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Abstract

In BioNLP-ST 2013: We participated in the BioNLP 2013 shared tasks on event extraction. Our extraction method
is based on the search for an approximate subgraph isomorphism between key context dependencies of events
and graphs of input sentences. Our system was able to address both the GENIA (GE) task focusing on 13 molecular
biology related event types and the Cancer Genetics (CG) task targeting a challenging group of 40 cancer biology
related event types with varying arguments concerning 18 kinds of biological entities. In addition to adapting our
system to the two tasks, we also attempted to integrate semantics into the graph matching scheme using a
distributional similarity model for more events, and evaluated the event extraction impact of using paths of all
possible lengths as key context dependencies beyond using only the shortest paths in our system. We achieved a
46.38% F-score in the CG task (ranking 3rd) and a 48.93% F-score in the GE task (ranking 4th).

After BioNLP-ST 2013: We explored three ways to further extend our event extraction system in our previously
published work: (1) We allow non-essential nodes to be skipped, and incorporated a node skipping penalty into
the subgraph distance function of our approximate subgraph matching algorithm. (2) Instead of assigning a unified
subgraph distance threshold to all patterns of an event type, we learned a customized threshold for each pattern.
(3) We implemented the well-known Empirical Risk Minimization (ERM) principle to optimize the event pattern set
by balancing prediction errors on training data against regularization. When evaluated on the official GE task test
data, these extensions help to improve the extraction precision from 62% to 65%. However, the overall F-score
stays equivalent to the previous performance due to a 1% drop in recall.

Introduction
Identifying biomedical events is of significant importance
to the understanding of sophisticated interactions between
physiological processes and disease and their comprehen-
sive downstream effects on the behavior of biomedical
systems at a systems biology level. As a community-wide
competition, the BioNLP shared task series has led to a
noticeable development of text mining resources and tech-
niques for the automated extraction of semantic events
from the biomedical literature such as protein binding,
DNA methylation and regulatory events [1,2]. An event
describes the interaction among multiple participants with
diverse semantic roles [3]. Biomedical events usually have

a complex internal structure and can be divided into a set
of nested events. Capturing such causal event structures
is necessary for the automatic reconstruction of detailed
biological pathways.
While BioNLP-ST 2009 and 2011 focused on molecular

and sub-cellular level events, BioNLP-ST 2013 extended
the scope to biological processes at higher levels of organi-
zation by introducing many new biological issues such as
organ growth, blood vessel development, pathway curation
and cancer genetics. As a team from NCBI (National Cen-
ter for Biotechnology Information), we participated in the
BioNLP 2013 shared tasks, addressing the GENIA (GE)
and the Cancer Genetics (CG) event extraction tasks.
While the GE task focused on 13 molecular biology
related event types concerning the protein NF-�B, the CG
task targeted a challenging group of 40 cancer biology
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related event types and involved 18 kinds of biological
entities describing the development and progression of
cancer. This poses an additional challenge to event extrac-
tion systems as they should be able to associate molecular
level entities and events with anatomy level effects and
organism level outcomes of cancer biology.
We recently proposed a novel system [4] for identifying

relations and events concerning genes or gene products
in the biomedical literature. The extraction method is
based on the search for an approximate subgraph match-
ing (ASM) between key context dependencies of events
and graphs of input sentences. The performance is in line
with the top systems in the GE task of the BioNLP- ST
2011 when evaluated on the 9 types of biological events.
In the BioNLP- ST 2013, in addition to generalizing our
system to investigate the two tasks, we attempted to inte-
grate semantics into the graph matching scheme of the
system using a distributional similarity model for more
events. Considering that the all-paths graph representa-
tion adopted by Support Vector Machines (SVM) has led
to the state-of-the-art performance in extracting drug-
drug [5] and protein-protein interactions [6], we also
evaluated the event extraction impact of using paths of
all possible lengths among event participants as key con-
text dependencies beyond using only the shortest paths
in our system. We achieved a 46.38% F-score in the CG
task, ranking 3rd and a 48.93% F-score in the GE task,
ranking 4th [7].
After the 2013 challenge, we further explored three

