comparisons – samples  
should be assayed in as random a manner as possible (i.e. not 
grouped according to an underlying phenotype, date or time of 
blood collection, geography, etc.). However, extracting samples 
in a randomised sequence would have required the robotics sys-
tem to access individual freezer racks multiple times, thereby 
substantially extended the costs and duration of the project. We 
therefore developed algorithms designed to select aliquots in a 
quasi-random sequence that avoided clustering of samples by 
geography and collection dates or time of day but was still effi-
cient to implement. (For further details, please see UK Biobank 
Biomarker Project: Companion Document to Accompany Serum  
Biomarker Data).

Simulations of the performance of this picking strategy demon-
strated its effectiveness and efficiency for the different sample 
types and ensured that participant samples were analysed in an 
effectively random manner throughout the assay period. This 
also enabled us to assess the variation caused by laboratory/assay 
drift, as the mean true biomarker concentration across batches  
and analysers should be broadly the same. In order to avoid 
unnecessary freeze-thaws, only tubes required for the biochem-
istry assays were extracted from the freezer, with the remain-
ing aliquots on each plate returned still frozen to the working  
archive.

Approaches used to reduce variation during assay 
measurement
Monitoring quality control is vitally important when meas-
uring a biomarker at scale due to the number of reagent/lot 
changes involved, analytical machines required and duration 
of the assay period. We employed a series of robust and detailed 
quality procedures designed to minimise drift, bias and meas-
urement uncertainty, such that each biochemistry assay result 
could be directly compared with another throughout the  
assay period (Nov 2015 to Oct 2017). In addition, in order to 
directly compare values between the baseline and repeat assess-
ment sample, the repeat samples were assayed at the same time 
as the baseline samples and were allocated at random to assay  
batches.

Various immunoassay and clinical chemistry analysers were 
used to measure the biochemistry markers (Table 2). During the 
project, the UK Biobank laboratory was successfully accredited 
against the internationally recognised standard for testing and 
calibration (ISO 17025:2005) in December 2015 for the urine  
and red blood cell assays, and in October 2016 for the serum 
assays. Each individual assay achieved a level of performance 

that was in agreement with the manufacturer’s claims and/or 
published total allowable error limits based on known biological  
variation.

Each assay was registered with an external quality assurance 
(EQA) scheme and assay performance was externally veri-
fied via the results returned from participation in these schemes. 
We also followed a rigorous internal quality control (QC)  
protocol to assess precision (using different concentrations of 
QC samples over multiple batches and analysers) and accuracy 
and bias (using EQA or other commercially validated material). 
This involved including QC samples at the start and end of each  
batch such that the closing QC bracket of one batch formed 
the opening QC measurement of the next. We verified that the 
assays were linear over the observed reportable range (using 
commercial linearity standards and low concentration samples) 
and that there were no carryover effects (using low and high  
concentration samples analysed consecutively in a standardised 
sequence). We also performed multi-instrument comparisons by 
measuring the same sample on multiple machines of the same 
type and assessed potential assay interferences on each sample 
that could cause falsely high or low results, as detailed here:  
UK Biobank Biomarker Project: Companion Document to  
Accompany Serum Biomarker Data.

Post-hoc analytical approaches used to reduce 
variation caused by unexpected dilution during sample 
processing at time of initial collection
During routine quality control checks, the laboratory team 
observed that some assay results were lower than expected for 
samples acquired during certain time periods. The problem was 
observed to increase with aliquot number and so after detection 
the laboratory prioritised use of aliquot 1. It appeared that, dur-
ing the initial sample processing at the time of sample collec-
tion (for both the baseline and repeat assessment), some aliquots 
of participant serum (and plasma) samples were inadvertently 
diluted by the automation system during their creation from the 
serum vacutainer. This dilution was caused by the failure of seals  
to hold a system vacuum in the automated liquid handling sys-
tems so that the participant sample was mixed with system fluid 
(water). This issue does not affect manually aliquoted aliquots 
or the HbA1c results obtained from the aliquots of red blood 
cells (glycated haemoglobin) nor the urine measures (creatinine,  
microalbumin, sodium, potassium).

Consequently, at the end of the assay period, a statistical  
investigation was conducted to generate an initial estimation of 
the apparent dilution of serum assays in a given sample (using 
a ‘one model fits all assumption’) and to consider whether any 
results should be corrected or excluded. There were three main 
stages to the process of estimating and partial correction for  
the unplanned dilutions:

(i)    detection of time periods with differing dilutions;

(ii)    estimation of the apparent dilutions of each assay result;

(iii)    evaluation of the extent of the problem and application of 
a correction and exclusions.
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Table 2. Assay instrumentation, methodology and manufacturer for each biomarker.

Serum Assay  Sample 
type 

Analysis Methodology  Analytical 
Platform 

Assay Manufacturer 

Alkaline Phosphatase 

serum

Enzymatic Rate

AU5800 Beckman Coulter (UK), 
Ltd

Albumin Colourimetric

Alanine Aminotransferase Enzymatic Rate

Apolipoprotein A1 Immuno-turbidimetric

Apolipoprotein B Immuno-turbidimetric

Aspartate Aminotransferase Enzymatic Rate

High Sensitivity C-Reactive Protein Immuno-turbidimetric

Calcium Colourimetric

Cholesterol Enzymatic

Creatinine Enzymatic

Direct Bilirubin Colourimetric

Gamma-Glutamyltransferase Enzymatic Rate

Glucose Enzymatic

High Density Lipoprotein Enzyme Immuno-inhibition

Low Density Lipoprotein Enzymatic Selective Protection

Phosphate Colourimetric

Rheumatoid Factor Immuno-turbidimetric

Total Bilirubin Colourimetric

Total Protein Colourimetric

Triglyceride Enzymatic

Urate Enzymatic

Urea Enzymatic

Lipoprotein (a) Immuno-turbidimetric AU5400 Randox Bioscience, UK

Cystatin-C Immuno-turbidimetric Siemens Advia 1800 Siemens plc

Insulin-like Growth Factor-1 Chemiluminescent Immunoassay 
– one step sandwich

DiaSorin Liaison XL Diasorin Ltd.

Vitamin D Chemiluminescent Immunoassay- 
direct competitive

Oestradiol Chemiluminescent Immunoassay- 
competitive binding

Beckman Coulter 
DXI 800

Beckman Coulter (UK), 
Ltd

Testosterone Chemiluminescent Immunoassay- 
competitive binding

Sex Hormone-Binding Globulin Chemiluminescent Immunoassay 
– 2 step sandwich

Glycated haemoglobin Red blood 
cells

High Performance Liquid 
Chromatography 

Bio-Rad Variant II 
Turbo

Bio-Rad Laboratories, 
Inc.

Microalbumin 

Urine

Immuno-turbidimetric

AU5400

Randox Bioscience, UK

Enzymatic creatinine Enzymatic Beckman Coulter (UK), 
Ltd

Potassium ISE Ion Selective Electrode

Sodium 
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Assays are positive-valued and typically have distributions 
between normal and log-normal. The dilution and calibration 
effects would be anticipated to have approximately proportional 
effects across different true values. Therefore, log transformed  
assay values have been considered in all the correction processes.

Stage 1: Detection of time periods with differing dilutions. 
During recruitment, most serum samples were processed 
using 6 liquid handling machines, each with 8 tips, giving 48 
machine-tip combinations. The blood samples collected at the 
repeat assessment visit were processed using 5 liquid-handling 
machines. A single tip was used to dispense up to 4 aliquots 
from a participant sample. A small proportion of samples from  
each assessment were manually aliquoted. Results were reported 
as coming from aliquot 1–4, a manually generated aliquot, or 
this information was missing. Only aliquots 1–3 have been 
included in the dilution estimation process as there were not 
enough sample results from aliquot 4s for accurate assessment of  
the dilution problems.

