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Abstract
Semantic (svPPA) and nonfluent (nfvPPA) variants of primary progressive aphasia (PPA) have recently been associated 
with distinct patterns of white matter and functional network alterations in left frontoinsular and anterior temporal regions, 
respectively. Little information exists, however, about the topological characteristics of gray matter covariance networks in 
these two PPA variants. In the present study, we used a graph theory approach to describe the structural covariance network 
organization in 34 patients with svPPA, 34 patients with nfvPPA and 110 healthy controls. All participants underwent a 
3 T structural MRI. Next, we used cortical thickness values and subcortical volumes to define subject-specific connectivity 
networks. Patients with svPPA and nfvPPA were characterized by higher values of normalized characteristic path length 
compared with controls. Moreover, svPPA patients had lower values of normalized clustering coefficient relative to healthy 
controls. At a regional level, patients with svPPA showed a reduced connectivity and impaired information processing in 
temporal and limbic brain areas relative to controls and nfvPPA patients. By contrast, local network changes in patients 
with nfvPPA were focused on frontal brain regions such as the pars opercularis and the middle frontal cortex. Of note, a 
predominance of local metric changes was observed in the left hemisphere in both nfvPPA and svPPA brain networks. 
Taken together, these findings provide new evidences of a suboptimal topological organization of the structural covariance 
networks in svPPA and nfvPPA patients. Moreover, we further confirm that distinct patterns of structural network alterations 
are related to neurodegenerative mechanisms underlying each PPA variant.

Keywords Semantic variant of primary progressive aphasia · Nonfluent variant of primary progressive aphasia · Graph 
analysis · Gray matter structural covariance networks · Brain networks

Introduction

Frontotemporal dementia (FTD) is a heterogeneous group 
of neurodegenerative disorders characterized by behavioral 
disturbances, impairment of executive functions or language 
deficits (Bang et al., 2015; Coyle-Gilchrist et al., 2016). 
Based on the presence of prominent speech and language 

deteriorations, two main clinical FTD variants, namely the 
nonfluent variant of primary progressive aphasia (nfvPPA) 
and the semantic variant of PPA (svPPA) can be identified 
(Gorno-Tempini et al., 2011; Leyton et al., 2011; Tee & 
Gorno-Tempini, 2019). In general, individuals with svPPA 
show difficulty in naming and objects/faces identification 
(Gorno-Tempini et al., 2004, 2011). Further studies also 
reported surface dyslexia and spared speech production 
(Gorno-Tempini et al., 2011; Snowden et al., 2011). On the 
other hand, nfvPPA patients are characterized by the pres-
ence of agrammatism and effort toward spontaneous speech 
(Gorno-Tempini et al., 2011). Patients with nfvPPA also 
showed impaired prosody as well as phonetic errors (Ash 
et al., 2010; Wilson et al., 2010).

Over the past decade, several neuroimaging studies have 
investigated structural and functional brain abnormalities 
related to language impairment in patients with svPPA and 
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nfvPPA (Galantucci et al., 2011; Montembeault et al., 2018; 
Ranasinghe et al., 2017; Tee & Gorno-Tempini, 2019). In 
svPPA patients, gray matter atrophy has been reported in the 
anterior temporal lobes, insula, amygdala and hippocampus 
(Brambati et al., 2009; Collins et al., 2017). Agrammatic 
symptoms typical reported in nfvPPA patients have been 
associated with gray matter decrease in several cortical and 
subcortical brain regions such as the inferior frontal gyrus, 
insula, supplementary motor cortex and striatum (Man-
delli, Vitali, et al., 2016a, 2016b). Language impairments 
in svPPA and nfvPPA patients have also been associated 
with hypoperfusion and functional connectivity decrease 
in the left temporal lobe and inferior-frontal gyrus, respec-
tively (Josephs et al., 2018; Ranasinghe et al., 2017). In more 
recent years, few studies have combined MRI data and graph 
analysis to assess selective disruptions of the large-scale net-
work associated with PPA (Mandelli et al., 2018; Mandelli 
et al., 2016a, 2016b; P. Reyes et al., 2018; P. A. Reyes et al., 
2019). In this context, by diffusion tensor imaging (DTI) 
and functional MRI (fMRI) data, networks analysis inves-
tigations have reported altered patterns of white matter and 
functional connectivity in temporal and occipital lobes of 
patients with svPPA in comparison to healthy controls (P. 
Reyes et al., 2018; P. A. Reyes et al., 2019). By contrast, net-
work disconnections were observed in frontal brain regions 
of patients with nfvPPA (Mandelli et al., 2018; P. Reyes 
et al., 2018; P. A. Reyes et al., 2019).