other ways to extend our ASM-based system in our pre-
viously published work. First, we allow non-essential
nodes to be skipped, and incorporated a node skipping
penalty into the subgraph distance function of the ASM
algorithm. The previous design allows variations in edge
attributes such as labels and directionalities but requires
each node in a pattern graph to find its injective match in
a sentence graph. While this requirement preserves the
complete lexical context of an annotated event in the pat-
tern, it retains terms specific to a particular event expres-
sion but non-essential to the underlying meaning of the
event, thus affecting the generalizability of the pattern. For
instance, “activity” in a cascaded Positive_regulation
pattern “induction of binding activity” is redundant as well
as “gene” in a Regulation pattern “regulated BIO_Entity
gene”. Protein/gene mentions are anonymized using
“BIO_Entity” to ensure generalization. We therefore con-
jecture that allowing non-essential nodes in patterns to be
skipped during graph matching can help to retrieve more
events.
Second, we learned from training data an individual

subgraph distance threshold for each event pattern. The
previous design assigns a unified threshold to all patterns
of each event type. Compared to the batch threshold, we
hypothesize that a customized threshold can capture

more precisely the variation tolerance of each pattern,
and thus contribute to the event extraction precision.
Third, we implemented the well-known empirical risk
minimization (ERM) principle [8] to optimize the event
pattern set. In contrast to the previous optimization
module that measures each pattern in terms of its predic-
tion precision, the new approach evaluates each pattern
in terms of both wrong and missed event predictions and
balances the prediction errors on training data against
regularization. We hope that the ERM-based optimiza-
tion approach can result in a pattern set that is more
generalizable to unseen data.
We organized the rest of the paper as follows: In

Section 2, we briefly introduce our graph matching based
event extraction system. We describe in Section 3 our
experiments during the 2013 challenge and attempted
extensions after the challenge. Some implementation
details are elaborated in Section 4 and our results and
discussion are presented in Section 5. Finally, we sum-
marize the paper and introduce future work in Section 6.

ASM-based event extraction
The BioNLP shared task data include annotations for
several different event types. The structure of each event
is defined to include the type of the event, a “trigger”
word that introduces the event, and the arguments of
the event (such as the theme or the cause of the event).
The arguments will typically be a biological entity intro-
duced in the text, or another event that has been
extracted.
We apply a machine learning approach based on the

concept of instance-based reasoning [8] that takes
advantage of consistencies in the linguistic expression of
events, and specifically considers the syntactic depen-
dencies that exist among the components of the events,
namely the triggers and the arguments. The objective is
to learn patterns of syntactic dependencies that connect
these components. These patterns can be matched to
the dependency graphs of new input sentences to iden-
tify relevant events in those sentences. This identifica-
tion is achieved through the application of a matching
algorithm called approximate subgraph matching (ASM)
that we developed previously [4]. The method incorpo-
rates a tolerance for error in the process of matching
patterns to graphs, and as a result is able to retrieve
events in varying syntactic contexts while maintaining a
high level of precision. The approach has been evaluated
on a range of event and relation extraction tasks, and
has achieved performance competitive with other sys-
tems. More details are available in the original publica-
tion [4]; the ASM algorithm itself has been released
open source at http://asmalgorithm.sourceforge.net/.
The architecture of the ASM-based system appears in

Figure 1. There are three primary components, (1) pattern
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induction, (2) matching of patterns to sentences, and
(3) optimization of patterns for the event extraction task.
The method targets events that are expressed in the scope
of a single sentence and assumes that the core entities that
play a role in the event (e.g., proteins or genes) have been
annotated in a preprocessing step. Below, we describe the
components in more detail.