The machine-tips may have operated with undetected faulty 
seals for several days. Further, upon detecting a faulty seal, the 
seal may not have been immediately replaced, in part due to a 
lack of replacement parts. Consequently, it should be possible 
to identify periods with unexpected dilutions on particular 
machine-tips by looking at assay results in the order in which 
they were collected. The precise time of aliquot generation is not  
available, but in general the aliquots were generated within  
24 hours of participant sample collection. Therefore, the date of 
the participant attending the assessment centre is a reasonable  
proxy for this information, with a 1 day resolution.

Variable dilutions would not only affect the mean assay values 
but would also contribute artefactual correlation between the 
results from different assays on the same sample. The magni-
tude of this artefactual correlation would, in principle, depend 
on the true correlation and the extent to which the two assays 
were affected by dilution. In practice, the apparent dilutions 
observed may also be influenced by ‘matrix’ effects, whereby  
on dilution by a given percentage with water, different assays 
do not perform in an entirely pro rata manner. Such ‘matrix’ 
effects may be particularly likely for assays where the specified 
diluent (for assaying high values) is not water: this includes 
11 of the assays (testosterone, oestradiol, vitamin D, insulin-
like growth factor-1, sex hormone-binding globulin, lipoprotein 
(a), C-reactive protein, rheumatoid factor, apoliporotein A  
apolipoprotein B, cystatin C).

After some exploratory investigations, 7 assays (albumin,  
calcium, creatinine, cystatin C, glucose, phosphate, and total  
protein), selected from among those most strongly affected by 
dilution by various criteria, were used in the analysis to detect 
time periods with different dilutions. A multivariate change point 
analysis was conducted using the selected 7 assays to identify, 
for each machine-tip, time points (of sample collection) at which  
there were jumps in mean assay levels.

Non-reportable assay values below or above the reportability 
limits were included in the change point analysis but not in later  
stages of analysis and are set to missing in the dataset.

Change point analysis
•    Performed in 7 selected assays (those most strongly 

affected by dilution by various criteria) and restricted 
to samples with complete data on aliquot number and  
machine-tip;

•    Means of the log-transformed values for each machine-tip  
by collection day were generated;

•    Each day was treated as a 7-dimensional observation 
from a multivariate time series using the ecp algorithm in  
R 3.5.0 to identify significant change points with the 
minimum time period set at 3 days. This procedure uses  
permutation testing (10,000 repeats) to identify significant  
changes in the distribution and a P-value of 0.01 was used;

•    The algorithm was run independently for each machine-tip 
(48 at recruitment + 40 at repeat visit) x aliquot  
number (3);

•    After running the above analyses, to consolidate the  
change points for each machine-tip, change points occurring  
in any aliquot within 3 days of each other were  consolidated 
as a single change point (with the earliest date allocated); 
in addition, periods were merged with adjacent periods 
where necessary to have a minimum of 30 samples per  
period.

The change point analysis divided the sample collection  
timeframe for each machine-tip into periods with distinct assay  
performance, as shown in Figure 1. This process brought to light 
a few periods with other anomalies requiring removal of the  
samples and re-running the change point analysis.

Issues identified: ‘Dips’ and aliquot misclassifications Some 
time periods showed a few other obvious anomalies likely 
to correspond to severe dilution problems or aliquot number  
misclassification.

Dips Visual assessment of some of the assay results identified 
short periods of time on particular machine-tips when the val-
ues were highly variable, even in aliquot 1. We refer to such  
periods ‘dips’, since the results visually dip very low com-
pared to the overall population. As this could be an indication 
of a severe dilution problem, results from these samples were 
excluded from the final estimation and from both the main and  
extended dataset. 

Possible aliquot number misclassification Visual inspec-
tion of some of the assay results also identified periods on  
particular machine-tips when assay results appeared to have a 
bimodal distribution (with the lower valued component being 
more out of line), suggesting possible aliquot misclassification,  
meaning that one of the populations of results may have come 
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from a different aliquot to that recorded by the lab. We would 
expect the proportion of samples from each aliquot to be simi-
lar across the tips within a machine, but checking this identified  
4 periods with different proportions of results from each aliq-
uot and with a bimodal distribution suggesting they were two 
distinct populations of results. This was indicative of possible  
aliquot misclassification.

Where aliquot misclassification was suspected, the mclust  
algorithm (implemented in the R 3.5.0 package mclust) was 
used to generate estimates for the means and standard deviations 
(SDs) of a 2 component mixture of Normal distributions. This  
procedure maximises the Bayesian Information Criteria (BIC) 
for the mixture, allowing different means and different SDs 
in the 2 mixtures. The split point, x

s
, where there is the same 

probability that a value belongs to each mixture component is  
estimated. We reject results from participants with results below 
x

s
, (i.e., estimated to be from the component with the lower  

mean) suspecting aliquot misclassification.

Outcome of the change point analysis The process iden-
tified change points in nearly all machine-tips. In the 
baseline sample, the process identified a total of 103, 2,  
and 1 change points from the analysis of aliquots, 1, 2 and 3, 
respectively, giving 106 detected change points in total. Of the 
48 machine-tips, 3 had no change points, 6 a single change  
point and 39 had two or more change points.

Stage 2: Estimation of dilution. Details of the inclusion  
criteria applied for the dilution estimation are provided in the 
extended data17. In brief, assay results were excluded if the  
aliquot had failed by the processes described above, or aliquot 
4 was used, or if the analyser provided an unreportable result. 
Assays excluded from dilution estimation included those with a 
high biological coefficient of variation (lipoprotein (a), gamma  
glutamyltransferase, C-reactive protein, rheumatoid factor) 
plus vitamin D, where seasonal variation masked any dilution 
effects related to time of sample acquisition, leaving 24 assays  
included.

Estimates of dilution were only performed in the serum  
samples. The single assay performed in red blood cells 
(HbA1c) was not considered in the estimation of dilution as 
any effect of dilution is unlikely to affect the results, given 
that HbA1c is presented as a concentration ratio. Additionally,  
only 1 aliquot was dispensed (from 2 EDTA sample tubes), and 
hence it is not possible to assess the effect of dilution across  
different aliquots. As such, the HbA1c assay results do not have 
a corresponding aliquot number associated with them. There 
also appears to be no dilution issue for the 4 assays performed  
in urine.

Modelling dilution For each assay result the dilution factor was 
defined as the multiplicative factor applied to the theoretical 
true result (i.e. from perfect aliquoting) which would give the 
observed result, i.e. a dilution factor of 85% means observed
=0.85×theoretical true (so 1/0.85≈1.17 means that the system  
fluid represented a 17% additional volume).

