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A B S T R A C T   

Background: Cuproptosis may represent a potential biomarker for predicting prognosis and 
immunotherapy response, but the available evidence is insufficient. 
Methods: The multiple single-cell RNA sequencing (scRNA-seq) datasets were analyzed to inves
tigate the specific occurrence of cuproptosis in distinct cell populations. Utilizing 28 scRNA-seq 
datasets, TCGA pan-cancer cohort, and 10 immunotherapy cohorts, we developed a cuproptosis 
signature (Cup.Sig). This signature was used to construct prediction models for immunotherapy 
response and identify potential prognostic biomarkers for pan-cancer using 11 different machine 
learning algorithms. 
Results: Malignant cells demonstrate the higher cuproptosis scores in comparison to other cell 
types across diverse cancer types. The Cup.Sig exhibits significant associations with cancer 
hallmarks and immune cell response in multiple cancer types. Leveraging the Cup.Sig, the robust 
pan-cancer immunotherapy prediction model and prognostic biomarker have been established 
and validated using diverse datasets from various platforms. 
Conclusions: We developed a pan-cancer cuproptosis signature for predicting survival and 
immunotherapy response.   

1. Introduction 

Copper, a trace element present in the human body, plays a pivotal role in diverse signaling pathways and biological processes [1]. 
However, excessive levels of copper can trigger cell death [2]. The independent nature of copper-induced cell death has been subject to 
extensive argued until recent discoveries shed light on its mechanism: copper-mediated cell death is now acknowledged as an inde
pendent form closely associated with mitochondrial respiration and lipoic acid (LA) pathway [3]. The impact of cuproptosis resulting 
from disrupted copper homeostasis in tumor cells on patient prognosis and resistance to treatment remains uncertain. Therefore, in the 
realm of precision oncology, targeting cuproptosis in tumor cells holds great potential as a means for predicting survival outcomes and 
evaluating the effectiveness of immunotherapy. 

Considering the close correlation between cuproptosis and cellular metabolism, as well as the observed elevated levels of aerobic 
respiration in various cancers such as breast cancer, Skin Cutaneous Melanoma (SKCM), and leukemia [4,5], an increasing number of 
studies are currently focusing on investigating the intricate association between cuproptosis and cancer [6–8]. On one hand, the 
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prognostic significance of cuproptosis genes in cancer has been extensively investigated. For example, in various cancer types, genes 
associated with cuproptosis, such as DLD [9], DLAT [10], and LIAS [11], are considered significant factors influencing tumor prog
nosis. Furthermore, besides individual gene analysis, certain studies have also investigated the correlation between cuproptosis and 
tumor prognosis by integrating these specific genes to construct risk mode [12,13]. These genes exhibit diverse functions in various 
tumor types, thereby complicating the assessment of tumor prognosis based on cuproptosis-related genes. The determination of their 
potential prognostic impacts necessitates more comprehensive mechanistic research and analysis across multiple omics levels. 
Moreover, certain malignant tumors, such as SKCM, breast cancer, leukemia, glioblastoma, and cholangiocarcinoma (CHOL), exhibit 
augmented mitochondrial metabolism [5,10,14]. Drug-resistant tumors also demonstrate heightened mitochondrial metabolic status 
[15,16]. In addition to tumor metabolism, a correlation between cuproptosis and tumor immunity has been observed [17]. Notably, 
investigations have focused on immune checkpoint genes such as PD-1 that are associated with tumor immune suppression and 
immunotherapy. These studies have revealed significant variations in the expression of these genes among groups with high or low 
scores of cuproptosis-related signatures across different types of cancer [18–20]. Furthermore, multiple analyses examining differ
ential gene enrichment between different cuproptosis-related groups have demonstrated close associations with both metabolism and 
immunity-related genes [18,21]. The strong correlation observed between cuproptosis and levels of mitochondrial metabolism and 
immunity underscores the potential significance of cuproptosis in predicting the effectiveness of anticancer therapies and devising 
strategies for cancer treatment. 

In this study, we utilized extensive pan-cancer single-cell and bulk RNA sequencing datasets to identify genes associated with 
cuproptosis, a crucial factor in cancer biology known for its involvement in treatment resistance. Moreover, by employing diverse 
machine learning techniques, we developed predictive models that utilize these genes to predict survival outcomes and predict 
response to immune therapy. These findings highlight the potential of these identified genes as targets for prognosticating survival 
outcomes and predicting immunotherapy response. 