Despite recent progress in understanding structural and 
functional brain network alterations in patients with PPA, to 
date no study has used the inter-regional gray matter covari-
ation to describe brain network changes in linguistic vari-
ants of FTD. However, structural covariance analysis has 
proved to be a robust approach to investigate the brain net-
work organization in several neurological conditions (Pereira 
et al., 2015; Yao et al., 2010; Yun et al., 2020). Moreover, 
gray matter covariance networks construction has proved to 
be less sensitive to noise in comparison to that of functional 
and DTI-based networks (Bruno et al., 2017; Hosseini et al., 
2016), requiring relatively lower computational loads (Yao 
et al., 2010). In a recent study, we have also demonstrated 
the usefulness of inter-regional gray matter covariation to 
assess connectivity abnormalities in patients with behavioral 
variant of FTD in comparison to healthy controls (Nigro 
et al., 2021).

The aim of the current study was to characterize the struc-
tural covariance brain network organization in linguistic 
variant of FTD. To this end, we used cortical thickness val-
ues and subcortical volumes to define subject-specific ana-
tomical connectivity. Then, we investigated segregation and 
integration abilities within brain networks at both global and 
local level. We hypothesized that structural covariance net-
works of PPA patients would show global network changes 
in comparison to healthy controls. We also expected distinct 

patterns of structural disconnection in svPPA and nfvPPA 
patients with prominent alterations in temporal and frontal 
brain regions, respectively.

Materials and method

Patients

Data used in current study were obtained from the Fron-
totemporal Lobar Degeneration Neuroimaging Initiative 
(FTLDNI) database. The FTLDNI was funded through the 
National Institute of Aging and started in 2010. The primary 
goals of FTLDNI are to identify neuroimaging modalities 
and methods of analysis for tracking frontotemporal lobar 
degeneration and to assess the value of imaging versus other 
biomarkers in diagnostic roles. The project is the result of 
collaborative efforts at three different sites in North Amer-
ica. For up-to-date information on participation and pro-
tocol, please visit: http:// memory. ucsf. edu/ resea rch. Data 
was downloaded through the LONI platform after approved 
by the data access committee. We included 110 HC and 68 
patients with PPA (34 nfvPPA and 34 svPPA) who had a 
valid baseline T1-weighted MR images. Demographic infor-
mation and neuropsychological data are shown in Table 1. 
Of note, we considered only participants scanned at Univer-
sity of California, San Francisco (UCSF), the largest recruit-
ing center, in order to avoid potential bias due to different 
scanners and acquisition imaging protocol. Approval for the 
FTLDNI protocol has been granted by institutional review 
board at the study site.

MRI acquisition and processing

MR images were acquired on a 3 T Siemens Trio Tim sys-
tem equipped with a 12-channel head coil at the UCSF Neu-
roscience Imaging Center. Structural images were acquired 
using a T1 weighted MPRAGE (TR/TE = 2,300/2.9 ms, 
matrix = 240 × 256 × 160, isotropic voxels 1 mm3, slice 
thickness = 1 mm). T1-weighted images were analyzed using 
FreeSurfer (version 6.0) (http:// www. nmr. mgh. harva rd. edu/ 
marti nos) to compute morphological properties for corti-
cal and subcortical brain regions (Dale et al., 1999; Fischl 
& Dale, 2000; Fischl et al., 1999, 2004). All images were 
checked for reconstruction cortical surface errors.

Gray matter network construction

For each subject, Desikan-Killianny atlas was used to extract 
average cortical thickness values in 68 cortical brain regions 
(Desikan et al., 2006). A complete list of cortical areas is 
provided in Supplementary Materials (Table S1). Volumetric 
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values of the putamen, caudate, thalamus, pallidum, hip-
pocampus, accumbens and amygdala for each hemisphere 
were also computed (Dale et al., 1999; Fischl et al., 2004). 
Next, a linear regression analysis was performed at every 
region to remove the effects of age, gender and total intrac-
ranial volume. Then, the residuals of this regression were 
z-score transformed using mean and standard deviation val-
ues of each brain region calculated in the control group (Li 
et al., 2020; Yun et al., 2016, 2020). Finally, the structural 
connectivity value (network edge weight) between each pair 
of regions was calculated using the following measure of 
joint variation (Yun et al., 2016, 2020) distributed between 
0 and 1:

Jointvariationbetweentheith(fori=1to82)andjth(forj=1to82)regionsof interest 
=

1/exp{[(z-score value of ith region of interest)—(z-score 
value of jth region of interest)]^2} (1)

Graph theory analysis

Topological organization of structural covariance networks 
were assessed using global and local graph metrics. At a 
global level, the normalized clustering coefficient (γ) and 
the normalized characteristic path length (λ) were calculated 
to investigate the degree of segregation and integration of 
the network (-). Next, the small-worldness index (σ) was 
computed as the ratio of gamma to lambda. Values of sigma 
higher than 1.1 are indicative of a small-world network con-
figuration suggesting an efficient information processing in 
the human brain networks at low wiring costs (Achard & 

Bullmore, 2007; Watts & Strogatz, 1998). Integration and 
segregation properties were also quantified at a regional 
level using the local efficiency and clustering coefficient, 
respectively (Rubinov & Sporns, 2010; Watts & Strogatz, 
1998; Zuo et al., 2012). In particular, local efficiency was 
used to measure the ability of information transfer between 
a node and the remaining nodes in the network (Rubinov 
& Sporns, 2010). Clustering coefficient allowed to quantify 
the propensity of a node to communicate with its immediate 
neighborhood (Rubinov & Sporns, 2010; Watts & Strogatz, 
1998). Nodal degree was also evaluated to quantify the cen-
trality of each node within the network (Zuo et al., 2012). 
All graph measures were evaluated across a range of network 
densities ranging from 10 to 40%. This range of thresholds 
allowed to preserve a small-world configuration in each indi-
vidual network minimizing the number of spurious edges 
(Achard & Bullmore, 2007; He et al., 2007). Graph theo-
retical Network Analysis (GRETNA) package was used to 
calculate all network properties (Wang et al., 2015).

Statistical analysis

Demographic, neuroimaging and neuropsychological vari-
ables were compared between groups using Wilcoxon-
Mann–Whitney test. The difference in sex distribution 
among groups was evaluated using Chi-square test.

To assess group differences in network properties, the 
area under the curve (AUC) for each network measure was 
calculated. Specifically, we calculated both global and local 
metrics at each density. Next, the AUC was computed by 

Table 1  Demographic, clinical, 
and neuroimaging data of 
sample

MMSE: Mini-Mental State Examination; CDR Total: Clinical Dementia Rating Total score; CDR-SOB: 
Clinical Dementia Rating: Box Score; BNT: Boston Naming Test; HC: healthy controls; svPPA: patients 
with semantic variant of primary progressive aphasia; nfvPPA: patients with nonfluent variant of primary 
progressive aphasia
a p < 0.05 nfvPPA patients versus controls and svPPA patients
b p < 0.05 svPPA and nfvPPA patients versus controls
c p < 0.05 svPPA patients versus nfvPPA patients

HC
(n = 110)

svPPA
(n = 34)

nfvPPA
(n = 34)

Demographic and clinical data
Age at exam (years)a 63.12 ± 7.49 62.91 ± 6.29 68.32 ± 7.27
Gender (M/F) 49/61 20/14 15/19
Education (years) 17.50 ± 1.92 16.94 ± 3.09 16.51 ± 3.39
MMSEb 29.35 ± 0.77 24.97 ± 5.10 25.54 ± 4.04
CDR Total score – 0.63 ± 0.31 0.48 ± 0.40
CDR-SOB  scorec – 3.40 ± 1.72 2.15 ± 2.11
Semantic Fluency (animal)b 24.25 ± 5.53 9.03 ± 4.15 10.72 ± 6.01
Lexical Fluency (phonemic)b,c 16.37 ± 4.34 8.97 ± 4.47 5.53 ± 3.35
BNT (max = 15)b,c 14.46 ± 0.78 5.90 ± 3.42 12.64 ± 2.28
Neuroimaging data
Intracanial Volume (ml) 1517.69 ± 69.04 1535.34 ± 156.76 1471.09 ± 171.17