The basic principle of the correction is that, for an observed  
assay result Y

diluted

Y
diluted

 = dilution_factor × Y
true

 + error

After taking logarithms of the assay results, the multiplicative 
factor becomes an additive factor relative to manual aliquots,  
and the model becomes

log(Y
diluted

) = log(Y
true

) + log(dilution_factor) + E, E~N(0,SD2)

We anticipate that the dilution factor depends on aliquot×machine_
tip_period, but in addition, the apparent dilutions observed for 
different assays will vary somewhat around the actual sam-
ple dilution due to substrate ‘matrix’ effects, whereby different 
assays do not yield completely pro rata effects for a given dilu-
tion with water. Therefore, the model fitted also includes  
a term for assay×aliquot. As this method is only applicable to 
variables with equal variance, the terms are divided by the SD 
of the log assay. Testosterone and oestradiol were included as  

Figure 1. Example of change-points identified across the aliquots for a specific machine-tip during one of the worst affected 
periods.
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separate assays for each sex, taking the number of ‘assay’  
categories in the model from 24 to 26. Hence the model fitted was

LYS
ij
 = assay

j
 + assay

j
×aliquot

i
 + aliquot

i
×machine_tip_period

i

where:

•    LYS
ij
 is the log assay result for assay j (j=1,… 26) for  

sample i divided by the standard deviation of the log  
results for that assay

•    assay
j
 is a categorical variable for the assay (j=1,…26) 

yielding result Y
ij

•    aliquot
i
 is a categorical variable for the aliquot number  

(0–3, where 0 denotes manually aliquoted) for sample i

•    machine_tip_period is a categorical variable for the  
machine tip used for sample i

Separate models were fitted to the baseline and repeat visit 
results (as the machine-tip-periods were distinct). The parameter 
estimates were calculated with manual aliquots (~9,000 of the 
baseline samples and ~6,000 of the repeat assessment samples) 
as the reference group, but in a further step were referenced to 
a larger group by the addition of a constant to yield an average  
dilution factor of 1 in the larger group (defined as participants 
with manual aliquots plus samples with calcium results from 
aliquot 1 with an estimated dilution factor of 0.99–1.01: this  
group contained ~350,000 samples at baseline).

Since LYS
ij 

is log transformed, we can interpret the coefficients 
as a scaling applied to the original untransformed variables.  
Therefore, for a given assay result from a given aliquot and 
machine_time_period, if we estimate β as the assay

j
×aliquot 

effect and δ as the aliquot×machine_time_period effect, then  
exp(β)×exp(δ) = exp(β+δ) is the estimated apparent dilution  
factor.

The estimated sample dilution factor was calculated as the 
exponential of a weighted average with weights 1/SD

j
2 of the 

model terms relevant to the dilution in each assay over 17  
assays, excluding assays with a significant proportion of 
results below the lower reportable limit and assays where the  
normal diluent was not water) i.e., for sample i

exp(∑ 
j=1, 17

 (assay
j
×aliquot

i 
and aliquot

i
×machine_tip_period

i
) /SD

j
2 

x ∑ 
j=1,17

 SD
j
2)

We refer to (1-estimated sample dilution factor) x 100 as the  
estimated percentage reduction in sample concentration.

The model parameters were estimated using PROC GLM in  
SAS 9.4. 10-fold cross-validation was used to avoid overfitting 
(i.e. the samples were randomly assigned into 10 groups; for each 
10th, the other 90% of the data was used to generate parameter  
estimates for that 10th of the data).

Stage 3: Evaluation and decisions on correction and exclu-
sion from the UK Biobank Data Showcase. After exclud-
ing assays with a significant proportion of results below their 

lower limit, the extent of the dilution problem was char-
acterised for the remaining assays included in the dilution  
estimation by comparing the correlations between assays in 
manually aliquoted samples with those in samples from a given 
aliquot number or a given estimated sample dilution range. 
These differences in correlations were reviewed using heat-
map visualisations (data not shown). Four assays with the lowest  
biological CVs (calcium, total protein, phosphate and albu-
min) showed distorted correlations with each other and to a 
lesser extent with some other assays. In addition, a further 4 
assays (glucose, high-density lipoprotein, apolipoprotein (a), sex  
hormone-binding globulin) also showed substantially distorted  
correlations with several assays. The distortions tended to increase 
with aliquot number and with estimated reduction in sample 
concentration and with estimated reduction in sample concen-
tration within a given aliquot number, where this was assess-
able. Therefore, the estimated sample reduction in concentration 
appeared to add some information on dilution over and above 
aliquot number, at least in these ranges, and so the full model was  
adopted as the method of estimating the sample dilution.

However, applying the modelled predictors of the apparent 
assay result dilution factors (involving about 500 terms) to 
assay results to correct for dilution, made only a small improve-
ment to the correlation distortions This failure may be partly 
because only 3 of the change points identified were in aliquots  
2 and 3, which was probably primarily due to low frequency of 
use of these aliquots. However, it could also be an indication that 
the dilutions were varying over a shorter timeframe than could 
be captured by the present model and data. The majority of the  
change points were derived in aliquot 1, where the dilutions 
were small and any improvement from correction would be 
largely negligible and difficult to evaluate. It is also possible 
that differences between assays may not have been adequately 
catered for in this first pass model. Given the limited improve-
ment achieved, the model was rejected as a satisfactory  
correction for assay results. Instead a further model involving just  
terms for assay x aliquot number was fitted to correct for differ-
ences in apparent dilutions by aliquot number (involving 3 terms 
per assay). The aliquot-number-corrected result was obtained 
by dividing the observed result by the estimated apparent  
dilution factor from this model based on aliquot number.

After this correction, substantial artefactual correlations between 
some pairs of assays remained at higher dilutions. Therefore, 
in addition to the exclusion criteria described for Stage 2 (and 
described in more detail in the extended data17), results from 
all assays were excluded from the main dataset for samples 
with estimated reductions in sample concentration outside -10 
to 10%, and from the 8 assays mentioned above (that showed 
the worst distortions in the correlations between assays) for  
samples with estimated reductions in sample concentration  
outside -1 to 1%. 

Post-hoc analytical approaches used to reduce variation 
caused by laboratory drift
For each assay, plots of the daily mean results by date-of-assay 
were performed to investigate drifts of assay values over time. 
Based on this, the results from all serum assays except for  
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vitamin D, lipoprotein (a), gamma glutamyltransferase, C-reactive  
protein and rheumatoid factor were corrected for date of 
assay effects. The date of assay correction process was also 
applied to HbA1c results, which were from a different type of  
sample (red blood cells) not investigated for dilution, but 
which were affected by day-to-day lab variability. The date 
of assay effects were assumed to be independent of the aliq-
uot dilution problem and the correction was applied after  
correction for aliquot dilutions.

Least square means (LSMEANs) were generated from a linear 
model of log assay values (using aliquot-dilution corrected 
assay results, where available) on date-of-assay as a categori-
cal variable, with adjustment for the interaction of sex with 
age at survey (as a categorical variable for single year [recruit-
ment ages <40 or >70 were combined into groups for age 40 or  
70, respectively]). Age and sex were included as a precaution to 
allay concerns that differences in the participant characteristics 
of the samples assayed each day might be contributing impor-
tantly to the date-of-assay effects (but the age and sex terms 
appeared to account for little of the day-to-day variation.) The 
date-of-assay effect was calculated as the difference of the date-
of-assay LSMEAN from the overall mean. Values were corrected 
by subtracting the corresponding date-of-assay effect (resulting 
in correction for date of assay but not adjustment for age  
and sex).

Baseline and repeat assessment samples were included 
together in the models for each assay, as these samples were 
mixed together across assay batches throughout the assay 
period. Days with <30 observations were grouped with the  
neighbouring day (forwards or backwards). This was done 
recursively until all day groups had at least 30 observations. 
For each assay, the change in within-participant correlation 
(between recruitment and repeat assessment) with adjustment for  
date-of-assay was plotted against the assay biological CV to 
determine whether adjustment for date-of-assay improved the  
self-correlation.