2. Methods 

2.1. Acquisition and processing of pan-cancer single-cell RNA sequencing (scRNA-seq) datasets 

To investigate the cuproptosis in the tumor microenvironment and develop cuproptosis-related signature (Cup.Sig), we obtained a 
total of 28 scRNA-seq datasets and annotation information from the Tumor Immune Single-cell Hub 2 (TISCH2) portal website (http:// 
tisch.comp-genomics.org/) [22]. The dataset encompasses malignant cells, stromal cells, and immune cells obtained from 379 pa
tients, amounting to a total of 1,182,774 individual cells. These datasets encompass diverse cancer types, including Basal Cell Car
cinoma (BCC), Colorectal Cancer (CRC), CHOL, Diffuse Large B-Cell Lymphoma (DLBC), Esophageal Cancer (ESCA), Glioblastoma, 
Head and Neck Squamous Cell Carcinoma (HNSC), Liver Hepatocellular Carcinoma (LIHC), Merkel Cell Carcinoma (MCC)，Multiple 
Myeloma (MM)，Nasopharyngeal Carcinoma (NPC)，Non-Small Cell Lung Cancer (NSCLC), Ovarian Serous Cystadenocarcinom 
(OV), Pancreatic Ductal Adenocarcinom (PAAD) and Prostate Adenocarcinom (PRAD). Please refer to Table S1 for detailed infor
mation. The datasets underwent quality control and clustering procedures following the guidelines provided in the tutorial of the R 
package ’Seurat’ [23]. We also utilized the R package Seurat to identify differentially upregulated genes in malignant cells within each 
dataset, employing a threshold of log-fold change (logFC) ≥ 0.25 and false discovery rate (FDR) < 0.05. We used the "irGSEA.score" 
function from the irGSEA package (https://github.com/chuiqin/irGSEA), employing the "ssgsea" method parameter, to ascertain the 
cellular cuproptosis scores in each dataset based on the expression of cuproptosis-related genes including FDX1, DLD, DLAT, PDHA1, 
PDHB, MTF1, GLS, CDKN2A, DBT, ATP7A, and DLST [24]. 

2.2. Processing of pan-cancer bulk RNA-seq datasets 

To explore the correlation between Cup.Sig score, evaluated by GSVA, and cancer hallmarks, tumor immune infiltration, and 
survival outcomes across various cancer types, we downloaded gene expression and clinical data of the Cancer Genome Atlas (TCGA) 
pan-cancer cohort from the UCSC Xena Data Portal (https://xenabrowser.net) [25], exclusively selecting samples with survival in
formation for subsequent analysis. Furthermore, we obtained total mutation burden (TMB) data for TCGA pan-cancer samples from 
cBioPortal (https://www.cbioportal.org) [26], and acquired intratumor heterogeneity (ITH) data from a study conducted by Torsson 
et al. [27], which used to analyze the correlation between Cup.Sig and TMB or ITH. To validate the prognostic value of the Cup. 
Sig-related risk score, we retrieved gene expression and clinical data for breast cancer from cBioPortal (https://www.cbioportal. 
org) [28]. Additionally, we obtained gene expression data and survival information for liver hepatocellular carcinoma (HCC) pa
tients from International Cancer Genome Consortium (ICGC) Data Portal (https://dcc.icgc.org/). Furthermore, clinical and survival 
information for various cancer types was acquired from the Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) 
database, including GSE42568 (BRCA) [29], GSE41258 (COAD) [30], GSE65858 (HNSC) [31], GSE2748 (KIRP) [32], GSE140901 
(LIHC) [33], GSE31210 (LUAD) [34], GSE11969 (Lung cancer) [35], GSE61676 (NSCLC) [36] and GSE21501 (PDAC) [37]. The 
comprehensive details regarding these datasets can be accessed in Table S2. 

2.3. Acquisition and processing of immune checkpoint inhibitor (ICI) RNA-Seq cohorts 

We obtained gene expression data and prognosis information from cohorts of immune therapy targeting programmed cell death 
ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) or cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). These cohorts 
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consisted of six SKCM cohorts (SKCM Gide 2019 [38], SKCM Nathanson 2017 [39], SKCM Liu 2019 [40], SKCM Hugo 2016 [41], 
SKCM VanAllen 2015 [42] and SKCM Riaz 2017 [43]), one urothelial carcinoma cohort (UC Mariathasan 2018 [44]), one glioblastoma 
cohort (GBM Zhao 2019 [45]), one gastric cancer cohort (STAD Kim 2018 [46]), and one renal cell carcinoma cohort (RCC Braun 2020 
[47]). Only treatment-naïve patients were included for further analysis. Among them, complete remission (CR) and partial remission 
(PR) were categorized as treatment responders, whereas stable disease (SD) and progressive disease (PD) were deemed 
non-responders. All processed data for the immune therapy cohorts were acquired from GEO or corresponding published online ar
ticles (Table S3). 