1116 Brain Imaging and Behavior (2022) 16:1113–1122

1 3

integrating the curve over density range, providing a scalar 
feature for the topological property not depending on spe-
cific threshold selection. Nonparametric permutation test-
ing (5000 repetitions) was then conducted to test the sta-
tistical significance differences between the PPA patients 
and control group. The top 20 ranked brain regions were 
also identified according to each local graph metrics in 
controls, svPPA and nfvPPA patients. The relationships 
between network metrics and clinical data of patients with 
svPPA and nfvPPA were also tested using the Spearman 
correlation (p-value < 0.05). A Bonferroni correction pro-
cedure was employed in all statistical analyses to correct 
for multiple comparisons. The critical statistical threshold 
was set to p < 0.05. The Hedge's g statistic was also used to 
measure the effect size for the difference in local and global 
metrics between patients and healthy controls (Hedges & 
Olkin, 1985). Of note, differences in global and local met-
rics between PPA groups were also evaluated including the 
clinical dementia rating as a nuisance variable. The Brain-
Net viewer (http:// www. nitrc. org/ proje cts/ bnv/) was used to 
visualize significant regional differences between groups 
(Xia et al., 2013).

Results

Demographic and clinical characteristics

No significant differences in sex, years of education, and 
intracranial volume were found between PPA patients and 
healthy controls (p > 0.05). However, patients with nfvPPA 
had a significantly older age compared with healthy control 
participants and svPPA patients (p-value < 0.05) (Table 1). 
PPA patients showed also reduced MMSE values when 
compared to healthy controls, although nfvPPA and svPPA 
patients had similar MMSE values and CDR (Clinical 
Dementia Rating Scale) scores.

Global network properties

Small-world network configuration was observed in 
structural covariance networks of controls and PPA 
patients (1.29 < σHC < 2.57; 1.15 < σsvPPA < 2.19; 
1.20 < σnfvPPA < 2.56). However, the small-worldness index 
was significant smaller in svPPA patients than nfvPPA 
patients and controls. Moreover, the normalized characteris-
tic path length (λ) values in both svPPA and nfvPPA patients 
were greater than those of controls (Table 2, p-value < 0.05, 
Bonferroni corrected). Compared with the control partici-
pants and nfvPPA patients, svPPA group exhibited also 
significantly less normalized clustering coefficient (γ) ( 
(Table 2, p-value < 0.05, Bonferroni corrected). No signifi-
cant correlations were found between clinical variables and 
global network measures.

Local network properties

Relative to controls, svPPA patients displayed a reduced 
nodal efficiency, degree and clustering coefficient in several 
cortical and subcortical brain regions such as the bilateral 
temporal pole, middle and superiot temporal gyri, entorhinal 
cortex, amygdala, hippocampus and insula (p-value < 0.04, 
Bonferroni corrected) (Fig. 1, Table S2). We observed a 
reduced clustering coefficient, degree and local efficiency 
in the left caudal middle frontal gyrus, superior frontal 
gyrus and left pars opercularis of nfvPPA patients com-
pared with controls (p-value < 0.05, Bonferroni corrected) 
(Fig. 1, Table S3). When local network properties were com-
pared between patient groups, patients with svPPA patients 
showed decreased local metrics in the temporal pole rela-
tive to nfvPPA patients. By contrast, svPPA patients had 
higher values of nodal degree and nodal efficiency in the 
left caudal frontal gyrus, left pars opercularis in comparison 
to nfvPPA patients (Fig. 2, Table S4). Similar differences 
between PPA groups were observed considering the clinical 
dementia rating as nuisance variable (Table S5, Supplemen-
tary Materials). Compared to control group, ranking of brain 
regions according to local metric values confirmed network 
changes in temporal and frontal cortical regions of svPPA 
and nfvPPA patients, respectively (Fig. 3). No significant 

Table 2  Main effect of group in 
the global network metrics

All graph measure values are expressed as the area under the curve (AUC) across density range
σ, small-worldness index; λ, normalized characteristic path length; γ, normalized clustering coefficient; 
Eglob: global efficiency; HC: healthy controls; svPPA: semantic variant of primary progressive aphasia; 
nfvPPA: progressive nonfluent variant of primary progressive aphasia

HC svPPA nfvPPA HC vs svPPA
p-value (effect size)

HC vs nfvPPA
p-value (effect size)

svPPA vs nfvPPA
p-value (effect size)