Results
Managing values below the lower reportable range
All of the participant and quality control data generated were 
reviewed during the project to identify and address any issues 

in real time, and to allow retrospective adjustments to be made 
(where required). We excluded results where no data or error 
values were returned from the analyser, there was an aliquot 
problem, or the values were outside the reportable range of the 
assay at the time of measurement (and hence considered not to 
be sufficiently accurate or precise). Overall, this affected 9% 
of assay results, although some assays were more affected than  
others. For example, 80% of oestradiol values were below the 
lower reportable range (and hence excluded), which is to be 
expected given the age and sex range of the participants (as  
relatively few women were premenopausal at recruitment, and  
approximately half were men) and the low analytical sensitiv-
ity of the assay. The majority (91%) of values for rheumatoid 
factor were also below the reportable range since only indi-
viduals with (or at high risk for) rheumatoid arthritis have  
demonstrably measurable values (Table 3). Hence, research-
ers may wish to consider these values as ‘naturally low’ rather 
than ‘missing’ in order to maximise the scientific utility of these  
data.

Correction for unexpected dilution during sample 
processing at time of initial collection
The model incorporating aliquot-number specific shifts in 
dilutions over time of aliquoting provided an indication of 
the extent to which each sample was affected by dilution  
(Table 4).

The dilution is partially systematic in that the magnitude of 
the dilution increases with increasing aliquot number (i.e.  
aliquot 1 is less affected than aliquot 2, etc.). Because a concern 
was raised soon after the assays started, the laboratory quickly 
prioritised use of aliquot 1 in order to reduce the impact of  
the dilution on the results.

Overall, 98.5% of assay results from aliquot 1 (which accounts 
for 90% of participant serum samples) have an estimated  
concentration that is less than 1% different to that of the theo-
retical true result (i.e. derived from perfect aliquoting), and 1.5% 
have an estimated concentration up to 3% different. For aliquot 
2, most sample reductions in concentration are in the range  
1–3%. Aliquot 3 is more affected by dilution, although this 
only accounts for a small proportion (2%) of samples that 
have been assayed. Here, almost all of the samples are diluted 

Table 3. Numbers of results below the reportable range for assays with >0.1% of results 
below the reportable range in baseline samples1.

Aliquot

Number of original baseline results below reportable range

Lipoprotein A Oestradiol 
(females)

Rheumatoid 
Factor

Testosterone 
(males) Vitamin D

Manual 907 (10.5%) 3378 (75.5%) 8247 (90.7%) 7 (0.2%) 76 (0.9%)

Aliquot 1 41822 (10.3%) 157625 (75.2%) 381003 (90.6%) 184 (0.1%) 2302 (0.6%)

Aliquot 2 2921 (10.2%) 12017 (74.5%) 26751 (91.2%) 11 (0.1%) 156 (0.6%)

Aliquot 3 1079 (11.1%) 5311 (74.5%) 9798 (91.5%) 7 (0.2%) 53 (0.5%)
1 No assays had >0.1% of results above their reportable range.

Page 10 of 26

Wellcome Open Research 2021, 5:222 Last updated: 04 JAN 2021



Table 4. Distribution of estimated percentage reductions in sample concentration by aliquot 
number1.

Aliquot 
Number

Number of 
samples

Estimated percentage reduction in serum sample concentration

≤-2%2
>-2% to 
≤-1%2

>-1% to 
<-1%

≥1% to 
<3%

≥3% to 
<5%

≥5% to 
<10% ≥10%3  Mean

Manual 9,086 - - 100% - - - - -

1 418,170 0.00% 0.21% 98.54% 1.25% - - - 0.1%

2 29,050 - 0.01% 20.55% 77.88% 1.56% - - 1.4%

3 10,230 0.01% - - 0.02% 1.94% 97.97% 0.07% 6.4%

Total 466,536 0.00% 0.19% 91.55% 5.97% 0.14% 2.15% 0.00% 0.3%
1 Assays excluded from the dilution estimation included those with a high biological coefficient of variation (CV) 
(lipoprotein (a), gamma glutamyltransferase, C-reactive protein, rheumatoid factor) plus vitamin D, where seasonal 
variation masked any dilution effects related to time of sample acquisition, leaving 24 assays included. Also excluded 
from this table were participant samples where the aliquot number used varied between assays (see the Extended Data 
for further details).
2 A small number of samples had estimated concentrations higher than the theoretical true result (i.e. derived from 
perfect aliquoting).
3 Results for serum assays with estimated percentage reduction in sample concentration ≥10% were set to missing.

in the range of 5–10%, with only 7 samples (0.07%) having a  
greater estimated reduction in concentration (Table 4). All 
results from aliquot 4 were excluded as there were not enough 
results for accurate assessment of the dilution problem in  
them. 

Assays with a naturally wide biological range are typically far 
less materially affected from an epidemiological perspective 
by a given dilution, as small dilution errors are small compared 
with the biological variation across the population. Conversely, 
assays with a narrow biological range (e.g., albumin, calcium, 
phosphate, total protein) are more materially affected. For  
this reason, we excluded results with estimated differences 
in sample concentration greater than 1% for these particular  
analytes, as well as for 4 further analytes (apolipoprotein (a), 
glucose, high-density lipoprotein, sex hormone-binding globu-
lin) that appeared importantly affected. For all other assays, we 
excluded results if the estimated sample reduction in concentra-
tion was greater than 10% (which affected 7 samples, all from  
aliquot 3).

Because the extent of dilution is strongly related to aliquot 
number, adjustment of the assay results for aliquot number  
provides a simple ‘first-pass’ approach to dealing with this issue 
(coupled with exclusion of assay results deemed to be materially  
affected by dilution).

In order to improve confidence in the accuracy and precision of 
the aliquot-adjusted result, we have only included the results 
in the main dataset (available in the core dataset of the Data  
Showcase) if the assay value was within the reportable range 
before and after aliquot adjustment. However, an extended dataset  
is available (via the Return of Results catalogue) with all the 

adjusted results, including those that are outside the report-
able range after adjustment (but were reportable originally), 
with a flag indicating if the value was rejected or not in the 
main dataset, as it is possible that those results may nonetheless  
prove useful for epidemiological purposes.

Correcting for expected laboratory drift of assay results
Owing to the random selection of the participant samples and 
sheer volume of results, it was possible to perform statistical 
analysis of the participant data to ensure that the day-to-day  
variation was within acceptable limits, as the overall mean of the 
biomarker levels should not vary across batches over time owing 
to the random plating of samples. Although analytical variation  
was minimised using rigorous internal QC checks, plots of the 
daily mean results by date of assay revealed that some assays 
exhibited large amounts of daily variability. Changes in reagent 
batches could account for some of the variation but other varia-
tion was detectable by the volume of results in comparison to  
the limitations of standard lab QC procedures.

The impact of this variation on epidemiological analyses depends 
on the biological variation of the assay. For assays with high 
inter-individual variability, such day-to-day variation accounts 
for a small proportion of the total variation (e.g., about 0.5% for 
lipoprotein (a) and C-reactive protein); conversely, for biomar-
kers that are more tightly regulated, this laboratory variation  
may be more material (e.g. about 10% for calcium; Figure 2).

In order to correct for laboratory variation over the assay period 
(caused by changes in reagent batches, etc.), all assay results 
were adjusted for date of assay, with the exception of vitamin D,  
lipoprotein (a), gamma glutamyltransferase, C-reactive pro-
tein and rheumatoid factor. These five assays have a high  
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Figure 2. Total variance (right-hand y-axis) and proportion of total variance explained by date of assay (left-hand y-axis) over selected 
periods of time for a) lipoprotein (a) and b) calcium, both in standardised units.

biological coefficient of variation or evident seasonal vari-
ability (as is the case for vitamin D), and correction for date of 
assay did not improve the within-participant correlation between 
the baseline and repeat assessment samples, presented in  
Table 5 (used in this context as an additional marker of data 
quality). In addition, for the four urine assays (sodium, potas-
sium, microalbumin, and creatinine), we did not correct for 
date of assay as day-to-day variation only accounted for a 
minimal proportion (<2%) of the total variation in assay  
values.