Pattern induction
The objective of this step is to learn patterns corre-
sponding to provided events annotated in training data,
represented as a subgraph in a dependency parse of a
sentence. This step takes as input a dependency graph
representing a training sentence, and identifies the
shortest path in that graph that connects the annotated
trigger word to each event argument. We focus strictly
on the shortest path under the assumption that it con-
tains the strongest information about the connection
between the components of the event [9-11]. This focus
on the syntactic relationships, and the lexical items in
the path connecting the components, is in contrast to
other approaches to event extraction that make use of a
broader range of linguistic evidence in the sentence,
ranging from individual words or sequences of words
(n-grams), to the presence of semantic concepts that
have been pre-identified [6,12,13].
To facilitate generalization of the syntactic patterns to

new sentences involving different specific entities, anno-
tated named entities are replaced with a generic string
representing the type of the entity (e.g., “Protein”, “Organ-
ism” or “Cellular component”). This ensures that the parti-
cular lexical items filling the event argument roles are
abstracted out of the induced patterns.
Alongside the graph representation of each event, the

correspondences of the elements of the graph to the tar-
get event representation are recorded. This indicates the
specific event type that the graph corresponds to, as well

as which nodes in the graph correspond to specific event
arguments, and their semantic role with respect to the
event. This is utilized after pattern matching to produce
an event representation for a new sentence from the
matched pattern.
Directionality of the graph is ignored in the pattern

induction process. In the case that there are multiple
paths of the same (shortest) length in the dependency
graph, we consider all of them. Where there are trigger
words that consist of multiple lexical tokens, we extract
only paths that connect all of the tokens simultaneously.
For complex events where an event argument is itself an
event, the shortest path that connects the trigger word of
the main event to the trigger word of the sub-event is
utilized.
For a complex event that has multiple arguments, we

take the union of all of the shortest dependency paths
from a trigger to each event argument, identifying a
graph consisting of all event participants. We additionally
preserve the individual dependency paths to enable sepa-
rate extraction of specific event arguments. Where the
arguments share a common event trigger word, they are
grouped together. These two approaches are complemen-
tary: the use of individual paths aims to increase recall of
potential events, while the path unions increase precision
through joint inference.
Figure 2 provides an example of the pattern induction

process, starting with a sentence annotated with a Positi-
ve_regulation event, derived from the publication PMC-
1134658. Annotations for the basic entities (proteins) and
the event trigger are included in the figure. A dependency
graph for the sentence is produced using the McClosky-
Charniak domain-adapted parser [14], and paths that con-
nect the event triggers are identified. There are two paths
connecting the tokens “lead-20/VBP” and “ligation-6/NN”,
so both are considered. Five distinct event patterns are
inferred from this single example, listed in Table 1. The
graphs captured in “E1a” and “E1b” are unions of paths,
and therefore subsume the individual paths captured in
the other patterns.

Sentence matching
To identify an event in a test sentence, the sentence is
parsed into its dependency representation, and matched to
the patterns learned from the training data. Once a match
has been identified, the event representation is populated
from the relevant correspondences between the pattern
graph and the event semantics associated to the pattern.
In this approach, event recognition reduces to a (depen-
dency) subgraph matching problem. We proposed a novel
approximate subgraph matching (ASM) algorithm, which
identifies a subgraph in a test sentence graph isomorphic
to a pattern graph, to perform this matching in prior work
[4]. This algorithm is defined as follows.

Figure 1 ASM-based Event Extraction Framework.
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Definition 1. An event pattern graph Gr = (Vr , Er) is
approximately isomorphic to a subgraph Ss of a sentence
graph Gs = (Vs, Es), denoted by Gr ≅ Ss ⊆ Gs, if there is
an injective mapping f : Vr ® Vs such that, for a given
threshold t, t ≥ 0, the subgraph distance between Gr

and Gs satisfies 0 ≤ subgraphDistf (Gr, Gs) ≤ t, where
subgraphDistf (Gr, Gs) = ws × structDistf (Gr, Gs)+wl ×
labelDistf (Gr, Gs)+ wd × directionalityDistf (Gr, Gs).
To allow for some variations to exist between the sen-

tence graph and the pattern graph, we introduce three
measures that each captures one kind of variation
between the graphs. The measure structDist accumu-
lates structural differences (formalized as a difference in
the path length), labelDist counts differences in the edge
labels, and directionalityDist tracks differences in
the edge directionality. Each measure is computed for the
path connecting a pair of nodes in the pattern graph,
compared with the corresponding pair of nodes in the
sentence graph, where the corresponding nodes are
determined by the alignment of the graphs that results in
the minimal structural difference with the pattern graph.
Each of these measures is given a non-negative weighting
in the algorithm (ws, wl and wd, respectively).