σ 0.52 ± 0.07 0.44 ± 0.05 0.51 ± 0.07  < 0.001 (1.34) 0.42 (0.16)  < 0.001 (−1.16)
λ 0.42 ± 0.01 0.44 ± 0.02 0.43 ± 0.02  < 0.001 (−1.78)  < 0.001 (−0.66) 0.001 (0.83)
γ 0.75 ± 0.09 0.67 ± 0.07 0.75 ± 0.09  < 0.001 (0.98) 0.95 (−0.01)  < 0.001 (−0.98)

http://www.nitrc.org/projects/bnv/
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Fig. 1  Left panel: cortical and subcortical brain regions showing 
reduced local properties between patients with semantic variant of 
primary progressive aphasia (svPPA) and controls (p < 0.05, Bonfer-
roni corrected); Right panel:cortical and subcortical brain regions 
showing reduced local properties between patients with nonflu-

ent variant of primary progressive aphasia (nfvPPA) and controls 
(p < 0.05, Bonferroni corrected). Node size is proportional to the 
effect size of the difference between patients and controls in local 
graph meausure

Fig. 2  Cortical and subcortical brain regions showing local properties 
changes between patients with nonfluent variant of primary progres-
sive aphasia (nfvPPA) and patients with semantic variant of primary 

progressive aphasia (svPPA)(p < 0.05, Bonferroni corrected). Node 
size is proportional to the effect size of the difference between patient 
groups
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correlations were found between clinical variables and local 
network measures (Table S6, Supplementary Materials).

Discussion

In the present study, we explored the topological organiza-
tion of the structural covariance networks in linguistic vari-
ants of frontotemporal dementia. Despite the presence of a 
small-world topology in both patient and control networks, 
svPPA patients had lower values of normalized clustering 
coefficient relative to healthy controls and nfvPPA patients. 
Moreover, svPPA and nfvPPA patients were characterized 
by higher values of normalized characteristic path length 
compared with controls. At a local level, patients with 
svPPA displayed decreased values of local efficiency, clus-
tering coefficient and nodal degree in temporal and limbic 
brain regions relative to controls and nfvPPA patients. By 
contrast, local network changes in patients with nfvPPA 
were focused on frontal brain regions such as the pars oper-
cularis and the caudal middle frontal cortex. Regional net-
work changes between controls and PPA groups were also 
confirmed by the top-ranked brain regions according to local 
graph measures. Relative to controls, a loss of ‘importance’ 
in temporal and frontal brain regions was observed in svPPA 
and nfvPPA patients, respectively.

Overall, these findings provide new evidences that spe-
cific changes in global and local properties characterize 
the brain network organization of patients with svPPA and 
nfvPPA. At a global level, higher values of the normalized 
path length were observed in both svPPA and nfvPPA net-
works in comparison to control group, suggesting a loss of 
efficiency in global information communication (Sporns & 
Zwi, 2004; Watts & Strogatz, 1998). The reduced clustering 
coefficient found in patients with svPPA is also indicative 
of a reduced ability in information exchange between close 
regions (Rubinov & Sporns, 2010; Sporns & Zwi, 2004). 
These results are in line with previous investigations report-
ing a reduced integrity in white matter and functional net-
works of patients with PPA (Mandelli et al., 2018; Ranasin-
ghe et al., 2017; P. A. Reyes et al., 2019). Aberrant network 
organization was also reported in other dementia syndromes 
such as the Alzheimer’s disease and behavioral variant of 
FTD, showing a consistent tendency towards a more rand-
omized architecture compared to healthy controls (Filippi 
et al., 2013, 2017; Nigro et al., 2021). Global properties 
changes observed in the current study are thus suggestive 
of a suboptimal topological organization of the structural 
covariance networks of svPPA and nfvPPA patients, which 
may be related to language impairments characterizing both 
frontotemporal dementia variants.

Fig. 3  Top 20 ranked brain regions according to local brain measures in controls, patients with semantic variant of primary progressive aphasia 
(svPPA) and patients with nonfluent variant of primary progressive aphasia (nfvPPA)
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In support of this idea, svPPA and nfvPPA networks dis-
played significant local properties abnormalities in specific 
brain regions that are fundamental to language processing. 
Relative to controls, patients with svPPA had decreased 
values of nodal efficiency, clustering coefficient and nodal 
degree in temporal, entorhinal and fusiform cortex. Moreo-
ver, we found reduced local properties in subcortical lim-
bic brain regions such as the amygdala and hippocampus. 
Structural and functional alterations in the anterior tempo-
ral pole have been previously associated with typical verbal 
and non-verbal semantic impairments observed in svPPA 
patients (Battistella et al., 2019; Collins et al., 2017; Ding 
et al., 2020; Guo et al., 2013). Moreover, significant asso-
ciations were found between the functional connectivity 
strength of the left anterior hippocampus and performance 
in semantic tasks (Bocchetta et al., 2019). In particular, nam-
ing difficulties were correlated with gray matter atrophy of 
the anterior temporal pole (Guo et al., 2013). A recent mag-
netoencephalography study also observed that the damage 
to the anterior temporal lobe leads to a profound impair-
ments of lexical-semantic system in patients with svPPA. 
As a compensatory strategy, these patients rely on sublexical 
processes underpinned by a dorsal route (occipital-parietal) 
to read irregular words (Borghesani et al., 2020). Our data 
further demonstrate the critical role of temporal and limbic 
brain regions in svPPA pathogenesis revealing the existence 
of a svPPA-related pattern of reduced structural connectiv-
ity strength and impaired information processing in these 
brain regions. These findings are in line with a recent whole 
brain tractography study revealing a widely altered connec-
tivity network in temporal and occipital regions of svPPA 
patients (Reyes et al., 2019). Decreased nodal strength in the 
temporal cortex, left amygdala and hippocampus was also 
observed in svPPA patients using resting-state functional 
magnetic resonance imaging and graph analysis (Agosta 
et al., 2014).