Regression dilution bias
Due to the combined effects of measurement error and  
within-person biological variability over time, single baseline 
measurements of biomarkers do not, on average, reflect ‘usual’ 
medium-term levels, leading to a systematic underestimation of 
the strength of the association of biomarkers with other factors 
when baseline levels are used in analyses2,18. To allow correction 
for this ‘regression dilution bias’, we performed the biochemis-
try assays on blood samples taken from 20,000 participants who  
attended a repeat assessment visit approximately 4–5 years 
after their baseline visit. Almost all biochemistry values show 
some regression to the mean, predominantly observed in the 
top and bottom baseline categories, although the magnitude of 

this change varied by biomarker. For example, oestradiol and  
glucose showed the highest regression dilution bias, with the 
range of mean values from the repeat assessment sample being 
substantially narrower than that from the baseline sample, which 
is also reflected in the low self-correlation between the two  
measures (Table 5). This likely reflects true biological within-
person variability owing to oestrogen fluctuations across the 
menstrual cycle and transition through the menopause during 
follow-up, and glucose fluctuations by time since last meal. In 
contrast, HDL-cholesterol and lipoprotein (a) had consistent 
mean values between baseline and repeat measures and a high  
self-correlation (Table 5).

Correction of association analyses for regression dilution bias 
can be performed using standard statistical approaches2,18,19. A 
non-parametric approach that is commonly used estimates the 
regression dilution ratio as the ratio of the differences between 
repeat and baseline measures across equal groups defined by 
the baseline measure (Table 5;18). Examples of alternative  
parametric methods include dividing the beta coefficient (and 
its standard error) of the association by the regression dilution 
ratio, as estimated either by the correlation (r) between base-
line and repeat measures (Table 5;20) or by a linear regression of  
the repeat assessment values on the baseline measures21.
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Table 5. Mean values from the baseline and repeat assessment sample according to fourths of the 
biomarker distribution from the baseline sample, and their self-correlation for all assays1.

Baseline measures in 
fourths

Range of means 
across baseline 

categories

Correlation between 
baseline and repeat 

measure

Alanine aminotransferase 
[ALT] (U/L, n=16,610) 

1 2 3 4 

Baseline sample mean 12.8 17.9 23.4 39.5 26.7 0.46

Repeat sample mean 16.4 20.1 23.9 31.5 15.1

Albumin [ALB] (g/L, 
n=13,434) 

1 2 3 4 

Baseline sample mean 41.9 44.3 45.9 48.3 6.4 0.48

Repeat sample mean 44.0 45.3 46.1 47.2 3.2

Alkaline phosphatase 
[ALP] (U/L, n=16,616) 

1 2 3 4 

Baseline sample mean 57.2 73.2 86.3 112.3 55.2 0.72

Repeat sample mean 64.4 77.7 88.5 107.9 43.5

Apolipoprotein A 
[APOA] (g/L, n=13,290) 

1 2 3 4 

Baseline sample mean 1.2 1.4 1.6 1.9 0.7 0.77

Repeat sample mean 1.3 1.5 1.6 1.9 0.5

Apolipoprotein B 
[APOB] (g/L, n=16,485) 

1 2 3 4 

Baseline sample mean 0.7 0.9 1.1 1.3 0.6 0.66

Repeat sample mean 0.8 1.0 1.1 1.2 0.4

Aspartate aminotransferase 
[AST] (U/L, n=16,495) 

1 2 3 4 

Baseline sample mean 18.7 22.9 26.6 36.4 17.7 0.40

Repeat sample mean 21.8 24.7 27.4 32.5 10.7

C-reactive protein 
[CRP] (mg/L, n=16,551) 

1 2 3 4 

Baseline sample mean 0.4 0.9 1.7 6.3 6.0 0.29

Repeat sample mean 1.0 1.7 2.3 4.4 3.4

Calcium [CA] (mmol/L, 
n=13,431) 

1 2 3 4 

Baseline sample mean 2.3 2.3 2.4 2.5 0.2 0.42

Repeat sample mean 2.4 2.4 2.4 2.5 0.1

Cholesterol 
[CHOL] (mmol/L, n=16,623) 

1 2 3 4 

Baseline sample mean 4.3 5.3 6.0 7.1 2.9 0.66

Repeat sample mean 4.7 5.5 6.0 6.7 2.0

Creatinine [CRE] (umol/L, 
n=16,580) 

1 2 3 4 

Baseline sample mean 55.7 66.7 76.2 91.7 36.0 0.77

Repeat sample mean 59.9 69.7 78.8 91.7 31.8
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Baseline measures in 
fourths

Range of means 
across baseline 

categories

Correlation between 
baseline and repeat 

measure

Cystatin C [CYS] (mg/L, 
n=16,608) 

1 2 3 4 

Baseline sample mean 0.7 0.8 0.9 1.1 0.3 0.81

Repeat sample mean 0.8 0.9 0.9 1.1 0.3

Direct bilirubin 
[BILD] (umol/L, n=12,635) 

1 2 3 4 

Baseline sample mean 1.2 1.5 1.9 3.0 1.8 0.70

Repeat sample mean 1.4 1.6 1.8 2.6 1.2

Gamma glutamyltransferase 
[GGT] (U/L, n=16,604) 

1 2 3 4 

Baseline sample mean 14.9 21.9 31.6 72.6 57.8 0.67

Repeat sample mean 17.1 24.3 34.0 64.9 47.8

Glucose [GLU] (mmol/L, 
n=13,411) 

1 2 3 4 

Baseline sample mean 4.2 4.7 5.1 6.1 1.9 0.42

Repeat sample mean 4.8 4.9 5.0 5.5 0.7

HbA1c (mmol/mol, n=12,863) 1 2 3 4 

Baseline sample mean 30.5 34.0 36.3 42.2 11.7 0.76

Repeat sample mean 32.5 35.0 36.7 42.0 9.4

HDL cholesterol 
[HDLC] (mmol/L, n=13,430) 

1 2 3 4 

Baseline sample mean 1.0 1.3 1.5 2.0 0.9 0.85

Repeat sample mean 1.1 1.4 1.6 2.0 0.8

Insulin-like growth factor-1 
[IGF-1] (nmol/L, n=16,357) 

1 2 3 4 

Baseline sample mean 14.9 19.7 23.1 28.6 13.7 0.77

Repeat sample mean 15.7 19.5 22.2 26.3 10.6

LDL direct 
[LDLD] (mmol/L, n=16,538) 

1 2 3 4 

Baseline sample mean 2.5 3.2 3.8 4.7 2.2 0.65

Repeat sample mean 2.8 3.4 3.8 4.3 1.5

Lipoprotein (a) 
[LPA] (nmol/L, n=12,203) 

1 2 3 4 

Baseline sample mean 6.7 14.4 35.3 112.2 105.4 0.95

Repeat sample mean 8.2 16.6 37.3 116.6 108.4

Oestradiol 
[OES] (women only; pmol/L, 
n=659) 

1 2 3 4 

Baseline sample mean 227.0 345.9 517.8 1116.3 889.3 0.07

Repeat sample mean 518.7 526.7 612.2 666.5 147.8

Phosphate 
[PHOS] (mmol/L, n=13,378) 