By default, these weights are set to be equal; how-
ever, they can be tuned to emphasize some differences
over the others. A distance threshold t controls the
amount of divergence between two graphs that is
allowed, and controls isomorphism quality. Smaller
values of t result in stricter, more closely isomorphic
matching. Larger values of t allow for more variation,
enable matching in more complicated sentences and
generally lead to increased recall of events from the
test sentences. However, it also requires evaluation of
more possible matches and can therefore incur a larger
search cost.
An example of event extraction using ASM is pre-

sented in Figure 3. Again, we use the McClosky-Charniak
parser [14] to parse the sentence, and attempt to match
the sentence graph to the pattern graph for the Positive
regulation event. In order to support a match between a
pattern node and a sentence node, their relaxed POS tags
(P*, allowing a plural noun form to match with a singular,
or various conjugated forms of a verb to match) and the
lemmatized form (L, derived from application of the Bio-
Lemmatizer [15]) of the associated tokens must be identi-
cal ("P*+L” matching criteria).

Figure 2 Event Pattern Induction Example.

Table 1. Event pattern representation

Pattern ID Pattern Description Graph Representation

Type Trigger Theme Cause

E1a Pos. reg. lead-20/VBP Phosphorylation:
phosphorylation-23/NN

Binding:
ligation-6/NN

nsubj(lead-20/VBP, ligation-6/NN) prep_to(lead-20/VBP,
phosphorylation-23/NN)

E1b Pos. reg. lead-20/VBP Phosphorylation:
phosphorylation-23/NN

Binding:
ligation-6/NN

rcmod(ligation-6/NN, lead-20/VBP) prep_to(lead-20/VBP,
phosphorylation-23/NN)

E1c Pos. reg. lead-20/VBP Phosphorylation:
phosphorylation-23/NN

prep_to(lead-20/VBP, phosphorylation-23/NN)

E1d Pos. reg. lead-20/VBP Binding:
ligation-6/NN

nsubj(lead-20/VBP, ligation-6/NN)

E1e Pos. reg. lead-20/VBP Binding:
ligation-6/NN

rcmod(ligation-6/NN, lead-20/VBP)
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Pattern matching proceeds iteratively and bottom-up,
to enable the extraction of complex and nested events.
As illustrated in Figure 4, containing three chained
events from a sentence (PMID-10229815), events which
only take entities as arguments are matched first, and
any matched events are available as potential arguments
of higher-order events in subsequent pattern matching.
The process ends when no further event candidates are
produced for a test sentence.

Based on an intuition that the syntactic contexts that
relate particular types of sub-events to a higher-order
event are likely to generalize across event types, we do not
constrain the type of a sub-event during higher-order
event pattern matching. This increases the chance of the
system extracting complex events with nested structures,
while still respecting the syntactic constraints.

Pattern set optimization
Like other instance-based reasoning systems, it is critical
that the patterns we match to test sentences have high
precision (avoiding false positive matches). For instance,
the dependency between “TNF” and “mRNA” in a Tran-
scription pattern derived from a sentence such as
“expression of TNF mRNA” should not result in the
extraction of a Transcription event for the phrase “level
of TNF mRNA”, even though they share a matchable
dependency. We therefore implemented a strategy to
evaluate the precision of each induced pattern ri, based
on Equation (1) applied to test data. Patterns are ranked

Figure 3 ASM-based Event Extraction.

Figure 4 Iterative Bottom-up Event Extraction Example.
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by Prec(ri); any patterns falling below an empirically
determined threshold are removed from the pattern set.