Concerning nfvPPA patients, we observed that local net-
work abnormalities were confined to specific frontal brain 
regions such as the caudal and superior frontal gyrus and 
the pars opercularis of the inferior frontal gyrus. A major 
predominance in local network changes was also observed 
in the left hemisphere in line with the hypothesis of a selec-
tive vulnerability in nfvPPA left brain regions (Leyton et al., 
2016; Mandelli et al., 2018; ; Mandelli et al., 2016a, 2016b; 
Montembeault et al., 2018). Frontal brain regions, together 
with the dorsal insular, supplementary motor and striatal 
regions, constitute the speech production network (Man-
delli et al., 2016a, 2016b). Damage to this network has been 
previously associated with fluency and grammatical deficits 
typically observed in nfvPPA (Mandelli et al., 2018; Man-
delli et al., 2016a, 2016b; P. Reyes et al., 2018). Of note, the 
pars opercularis has been reported to be the earliest region 
of brain degeneration in nfvPPA patients (Mandelli et al., 

2016a, 2016b). Our study further highlights the role of the 
pars opercularis in nfvPPA revealing long-range and short-
range communication deficits between this region and the 
rest of the brain in patients with nfvPPA when compared to 
controls.

Of note, differences in local network properties between 
svPPA and nfvPPA patients are consistent with molecular 
nexopathy model that proposes a conjunction of pathogenic 
protein mechanisms and macroanatomical signatures of 
brain network disintegration (Warren et al., 2012, 2013). 
Indeed, nfvPPA and svPPA are commonly associated with 
underlying FTD-tau and TDP pathological aggregates, 
respectively (Rohrer & Schott, 2011). The distinct patterns 
of network alterations observed in svPPA and nfvPPA may 
be thus related to different proteinopathies associated with 
each PPA syndrome.

The current study has some limitations which have to 
be pointed out. First, disease duration was not available in 
data used for this study. Further investigations are there-
fore required to assess the influence of disease duration on 
local and global network changes observed in svPPA and 
nfvPPA patients. Second, patients with nfvPPA showed an 
older age in comparison to controls and svPPA patients. 
However, cortical and subcortical morphometric values were 
corrected by age, sex and total intracranial volume before 
network construction. Third, no significant correlations were 
found between network metrics and clinical data in PPA 
patients. This may suggest that clinical data cannot be solely 
accounted for by the properties of the underlying structural 
networks in PPA patients. Therefore, future investigations 
combining structural and functional network properties may 
improve the estimation of brain connectivity allowing a bet-
ter characterization of brain mechanisms underlying differ-
ent clinical presentations. Moreover, longitudinal studies are 
required to examine the predictive power of network prop-
erties for clinical progression in PPA patients. Finally, gray 
matter connectivity between brain regions was evaluated 
after removing the effects of age, gender and TIV on mor-
phometric data. Although this approach allowed to reduce 
potential confounding effects, no directly investigation of 
the effect of age and sex on network properties was possible.

Conclusions

We showed that gray matter covariance analysis might 
represent a useful tool to investigate the brain network 
organization in linguistic variants of frontotemporal demen-
tia. Compared to controls, patients with svPPA showed a 
reduced connectivity and impaired information processing 
in temporal and limbic brain regions. By contrast, nfvPPA 
patients were characterized by local network changes in 
frontal cortical areas. All together, these findings provide 
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further evidence that distinct patterns of structural network 
alterations are associated with neurodegenerative mecha-
nisms underlying each PPA variant.
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