2.4. Functional and pathway enrichment analysis 

The GSVA method from the R package was utilized to perform gene set variation analysis on 50 signature gene sets obtained from 
molecular signature databases (https://www.gsea-msigdb.org/gsea/msigdb), along with the Cup.Sig gene set. Additionally, gene 
ontology (GO) analysis was conducted using the clusterProfiler R package [48]. Pathways for which the p.adj was <0.05 were 
considered significantly enriched. 

2.5. Analysis of immune infiltration 

The Cell-type Identifcation by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm and LM22 signature matrix 
were employed to estimate immune cell infiltration based on transcriptome data from the TCGA pan-cancer cohort [49]. The stromal 
and immune cells within malignant tumor tissues (ESTIMATE) were utilized to assess four indicators, comprising of immune score, 
stromal score, ESTIMATE score, and tumor purity. These assessments were based on expression data obtained from the TCGA 
pan-cancer cohort samples. The Immune Score reflects the quantity and activity level of immune cells in tumor tissue. Stromal Score 
reflects the quantity and types of non-malignant cells in tumor tissue. ESTIMATE score comprehensively considers both Immune Score 
and Stromal Score to provide a comprehensive assessment of the tumor microenvironment. Tumor purity refers to the relative pro
portion of malignant tumor cells in tumor tissue. 

2.6. Developing a machine learning-based model for predicting the response to immune checkpoint blockade 

To investigate the predictive ability of Cup.Sig for ICI therapy response, we curated transcriptome sequencing data and clinical 
outcomes from 10 immunotherapy cohorts (Table S3). Initially, we integrated five immunotherapy datasets into a comprehensive 
dataset (n = 775), comprising SKCM Gide 2019 (n = 91), RCC Braun 2020 (n = 281), SKCM Nathanson 2017 (n = 24), SKCM Liu 2019 
(n = 121), and STAD Kim 2018 (n = 78). Subsequently, we employed the ’ComBat’ function in the R package sva to effectively correct 
batch effects across different datasets [50]. Following this, the merged dataset was randomly partitioned into a training set (80 %) and 
a validation set (20 %). We employed ten machine learning algorithms, namely gbm, KKNN, pam, rf, lda, AdaBoost, Adabag, freebag, 
slad and glmnet, based on Cup.Sig to construct prediction models on the training set. All classification algorithms were implemented 
using the ’Caret’ package in R and underwent five repeated ten-fold cross-validations to validate model performance. To ensure the 
robustness of our findings, we performed ten iterations of the optimization process by employing unique random seed. Finally, these 
ten models were applied to the validation set and their performances were compared in order to select the model with the highest 
accuracy as the final classification model. In addition, we assessed the predictive performance of our final model on five independent 
test sets: GBM Zhao 2019 (n = 34), SKCM Hugo 2016 (n = 26), SKCM VanAllen 2015 (n = 153), SKCM Riaz 2017 (n = 105), and UC 
Mariathasan 2018 (n = 298). Furthermore, we compared predictive capabilities of Cup.Sig with two other pan-cancer immune therapy 
response prediction signatures (NFG.Sig [51] and NLRP3.Sig [52]) across these five cohorts. 

2.7. Development and validation of the Cup.Sig-related prognostic risk score 

We performed LASSO (Least Absolute Shrinkage and Selection Operator) regularized regression analysis on the 125 features of Cup. 
Sig. Ten-fold cross-validation was employed to identify a subset of features that demonstrated the strongest correlation with overall 
survival in the TCGA cancer cohort. The ’glmnet’ package in R language was utilized for implementing LASSO regularization 
regression. Subsequently, we developed a multivariate Cox proportional hazards regression model using a stepwise approach based on 
the overall survival data from the TCGA pan-cancer training set (n = 80 %). Based on this model, individualized risk scores related to 
Cup.Sig were computed for each patient by multiplying gene expression levels with their corresponding Cox regression coefficients. 
Using this formula, we calculated risk scores for each patient in the TCGA pan-cancer training set, TCGA pan-cancer validation set, and 
external validation set. Subsequently, patients were categorized into high-risk and low-risk groups based on optimal cutoff values. 
Differences in overall survival were then analyzed utilizing the ’survival’ R package. We employed univariate Cox regression analysis 
to assess the prognostic value of the Cup.Sig risk score for overall survival (OS), progression-free interval (PFI), and disease-specific 
survival (DSS). 