Prec(ri) =
#correct predictions by ri

#total predictions by ri
(1)

Due to potential down-stream effects of this filtering on
nested patterns resulting from our iterative pattern match-
ing process, we also applied the pattern set optimization
process iteratively. In each iteration, an end-to-end evalua-
tion process of matching over test sentences, pattern rank-
ing and pattern filtering is performed. This results in an
optimized pattern set that improves the overall precision
of the event extraction enabled by our method.

Extensions to event extraction system
We extended our previously proposed event extraction
system [4] in several ways for the 2013 BioNLP shared
task. First, we experimented with incorporating a distri-
butional similarity model into the graph matching
scheme to allow for more variation during matching,
and second, we explored the use of dependency paths of
all possible lengths (rather than only shortest paths) in
the pattern induction phase.
We then explored additional changes to the approach

in work subsequent to the 2013 shared task: (1) incor-
porate a node skipping penalty into the subgraph dis-
tance function of our approximate subgraph matching
algorithm. (2) learn a customized threshold for each
pattern. (3) implement the well-known empirical risk
minimization (ERM) principle to optimize the event pat-
tern set. Next, we elaborate these system experiments in
detail.

Experiments in BioNLP-ST 2013
Integrating distributional similarity model
As described above, the ASM algorithm employs a dis-
tance measure based on 3 dimensions of variance that
can exist between two graphs. This allows for some dif-
ferences to exist between two matched graphs. However,
the node mapping that is performed between the graphs
is based on strict lexical matching. In our previous
work, we considered various criteria for node matching,
including relaxing of the strict matching to consider
token lemmas (L) or POS tags (P), or combinations
such as “P*+L” introduced above. However, this still
requires fairly tight alignment between a pattern graph
and a sentence graph. We experimented with dropping
any lemma matching requirement, and only using POS
information, but observed a sharp drop in precision.
Despite a nearly 14% increase in recall, the overall
impact on F-scores was strongly negative [16]. This sug-
gests that word-level information is an important com-
ponent of matching in the framework of our system.

To allow for additional flexibility in word choice, we
decided to explore a refinement of the node mapping
strategies that takes lexical variation into consideration.
This can be considered another dimension of variance
to be supported in the algorithm, and would for
instance allow a pattern token “crucial” to match a sen-
tence token such as “critical” which could result in
extraction of a relevant event. We previously attempted
to allow for such lexical variation by allowing words to
match their synonyms (as defined by WordNet [17])
[18]. However, since WordNet is developed for the gen-
eral English language, it relates biomedical terms e.g.,
“expression” with general words such as “aspect” and
“face”, thus leading to incorrect events.
We therefore decided to experiment with a different

approach to accommodating lexical variation during
node matching, specifically by integrating an empiri-
cally-derived similarity model. We implemented a distri-
butional similarity model (DSM); this model is based on
the distributional hypothesis [19] that words that occur
in the same contexts tend to share similar meanings.
We expected that incorporating such a model would
increase recall without impacting precision too much.
There have been many approaches to computing dis-

tributional similarity of words in a corpus [20,21]. The
output is typically a ranked list of similar words to each
word. We reimplemented the model proposed by [21],
in which each word is represented by a feature vector
and each feature corresponds to a context where the
word appears. The value of the feature is the pointwise
mutual information [22] between the feature and the
word.
Let c be a context and Fc(w) be the frequency count of

a word w occurring in context c. The pointwise mutual
information, miw,c between c and w is defined as:

miw,c =
Fc(w)

∑

i
Fi(w)

N
×

∑

i
Fc(j)