1 2 3 4 
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Baseline measures in 
fourths

Range of means 
across baseline 

categories

Correlation between 
baseline and repeat 

measure

Mean in baseline sample 1.0 1.1 1.2 1.4 0.4 0.45

Repeat sample mean 1.1 1.2 1.3 1.3 0.2

Rheumatoid factor 
[RF] (IU/mL, n=1,009) 

1 2 3 4 

Baseline sample mean 11.8 16.6 25.8 53.6 41.9 0.58

Repeat sample mean 17.8 20.0 27.6 45.9 28.1

Sex hormone-binding 
globulin 
[SHBG] (nmol/L, n=13,130) 

1 2 3 4 

Baseline sample mean 25.0 39.0 53.4 87.4 62.4 0.81

Repeat sample mean 30.3 43.6 57.5 83.5 53.2

Testosterone 
[TES] (men only; nmol/L, 
n=8,124) 

1 2 3 4 

Baseline sample mean 7.9 10.8 12.9 16.8 8.9 0.66

Repeat sample mean 9.3 11.3 12.8 15.5 6.2

Total bilirubin 
[TBIL] (umol/L, n=16,452) 

1 2 3 4 

Baseline sample mean 5.5 7.4 9.2 14.9 9.4 0.77

Repeat sample mean 6.4 7.5 8.7 13.2 6.8

Total protein [TP] (g/L, 
n=13,420) 

1 2 3 4 

Baseline sample mean 67.2 70.6 73.0 77.0 9.9 0.50

Repeat sample mean 70.6 72.6 74.0 75.9 5.3

Triglycerides 
[TRIG] (mmol/L, n=16,585) 

1 2 3 4 

Baseline sample mean 0.8 1.2 1.7 3.0 2.2 0.60

Repeat sample mean 1.1 1.4 1.8 2.5 1.4

Urate [UA] (umol/L, 
n=16,560) 

1 2 3 4 

Baseline sample mean 213.4 277.3 329.6 410.9 197.5 0.82

Repeat sample mean 231.9 288.8 336.2 399.6 167.7

Urea (mmol/L, n=16,587) 1 2 3 4 

Baseline sample mean 4.0 5.0 5.7 7.1 3.2 0.59

Repeat sample mean 4.7 5.3 5.8 6.6 1.9

Vitamin D [VITD] (nmol/L, 
n=15,437) 

1 2 3 4 

Baseline sample mean 25.4 41.1 55.2 76.8 51.4 0.56

Repeat sample mean 34.0 42.3 50.4 64.3 30.3
1 Includes biochemistry markers measured in serum and red blood cells (HbA1c).
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Conclusions
The availability of data on a wide range of key biochemistry 
markers for all 500,000 participants, measured in a highly stand-
ardised and systematic manner are a valuable enhancement to 
UK Biobank, as they enable comparisons of biomarker results 
across the entire cohort (e.g., between cases of any given health  
outcome of interest and non-cases). Hence, we envisage that 
these data will enable researchers to investigate the development  
of a wide range of health outcomes using both traditional and  
novel analytical strategies.

Epidemiological considerations for the analysis of the 
biochemistry data
In order to help minimise the impact of measurement error 
in assay data for a very large number of samples, it is impor-
tant to apply robust QC procedures and to identify and mitigate 
variations that arise. During the assay of 34 biochemistry mark-
ers for 500,000 participants in UK Biobank, we identified and  
applied adjustments for a number of sources of variation.

Use of repeated measures
The availability of repeat biochemistry measures in UK Biobank 
allows researchers to account for regression dilution bias, caused 
by measurement error and/or true biological variability in  
values over time. The observation that some of the biochem-
istry markers showed substantial regression to the mean when 
comparing the values taken from a repeat assessment sam-
ple with that from the baseline sample suggests that failure to  
consider such regression dilution bias in analyses will underesti-
mate any associations found between biomarkers and other fac-
tors. In addition to the repeat assessment samples collected in 
20,000 participants approximately 4–5 years after recruitment, 
UK Biobank is also collecting blood samples from 100,000 par-
ticipants who are undertaking an imaging assessment between 
7 and 12 years after recruitment, which will allow further 
examination of random variation and intra-individual changes  
over time, should these biochemistry markers be measured again.

Managing sample aliquoting variation caused by 
unexpected dilution
The adjustments that have been made for the unexpected  
dilution of some aliquots are a first-pass approach and may 
have limitations. Some analytes are affected more than oth-
ers, so researchers should be cognisant of the size of the adjust-
ment applied to biomarkers of interest. Open-access nature to 
the original values and laboratory parameters allows further  
investigation of this issue by other researchers. This will  
provide the opportunity for researchers to scrutinise the  
applicability of the adjustment across the whole range for  
particular analytes and to propose enhanced adjustments and/or 
guidance on which samples to include for specific analyses. For  
example, the analyses did not identify an entirely consistent  
pattern of variation across different analytes. Researchers with 
expertise in particular assays or more advanced modelling 
may be able to improve the adjusted data in the UK Biobank 
resource (including, for example, better characterisation of the  
variation in the excluded results, with a view to potentially  
retrieving some of these results).

92% of these assays were performed in aliquot 1 (because the 
laboratory team preferentially selected it when the issue was 
first identified) or the manually aliquoted samples. Research-
ers could consider performing sensitivity analyses (e.g. compar-
ing the results of analyses before and after restricting to results 
derived from aliquot 1) or stratifying the analyses by aliquot  
number to assess the potential impact of dilution (and its adjust-
ment) on the interpretation of epidemiological results. Par-
ticular consideration is needed for analyses that include results 
from several assays, as the errors associated with any dilu-
tion effect will be the same for all of the analytes assayed in the 
same aliquot and, even if small, may result in artefactual positive  
correlations.

For future assays, such as metabolomics or proteomics, UK 
Biobank will carefully consider which aliquots to use. For exam-
ple, assays that are semi-quantitative in nature, have a naturally 
wide biological range or require dilution prior to measurement, 
are unlikely to be unduly affected by a small amount of variation 
caused by dilution. The choice of aliquot number to use and the 
need for sensitivity analyses may also depend on the nature of  
the research question. For example, in analyses that focus on 
the association of an analyte with other measures (e.g. a genetic 
variant or disease incidence), such variation in the assay val-
ues will be random and the additional power from using data 
from all of the samples is likely to outweigh such random  
variation. Performing future assays in the same aliquot (e.g., 
aliquot 3) for all samples should help to mitigate the system-
atic error associated with increasing amounts of dilution across  
aliquot number (although a downward bias in the mean levels,  
as well as some residual random variation, is likely to persist). 
As such, we would advise researchers conducting future assays 
to include a small number of samples using aliquot 1 or man-
ual aliquots, or to perform their own dilution experiments, 
to examine the extent to which dilution affects the analytes  
of interest.

In summary, UK Biobank has adopted several approaches to 
ensure that the data generated from assays of 34 biochemis-
try markers for all 500,000 participants are suitably comparable 
across the entire cohort. These approaches have included careful 
consideration of our methods used for sample collection, process-
ing, retrieval, assay measurement and data analysis in order to 
mitigate the impact of both systematic and random variation in  
epidemiological analyses.

Ethics
UK Biobank received ethical approval from the National 
Health Service North West Centre for Research Ethics  
Committee (Ref: 11/NW/ 0382) and from the Human Tissue 
Authority. Such approvals mean that researchers wishing to use 
the resource do not need separate ethics approval (unless re-contact  
with participants is required).