2.8. Statistical analysis 

All statistical analyses were conducted using the R software. Kaplan-Meier curves and log-rank tests were employed to evaluate the 
survival disparities between the two groups. Univariate and multivariate Cox regression analyses were utilized to identify prognostic 
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factors. Pearson’s method was applied for correlation analysis of normally distributed data, while Spearman’s method was used for 
non-normally distributed data. A significance level of p and p.adj <0.05 was considered statistically significant. 

3. Result 

3.1. The cuproptosis scores of malignant cells within the tumor microenvironment are enhanced 

To evaluate the cuproptosis status of distinct cellular subpopulations within the tumor microenvironment, we collected four 

Fig. 1. Evaluation of cuproptosis scores for individual cell types in the tumor microenvironment. The t-SNE plots demonstrate the clustering of cells 
and provide annotation results for different scRNA-seq datasets representing various tumor entities (A-D, left). The feature plots depict enrichment 
scores of gene sets associated with cuproptosis in each specific cell type (A-D, middle). The ridge plots (A-D, right) illustrate the distribution of 
cuproptosis scores within distinct cell populations. Mono/Macro Monocytes and macrophages, DC Dendritic cells, pDC plasmacytoid DCs, CD8Tex 
Exhausted CD8 T cells. 
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publicly available single-cell RNA sequencing (scRNA-seq) datasets encompassing BCC, glioma, OV, and NPC. Subsequently, we 
utilized a set of 11 cuproptosis-associated genes to calculate a cellular cuproptosis score. We extract and cluster high-quality cells from 
all datasets, and annotating them based on their original cell labels (Fig. 1A–D; left). It was observed that malignant cells exhibit higher 
cuproptosis scores compared to other cellular components within the microenvironment, including myeloid cells, T cells, B cells, and 
endothelial cells (Fig. 1A–D; middle and right). These findings imply that malignant cells may consistently exhibit a dysregulation in 

Fig. 2. Development and description of cuproptosis signature (Cup.Sig). (A) An overview of the origin of the patient cohort and the corresponding 
number of patients, cells, malignant cells, and proportion of malignant cells for 15 types of cancer from left to right. (B) Circus plot depicting the 
development of Cup.Sig. (C) Enrichment analysis of genes associated with Cup.Sig. 
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copper homeostasis within the tumor microenvironment across diverse cancer types. Given these results, we hypothesize that tran
scriptional alterations associated with cuproptosis in malignant cells could serve as potential biomarkers for predicting survival 
outcomes and response to immune therapy in cancer patients. 

3.2. Development of a malignant cuproptosis signature (Cup.Sig) through scRNA-seq analysis across multiple cancer types 

Our objective is to establish a gene signature that specifically reflects the distinctive cuproptosis characteristics exhibited by 
malignant cells across various types of cancer. To accomplish this objective, we utilized a total of 28 datasets from single-cell RNA 
sequencing, encompassing 15 different cancer types (Fig. 2A; Table S1). These datasets were employed to perform Spearman corre
lation analysis between gene expression levels in malignant cells and cuproptosis scores. In these 28 datasets, genes exhibiting a 
positive correlation with the cuproptosis score (Spearman R > 0 and FDR<0.05) were considered as "Gx", indicating their linkage to 
cuproptosis. Genes that demonstrated upregulation in malignant cells (logFC≥0.25 and FDR<0.05) were designated as "Gy", repre
senting specific malignant cell genes. To identify the specific cuproptosis-regulating genes in malignant cells, we determined the 
intersection of "Gx" and "Gy" to generate "Gn" (n = 1–28) for each dataset, denoting the common genes between Gx and Gy across all 28 
scRNA-Seq datasets. Subsequently, we calculated the geometric mean Spearman correlation coefficient for each gene from G1 to G28. 
Finally, we selected genes with a geometric mean Spearman correlation coefficient greater than 0.2, resulting in Cup.Sig comprising 
125 genes (Fig. 2B; Table S4). We conducted further analysis on the biological functions regulated by Cup.Sig and observed its 

Fig. 3. Pan-cancer analysis of Cup.Sig across 33 cancer types in the TCGA cohort. (A) The association between Cup.Sig scores and enrichment scores 
of cancer hallmark pathways, where blue dots represent negative correlation and red dots indicate positive correlation. (B) Summary of the rela
tionship between Cup.Sig scores and tumor purity, immune, stromal, and ESTIMATE scores. (C) Correlation analysis between Cup.Sig scores and 
immune infiltration (CIBERSORT), with blue dots indicating negative correlation and red dots indicating positive correlation. (D) Correlation 
analysis between Cup.Sig scores and TMB/ITH. 
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predominant enrichment in metabolism-related processes, specifically encompassing triglyceride-rich lipoprotein particle remodeling, 
high-density lipoprotein particle, and lipase inhibitor activity (Fig. 2C). This finding aligns with previous research indicating that 
disruptions in copper homeostasis can perturb metabolic pathways and induce cuproptosis [2]. 

3.3. Analyzing the potential association between Cup.Sig and cancer hallmarks, and immune cell infiltration in the TCGA pan-cancer cohort 

To further investigate the biological characteristics of Cup.Sig in cancer, we employed the GSVA method to calculate Cup.Sig scores 
for each patient within the TCGA 33-cancer cohort. We conducted further analysis on the correlation between Cup.Sig scores and 
cancer hallmark enrichment scores in the TCGA pan-cancer cohort (Fig. 3A). As anticipated, Cup.Sig scores exhibited a significant 
positive correlation with multiple metabolism-related pathways across various cancers. Conversely, certain signaling and 
proliferation-related pathways displayed a negative association with Cup.Sig scores. Notably, at the pan-cancer level, we also observed 
a significant relationship between Cup.Sig scores and immune-related pathways, indicating a potential connection between Cup.Sig 
and immune cell infiltration within the tumor microenvironment (Fig. 3B). The ESTIMATE results additionally confirmed a substantial 
association between Cup.Sig scores and both immune scores as well as ESTIMATE across multiple cancer types. Furthermore, the 
evaluation of the TCGA pan-cancer cohort using CIBERSORT revealed a significant association between Cup.Sig score and alterations 
in tumor-infiltrating immune cells (Fig. 3C). For instance, across various cancer types, there was a positive correlation observed be
tween Cup.Sig score and activated NK cells, while a negative correlation was found with resting CD4 memory T cells. In addition, we 
analyzed the correlation between Cup.Sig score and ITH, a feature that mediates immunosuppression [53], as well as known 
immune-related factor tumor mutational burden (TMB) (Fig. 3D). The results showed a significant correlation between Cup.Sig score 
and ITH/TMB in various cancers within the TCGA pan-cancer cohort, further confirming the close association between Cup.Sig score 
and tumor immunity. In conclusion, we established a malignant cells-specific, cuproptosis-related transcriptomic signature that ex
hibits close associations with various cancer hallmark pathways and immune cell imbalances, suggesting its potential as a predictive 

Fig. 4. Using Cup.Sig to predict the outcome of immunotherapy. (A) The process description of constructing a Cup.Sig immunotherapy response 
prediction model based on various machine learning algorithms. (B) The receiver operating characteristic (ROC) curve demonstrates the perfor
mance of different machine learning algorithms in the validation set. (C) The ROC curve compares the performance of the final Cup.Sig model with 
two previously published pan-cancer models for response to immunotherapy in the validation set. 
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factor for pan-cancer immune response. 

3.4. Prediction of immunotherapy outcome using Cup.Sig 

Based on the observed correlation between Cup.Sig scores and imbalanced infiltration of immune cells in tumors, as well as their 
association with robust predictors of pan-cancer response to anti-PD-L1/PD-1 immunotherapy such as TMB, we further hypothesize 
that Cup.Sig could potentially serve as predictive indicators for the response to immune checkpoint inhibitor therapy. We first 
evaluated the Cup.Sig scores of malignant cells in the single-cell RNA sequencing dataset GSE123813 from patients with basal cell 
carcinoma (BCC) undergoing immunotherapy, and found that malignant cells from immunotherapy-resistant patients exhibited 
significantly higher Cup.Sig scores (Fig. S1). Next, to predict the outcomes of PD-L1/PD-1 or anti-CTLA-4 immunotherapy based on 
Cup.Sig, we curated 10 bulk RNA-seq datasets comprising immunotherapy results (Fig. 4A). Among these cohorts, we integrated 5 (n 
= 595) and divided them into a training set (80 %) and a validation set (20 %). The remaining 5 cohorts were utilized for testing the 
predictive capacity of the final model. Subsequently, we employed 10 distinct machine learning algorithms and conducted repeated 
10-fold cross-validation for each model to optimize parameters. We then assessed the area under curve (AUC) values of these models in 
the validation cohort. Through this series of computations, we ultimately selected an "rf" machine learning algorithm model with a 
maximum AUC value reaching up to 0.8 (Fig. 4B). We further compared the performance of the Cup.Sig prediction model with pre
viously established pan-cancer predictive models for anti-PD-L1/PD-1 or anti-CTLA-4 immunotherapy response (including NLRP3.Sig 
and NFG.Sig). We found that these two pan-cancer prediction models performed well only on a single dataset, while the Cup.Sig 
prediction model performed well across multiple cohorts covering various cancer types such as SKCM, GBM, and UC. Specifically, 
NLRP3.Sig achieved only 0.62 in the SKCM Riaz 2017 cohort, with AUC values dropping to around 0.5 in the UC Mariathasan 2018 and 
SKCM VanAllen 2015 cohorts. NFG.Sig performed well in the UC Mariathasan 2018 and SKCM Riaz 2017 cohorts but showed poorer 
performance in the other three cohorts (Fig. 4C). In contrast, the Cup.Sig prediction model demonstrated good performance across all 
cohorts, it was observed that all five external cohorts exhibited AUC values greater than 0.5 and achieved a maximum value of 0.73 
(Fig. 4C). In conclusion, these results indicate that Cup.Sig has the potential to serve as a reliable pan-cancer predictive model for 
response to PD-L1/PD-1 or CTLA-4 immune therapy. 