Data availability
Underlying data
Access to UK Biobank data is available to registered  
researchers worldwide from across academia and industry, 
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without the need for collaboration, to perform health-related 
research that is in the public interest. The main dataset contain-
ing the pre-corrected and corrected (if appropriate) results within 
the reportable range is located in UK Biobank’s Data Showcase  
in category 100079 (http://biobank.ndph.ox.ac.uk/showcase/
label.cgi?id=100079). The ‘extended’ dataset containing the pre-
corrected and corrected values for all participants (i.e. includ-
ing those that were outside reportable range after correction) is  
located as Return 1602 (http://biobank.ndph.ox.ac.uk/show-
case/dset.cgi?id=1602). Both datasets can be requested as part of  
an application submission (or extension).

Extended data
Access to the extended data (that includes further details of 
the inclusion criteria), plus the underlying SAS code and mac-
ros used for the changepoint analysis and date of assay correc-
tions are available in the Zenodo repository. R can be used as  
an alternative to SAS to estimate the model parameters.

Zenodo: Extended data: Statistical investigation of the UK 
Biobank biochemistry assays quality procedures. http://doi.org/ 
10.5281/zenodo.402277617

This project contains the following extended data:
-    Extended data. Statistical investigation of the UK Biobank 

biochemistry assays quality procedures: includes details  
of the inclusion criteria for the analyses undertaken.

-    adjacent_om.sas: SAS macro for calculating least square 
means (LSMEANS) of a dependent variable by levels 
of a group variable, using a linear model possibly with 
adjustment, and centralising estimated LSMEANS around  
overall mean of the dependent variable.

-    apply_adjustment 201902.sas: main SAS program for  
calculating and applying the date-of-assay adjustment  
factors.

-    apply_correction 201902.sas: main SAS program for  
calculating and applying the aliquot adjustment factors.

-    crosstab.sas: main SAS program for calculating cross- 
tabulations of biomarkers.

-    ecp_changepoints.SP.r: main R program for detecting 
changepoints by aliquot.

-    export_csv.sas: SAS macro for saving a SAS table as a  
CSV file.

-    general_macros.sas: helper SAS macros for loading and  
saving the biomarker data.

-    make_dataset.sas: helper SAS macro for merging together 
datasets

-    make_reshaped.sas: main SAS program that assembles 
the lab data into “long” (i.e. multiple rows per partici-
pant) format ready for the aliquot correction factors to be  
computed in apply_adjustment 201902.sas

-    Znorm.sas: SAS macro for standardising variables by  
subtracting mean and dividing by standard deviation.

Data are available under the terms of the Creative Commons 
Zero “No rights reserved” data waiver (CC0 1.0 Public domain  
dedication).
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With this article the authors present an important contribution to the field of pre-analytical and 
analytical sample quality. Especially the dilution problem is an issue that presumably occurs in 
many studies and biobanks but due to smaller sample sizes and/or less rigorous quality controls 
may stay undetected in many of them. Therefore I would like to thank the authors for this 
important contribution to overall study quality. 
 
The approach of UK Biobank to “convert the information contained in the biological samples, 
which are limited and depletable, into data that can be readily used by researchers worldwide 
from both academia and industry” is as well highly admirable and will hopefully be kept for the 
future. By measuring the whole cohort including repeat visit samples at once a number of quality 
problems like changes in assays, machines or as well differing sample quality due to different 
storage times can be omitted. These are topics where other cohort studies continuously struggle 
with and need to invest considerable resources for. 
 
A few comments/thoughts on the article:

Why did you choose to measure individual biochemistry markers instead of (MS) 
metabolomics and proteomics panels? 
 

○

Regarding fasting state: your statements on the reason of omitting fasting samples (page 4) 
is not entirely clear to me; did sampling take place at the same time of the day for all 
participants and therefore observed time differences to last meal were small in the pilot 
phase? Did you record the time of last meal for all participants in the main phase? 
 

○

The decision to use a central laboratory for sample processing has been described and 
discussed, but other cohorts worldwide use the decentralized approach and there are 
articles pointing to changes in samples during transport and storage prior to processing 
(e.g. references 1-3) – I think it would be good to mention this and cite some of these articles 

○
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here (page 4). 
 
From Fig. 1 it seems that the dilution problem from aliquot 1 to 3 always occurs but is 
stronger in certain time periods (and was detected because of these certain time periods); it 
would be good to state this more clearly in the text (and abstract) as it is an important 
information for all laboratories/biobanks working with pipetting robots. 
 

○

Stage 2 of the analysis: you start the analysis with 24 (26) assays, but then calculate the 
estimated sample dilution factor with 17 assays; would be nice to shortly state here, which 
ones were taken out. 
 

○

On page 10 you state: “Assays with a naturally wide biological range are typically far less 
materially affected from an epidemiological perspective by a given dilution, as small dilution 
errors are small compared with the biological variation across the population”. This is of 
course true from a mathematical point of view, but still sounds confusing to me because 
what is affected by the dilution is the sample and therefore in principle all assays are 
affected the same and systematically measure false values in addition to biological 
variation; So maybe complete samples with a certain dilution threshold should be excluded 
rather than individual assay results? 
 

○

To correct for dilution effects it could help to use intra-sample ratios of assay results rather 
than correct absolute values, at least for assays with similar water-solubility; did you try 
such approaches? 
 

○

Do you have contact to the manufacturers of pipetting robots and/or are you aware of 
measures to cope with the dilution problem? One could think about including daily dilution 
controls by aliquoting colored solutions or something the like as additional routine control.

○
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Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 17 Dec 2020
Naomi Allen, University of Oxford, OXFORD, UK 

1. Why did you choose to measure individual biochemistry markers instead of (MS) 
metabolomics and proteomics panels? 
 
Response: At the time of the biochemistry study conception (2012), the metabolomic and 
proteomic assays were not considered mature enough and instead we focused on providing 
data on key biochemistry markers that would be of high value to a wide range of 
researchers. UK Biobank is currently undertaking proteomic assays on a subset of the 
cohort and is keen to expand this to other –omic assays. 
 
2. Regarding fasting state: your statements on the reason of omitting fasting samples (page 
4) is not entirely clear to me; did sampling take place at the same time of the day for all 
participants and therefore observed time differences to last meal were small in the pilot 
phase? Did you record the time of last meal for all participants in the main phase? 
 
Response: Blood collection occurred throughout the day depending on the time of the 
participant assessment visit, as now outlined in the revised paper. Time since last meal 
(fasting time) was collected for all 500,000 participants. 
 
3. The decision to use a central laboratory for sample processing has been described and 
discussed, but other cohorts worldwide use the decentralized approach and there are 
articles pointing to changes in samples during transport and storage prior to processing 
(e.g. references 1-3) – I think it would be good to mention this and cite some of these articles 
here (page 4). 
 
Response: Having a centralised lab for sample processing is far more cost-effective and 
efficient than having local processing and storage capacity at multiple assessment sites. We 
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performed pilot studies that showed that a very wide range of assays could be performed in 
samples maintained at 4°C for up to 36 hours prior to processing and storage, as detailed in 
the paper. As such, the samples were minimally processed at the assessment centres, with 
most of the processing conducted at the central laboratory using more efficient automated 
systems. As we recognised the importance of limiting the delay as much as possible, all 
samples were transported overnight to the central lab and aliquoted and stored within 24 
hours. Further, our standardised sample handling protocol ensured that all samples were 
treated in the same manner and thus will be similarly affected by any pre-analytical sample 
processing effects, should they exist. We have expanded upon this in the revised paper. 
 
4. From Fig. 1 it seems that the dilution problem from aliquot 1 to 3 always occurs but is 
stronger in certain time periods (and was detected because of these certain time periods); it 
would be good to state this more clearly in the text (and abstract) as it is an important 
information for all laboratories/biobanks working with pipetting robots. 
 
Response: This information is included in the Abstract, the Methods and the Results. 
 
5. Stage 2 of the analysis: you start the analysis with 24 (26) assays, but then calculate the 
estimated sample dilution factor with 17 assays; would be nice to shortly state here, which 
ones were taken out. 
 
Response: Those assays performed in urine (microalbumin, creatinine, postassium, sodium) 
and red blood cells (HbA1c), plus serum assays with a high biological coefficient of variation 
(lipoprotein (a), gamma glutamyltransferase, C-reactive protein, rheumatoid factor) plus 
vitamin D, where seasonal variation masked any dilution effects related to time of sample 
acquisition, were excluded from the dilution estimation -  leaving 24 assays included. These 
details are included in Stage 2 of the Methods. 
 
6. On page 10 you state: “Assays with a naturally wide biological range are typically far less 
materially affected from an epidemiological perspective by a given dilution, as small dilution 
errors are small compared with the biological variation across the population”. This is of 
course true from a mathematical point of view, but still sounds confusing to me because 
what is affected by the dilution is the sample and therefore in principle all assays are 
affected the same and systematically measure false values in addition to biological 
variation; So maybe complete samples with a certain dilution threshold should be excluded 
rather than individual assay results? 
 
Response: While it is the sample that is diluted, the impact of this dilution on any 
subsequent analysis will differ by assay, depending on its natural biological variation. As 
such, we have recommended that researchers exclude results from those assays that are 
likely to be highly affected by such dilution, rather than exclude the sample in its entirety. 
Researchers can, of course, choose to exclude samples above a certain dilution threshold, 
should they wish to do so. 
 
7. To correct for dilution effects it could help to use intra-sample ratios of assay results 
rather than correct absolute values, at least for assays with similar water-solubility; did you 
try such approaches? 
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Response: We did not try any additional approaches beyond those described. Analyses were 
based on log transformed assay values and so did model proportional effects. As noted, this 
was a ‘one-size fits all’ approach as a first pass to draw attention to issues before releasing 
the data and making it available for others to try further approaches 
 
8. Do you have contact to the manufacturers of pipetting robots and/or are you aware of 
measures to cope with the dilution problem? One could think about including daily dilution 
controls by aliquoting colored solutions or something the like as additional routine control. 
 
Response: This is, of course, possible, but we identified the problem some years after the 
aliquoting was performed and so couldn’t introduce this measure ourselves. Future studies 
should consider methods to check for inadvertent dilution due to faulty seals on the 
equipment.  
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The authors undertake an important task to evaluate the effect of important pre-analytical and 
analytical and post-analytical factors on the biochemistry variables measured in UK Biobank. 
Although, the focus is UK Biobank, the importance of this work extends to other biobanks and 
cohorts as well. And given that thousands of studies are approved in UK Biobank and many of 
them rely on biochemistry variables as exposure, outcomes, or co-variates, identifying “hidden” 
factors for values of these variables are really important. 
Most investigators are unconsciously ignorant of these factors being important. Therefore, clinical 
chemistry knowledge, as presented by these authors, is important and pertinent to understand 
systematic and random variation in the biochemistry variables being measured. 
The authors investigated dilution, regression dilution bias, managing values below the detection 
limit, and correcting for laboratory drift in assay results. 
 
What I would like to know more about, which I think is needed to understand the details better in 
this paper, are:

What was the timeline between collection, processing, analyzing, and reporting results (a 
visual would help)? 

1. 
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What time of the day were samples collected? 
 

2. 

How long time did it take to measure these variables if they were measured on biobanked 
samples (from which year to year)? 
 

3. 

Were samples frozen and then biochemistry measured on biobanked samples or was 
biochemistry measured on fresh samples? 
 

4. 

You include HbA1c which was measured on red cells, thus, I believe HbA1c must have been 
measured on fresh samples. 
 

5. 

Whenever you write about a biomarker in text or tables or figures, please denote “u-“, “p-“, 
“s-“ , or “WB-“ (for urine, plasma, serum, whole blood) in front of the biomarker. As far as I 
understand from a previous paper from UK Biobank, glucose was measured on plasma, but 
other blood-biochemistry biomarkers were measured on serum. WB was for red and white 
cells and HbA1c (Jackson, 2008)1. 
 

6. 

Although you refer to the companion paper, I think at least name and generation of 
instruments for the measurements should be included in this paper (in text or as table). 
 

7. 

Finally, a visual for the design of this paper (with aliqouts etc.) would be helpful to get an 
overview of this paper

8. 
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Reviewer Expertise: Clinical Biochemistry, genetics, population studies, hematology, epidemiology.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 17 Dec 2020
Naomi Allen, University of Oxford, OXFORD, UK 

1. What was the timeline between collection, processing, analyzing, and reporting results (a 
visual would help)? 
 
Response: The biological samples were collected at recruitment (2006-2010) for all 500,000 
participants, and at a repeat assessment (2012-2013) for a subset of 20,000 participants. All 
samples were processed (i.e. aliquoted and stored in a -80°C freezer) within 24 hours of 
blood collection. Measurement of all 34 assays was phased; the urine samples were assayed 
between Aug 2014 and Feb 2016, red blood cells (HbA1c) between Oct 2014 and March 
2016, and the serum samples between Nov 2015 and Oct 2017. Investigation of the pre-
analytical and analytical sources of error was then examined and the data released May 
2019. This has been made clearer in the revised article. 
 
2. What time of the day were samples collected? 
 
Response: The samples were collected at various times throughout the day, depending on 
the time that participants attended an assessment centre. This has been added to the 
revised article. 
 
3. How long time did it take to measure these variables if they were measured on 
biobanked samples (from which year to year)? 
 
Response: See response to Q1. 
  
4. Were samples frozen and then biochemistry measured on biobanked samples or was 
biochemistry measured on fresh samples? 
 
Response: See response to Q1. All of the samples were stored at -80 C until required for 
assay (as stated in the Methods). 
  
5. You include HbA1c which was measured on red cells, thus, I believe HbA1c must have 
been measured on fresh samples. 
 
Response: HbA1c was measured from packed red blood cells, stored at -80 C until the date 
of assay. 
  
6. Whenever you write about a biomarker in text or tables or figures, please denote “u-“, “p-
“, “s-“ , or “WB-“ (for urine, plasma, serum, whole blood) in front of the biomarker. As far as I 
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understand from a previous paper from UK Biobank, glucose was measured on plasma, but 
other blood-biochemistry biomarkers were measured on serum. WB was for red and white 
cells and HbA1c (Jackson, 2008). 
 
Response: The haematological markers (e.g., red and white blood cell count) were 
measured in fresh blood samples at the time of sample collection and are not included in 
this report (as the dilution issue occurred during processing and aliquoting of the sample 
prior to long-term storage at -80 C). We’ve now denoted the sample time for each biomarker 
in revised table 2. Plasma samples were not used for any of these biochemistry assays.   
  
7. Although you refer to the companion paper, I think at least name and generation of 
instruments for the measurements should be included in this paper (in text or as table). 
 
Response: We’ve included in the revised report an additional table (Table 2) detailing the 
instruments used to measure each of the biomarkers. 
 
8. Finally, a visual for the design of this paper (with aliqouts etc.) would be helpful to get an 
overview of this paper. 
 
Response: We have provided further detail in the introduction regarding the timelines from 
data collection through to data analysis and release.  
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