Fig. 5. The predictive performance of the Cup.Sig-related pan-cancer prognosis risk score in the TCGA cohort. (A, B) Kaplan-Meier analysis showed 
the association between Cup.Sig-related risk scores and overall survival (OS) in both training and testing sets of patients. (C, D) Revealed differences 
in Cup.Sig-related risk scores among different tumor stages and grades. (E) Demonstrated correlations between Cup.Sig-related risk scores and 
cancer hallmark pathway enrichment across 33 cancer types. (F) Showed association between Cup.Sig-related risk scores and abundance of 22 
immune cell infiltrates across 33 cancer types. (G) Demonstrated association between Cup.Sig-related risk scores and TMB/ITH. 
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3.5. Construction and validation of a pan-cancer prognostic model related to Cup.Sig 

Next, we performed univariate Cox analysis on 33 types of cancer in TCGA, and the results showed that each gene associated with 
Cup.Sig was significantly correlated with patient prognosis in at least two types of cancer (Fig. S2). Therefore, we attempted to 
examine the predictive capacity of Cup.Sig on patient survival outcomes in a pan-cancer cohort. We optimized Cup.Sig through 
implementation of the LASSO penalized Cox proportional hazards regression (LASSO-Cox) model. Specifically, we initially incorpo
rated Cup.Sig genes into the TCGA pan-cancer cohort for LASSO analysis and conducted 10-fold cross-validation to identify 63 sig
nificant genes (Table S5). Subsequently, utilizing the expression values and coefficients of these 63 genes, we computed risk scores for 
each patient within the TCGA pan-cancer training set (Fig. 5A). Ultimately, based on these risk scores, patients from both the TCGA 
training and testing sets were stratified into two groups. Our findings revealed that individuals with higher risk scores in both cohorts 
exhibited poorer overall survival rates (Fig. 5B, p < 0.05, log-rank test). The patients with higher clinical stages and grades also 
displayed significantly higher risk scores (Fig. 5C and D, p < 0.05, Wilcoxon rank-sum test). The multivariate Cox regression analysis 
also observed that these Cup.Sig related prognosis model genes were significantly associated with patient OS (Fig. S3). Furthermore, 
correlation coefficients between cancer hallmark GSVA scores and Cup.Sig-related risk scores were calculated (Fig. 5E). We found that 
in the TCGA cohort, Cup.Sig-related risk scores for various cancers were positively correlated with tumor-promoting pathways such as 
hypoxia, epithelial-mesenchymal transition (EMT), and Wnt β signaling as indicated by GSVA scores. Moreover, immune infiltration 
analysis showed a significant association between Cup.Sig-related risk scores and immune infiltration as well as tumor heterogeneity 
within the TCGA pan-cancer cohort (Fig. 5F and G). We also observed a significant predictive ability for overall survival in 24 types of 
cancer in TCGA when considering Cup.Sig-related risk scores (Fig. S4, p < 0.05, log-rank test). To further validate the prognostic value 
of this risk score, in the TCGA pan-cancer cohort, we performed a comprehensive univariate Cox analysis by integrating Disease 
Specific Survival (DSS), Progression Free Interval (PFI), and OS to assess risk scores (Fig. 6A). Our findings revealed a significant 
correlation between the Cup.Sig-related risk score and compromised survival across diverse cancer types. Furthermore, we applied the 
same formula to calculate the risk scores in several external validation cohorts. These datasets demonstrated that Cup.Sig-related risk 
scores also exhibited strong performance in predicting patient survival, thereby confirming the reliability of Cup.Sig as a prognostic 
indicator across various cancers (Fig. 6B–L, p < 0.05, log-rank test). 

Fig. 6. The prognostic performance of Cup.Sig-related pan-cancer model in TCGA and external cohorts. (A) Univariate analysis of the association 
between patient Cup.Sig-related risk scores and OS, PFI, and DSS in the TCGA cohort. (B–L) The risk scores and OS Kaplan-Meier analysis of patients 
in the external cohorts encompass GSE42568_BRCA, cBioPortal_BRCA, GSE41258_COAD, GSE65858_HNSC, GSE2748_KIRP, GSE140901_LIHC, 
ICGC_LIHC, GSE31210_LUAD, GSE11969_Lung cancer, GSE61676_NSCLC and GSE21501_PDAC cohorts. 

X. Zhu et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e35404

10

4. Discussion 

Although the involvement of copper-induced cell death in cancer signaling pathways and tumor characteristics has been estab
lished [1,54], there remains a dearth of studies investigating its impact on overall cancer prognosis and immunomodulatory response. 
Here, we assessed the cuproptosis scores of diverse cell types within the tumor microenvironment across multiple cancer types at a 
single-cell level, based on cuproptosis-related genes. Our findings demonstrated that malignant cells exhibited elevated cuproptosis 
scores in various cancers. Next, we collected 28 datasets encompassing 15 cancer types and developed a novel pan-cancer malignant 
cell cuproptosis signature (Cup.Sig). In the TCGA pan-cancer cohort, we observed strong associations between Cup.Sig and tumor 
signaling pathways as well as characteristics. Leveraging different machine learning techniques, we established pan-cancer models for 
predicting response to ICI therapy and prognosis using Cup.Sig. Finally, external validation of these models was performed utilizing 
distinct datasets from multiple platforms. 

The cuproptosis genes have been extensively documented for their pivotal role in the regulation of tumor occurrence and pro
gression. For instance, the core regulatory gene DLD exhibites different expression in most cancers. Furthermore, survival analysis 
indicates that DLD is correlated with both overall survival and progression-free survival in tumors, potentially impacting the prognosis 
of cancer patients [55]. In addition, CDKN2A has the highest mutation frequency in all tumors in TCGA, and is associated with poor 
prognosis in cancer patients [56]. Recent studies have also identified PDHA1 as a potential prognostic and immune-related biomarker 
in various cancer types [57]. We observed a higher cuproptosis score at the single-cell level in malignant cells within the tumor 
microenvironment, which is consistent with previously reported significantly elevated levels of copper ions in the serum of patients 
diagnosed with lung cancer [58], prostate cancer [59], breast cancer [60], gastric cancer [61], and thyroid cancer [62]. Similarly, 
studies have also identified an increase in copper ions within gallbladder tissues of patients suffering from gallbladder cancer [63]. 
Taken together with these findings, our results collectively suggest a potential disruption in intracellular copper ion homeostasis 
within tumor cells. The enrichment observation of the Cup.Sig gene implies its involvement in diverse metabolic functions, thereby 
providing further evidence for the association between copper homeostasis imbalance and cellular metabolism in malignant cells. 
Based on our research findings demonstrating a correlation between Cup.Sig scores and immune cell infiltration levels in diverse 
cancer microenvironments, as well as previous studies highlighting the regulatory effect of copper on the crucial immune checkpoint 
gene PD-L1 expression [64], we conducted an analysis to assess the predictive impact of Cup.Sig on immunotherapy response. Unlike 
most studies that indirectly predict immune response through gene expression levels or TIDE scores, we directly utilized immuno
therapy cohorts from public databases and evaluated the predictive performance of Cup.Sig using various machine learning algo
rithms. Our analysis across multiple immunotherapy cohorts consistently demonstrated that Cup.Sig outperformed other signatures in 
terms of predictive accuracy. 

We also developed prognostic risk score based on Cup.Sig and validated the risk scores on multiple platforms and datasets. We 
identified key genes for predicting pan-cancer OS in Cup.Sig, including ATOX1, CDKN2A, CDKN2B-AS1, DLD, MALAT1, KIZ, MTTP, 
MYLK, NNAT, PDHA1 and PDHB. In NSCLC, ATOX1 has been observed to be modulated by the cuproptosis related gene LIPT1, leading 
to its downregulation and subsequently impacting cancer progression [65]. The differential expression of the cuproptosis gene 
CDKN2A has been reported in ccRCC and normal tissues [66], and our study also observed it as a significant prognostic risk factor in 
ACC, COAD, KICH, LIHC, PCPG, THCA and UCEA. The ceRNA mechanism of CDKN2B-AS1 promotes the upregulation of the 
cuproptosis gene SLC31A1 in breast cancer, and its expression is closely associated with patient prognosis and drug response in this 
malignancy [67]. The gene DLD has also been found to be associated with poor prognosis and malignant biological characteristics in 
lung adenocarcinoma [68]. MALAT1 has also been identified as a regulator of the cuproptosis gene MTF1 through hsa-miR-32-5p in the 
ceRNA network, thereby impacting the pathogenesis and progression of AML [69]. The involvement of MTTP in the regulation of metal 
ion homeostasis in hepatocellular carcinoma also has been well-documented [70]. These results further support the impact of ma
lignant cell cuproptosis on various cancer survival outcomes. In conclusion, these findings collectively underscore the significant 
importance of cuproptosis in accurately predicting individual patients’ survival and treatment response, thereby potentially driving 
the development of personalized treatment approaches in precision oncology. 

There are several limitations in our study that need to be addressed. Firstly, it is imperative to validate the bioinformatics analysis 
results obtained from single-cell and whole-tissue cancer data by conducting multiple in vivo or in vitro experiments to mitigate 
potential analytical biases. Moreover, this study solely relies on published transcriptome data, which may not necessarily reflect 
protein functionality. Furthermore, considering the current scarcity of large-scale pan-cancer proteomic databases, we should expand 
our research accordingly once access to these proteomic databases becomes available. Through comprehensive analysis of large-scale 
single-cell and bulk data, we have discovered a robust correlation between cuproptosis and tumor survival, as well as the effectiveness 
of ICI therapy. Most notably, we have successfully developed a gene expression signature known as Cup.Sig that exhibits remarkable 
predictive power for immunotherapy response and overall survival outcomes across various cancer types. 

5. Conclusions 

In conclusion, our findings offer valuable insights into the molecular and cellular mechanisms associated with cuproptosis in 
malignant cells. Through comprehensive analysis of single-cell transcriptome data across various cancer types, we have successfully 
identified a distinct gene signature for cuproptosis in malignant cells, denoted as Cup.Sig. From a translational standpoint, the pan- 
cancer gene signature Cup.Sig established in this study has the potential to enhance prognostic predictions and improve response 
to immune therapy within the realm of precision oncology. 
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SKCM Skin Cutaneous Melanoma 
scRNA-seq Single-cell RNA sequencing 
Cup.Sig Cuproptosis-related signature 
TISCH2 Tumor Immune Single-cell Hub 2 
BCC Basal Cell Carcinoma 
CRC Colorectal Cancer 
CHOL Cholangiocarcinoma 
DLBC Diffuse Large B-Cell Lymphoma 
ESCA Esophageal Cancer 
HNSC Head and Neck Squamous Cell Carcinoma 
LIHC Liver Hepatocellular Carcinoma 
MCC Merkel Cell Carcinoma 
MM Multiple Myeloma 
NPC Nasopharyngeal Carcinoma 
NSCLC Non-Small Cell Lung Cancer 
OV Ovarian Serous Cystadenocarcinom 
PAAD Pancreatic Ductal Adenocarcinom 
PRAD Prostate Adenocarcinom 
LogFC Log-fold change 
FDR False discovery rate 
TCGA The Cancer Genome Atlas 
TMB Total mutation burden 
ITH Intratumor heterogeneity 
HCC Hepatocellular carcinoma 
ICGC International Cancer Genome Consortium 
GEO Gene Expression Omnibus 
PD-L1 Programmed cell death ligand 1 
ICI Immune checkpoint inhibitor 
PD-1 Programmed cell death protein 1 
CTLA-4 Cytotoxic T lymphocyte-associated antigen 4 
CR Complete remission 
PR partial remission 
SD Stable disease 
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PD Progressive disease 
GO Gene ontology 
CIBERSORT Cell-type Identifcation by Estimating Relative Subsets of RNA Transcripts 
ESTIMATE The stromal and immune cells within malignant tumor tissues 
OS Overall survival 
PFI Progression-free interval 
DSS Disease-specific survival 
AUC Area under curve 
LASSO-Cox LASSO penalized Cox proportional hazards regression 
EMT Epithelial-mesenchymal transition 
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