N

where N =
∑

i

∑

j
Fi

(
j
)
is the total frequency count of

all words and their contexts.
Since mutual information tends to be biased towards

infrequent words/features, we multiplied the above
mutual information value by a discounting factor as sug-
gested in [21]. We then computed the similarity
between two words via the cosine coefficient [23] of
their mutual information vectors.
We tried two different strategies to integrate distribu-

tional similarity into our event extraction system. In the
first strategy, DSM is applied at the node matching step,
allowing a match between two unequal lexical items if
the sentence token appears in the list of the top M most
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similar words to the pattern token. The second
approach is generative and applies to event patterns.
A copy of an event pattern is produced by substituting a
pattern token with a similar term; this copying is per-
formed for each of the top M most similar words. The
first method results in a more general flexibility during
event extraction, while the second method gives the
opportunity to measure the impact of each possible
token substitution in a pattern separately, and to filter
out spurious synonyms during the pattern optimization
step.
Adopting all-paths for event patterns
The ASM algorithm was designed to work with only the
shortest path between event components [4]. However,
there is a body of work that has explored the value of
considering all paths in a dependency graph for tasks
such as extraction of protein- protein interactions (PPI)
[6], event extraction [12], and drug-drug interactions
[24]. The latter system, using an all-paths graph kernel,
won the recent DDIExtraction 2011 challenge [25]. The
kernel includes two representations for each sentence
with a pair of interacting entities, the full dependency
parse and the linear token sequence. At the expense of
computational complexity, this representation enables
the kernel to explore the full dependency graph, and
thereby the broader sentential context of an interaction.
The shortest dependency path may not provide suffi-

cient syntactic context to enable precise relation extrac-
tion. Therefore, borrowing from the all-path graph
representation, we experimented with extending the repre-
sentation used by the ASM algorithm in the pattern
induction step to consider acyclic paths of all possible
lengths among event components.

Experiments after BioNLP-ST 2013
Incorporating node skipping penalty into ASM
As shown in Definition 1, the subgraph distance design
in our system [4] considers variations in edge labels and
edge directionalities but insists that a candidate match
should possess an injective mapping between nodes of a
pattern graph and a sentence graph.
Preserving the complete lexical contexts of an anno-

tated event in the induced pattern has the advantage of
achieving precise predictions. However, it often retains
terms from a particular textual expression of an event
but in fact not essential to the underlying meaning of
the event. For instance, the dependency context “induc-
tion of binding activity” of a pattern encodes the context
of a Positive_regulation event cascaded with a lower
order Binding event. Since the term “binding” indicates
a binding activity by itself, the additional “activity” is
redundant. Similarly, the term “gene” in the dependency
context of a Regulation event pattern “regulated BIO

Entity gene” is neglectable when the “BIO Entity” itself
has been pre-annotated as a gene. Therefore, we
hypothesize that providing an option in graph matching
to skip the non-essential context words encoded in pat-
terns can improve their generalizability.
We revised the subgraph distance function proposed

in [4] by adding in a nodeDist measure which penalizes
the number of skipped non-essential nodes normalized
by the total number of pattern graph nodes for each
candidate match between pattern and sentence graphs.
In our experiments, essential context nodes of a pattern
are considered to be the nodes corresponding to event
triggers and event arguments such as theme or cause.
The sub-event trigger is also considered for patterns
that encode cascaded events.
Consequently, the original injective mapping f : Vr ® Vs

as in Definition 1 is relaxed to be f ′ :→ V ′
r → Vs where

V ′
r is a set of essential context nodes in a pattern graph. A

candidate match can be considered only if a f ’’ exists
between two graphs. In case that the original node injec-
tive mapping constraint is satisfied, i.e., no pattern node is
skipped, nodeDist becomes 0 and the new distance func-
tion is equivalent to the original function. Similar to the
weights ws, wl and wd, the non-negative weight wn can be
tuned to accommodate the emphasis on nodeDist in the
distance function. The new function is defined as follows.
subgraph Dist′f (G, Gs) = ws × structDistf (Gr, Gs) + wl ×

labelDistf (Gr, Gs) + wd × directionalityDistf (Gr, Gs) +
wn × nodeDistf (Gr, Gs), where

modeDistf (Gr , GS) =
#{Vr − V ′

r}
#Vr

.

Learning individual distance threshold for each event
pattern
In the original design of our system [4], a unified sub-
graph distance threshold is assigned to all patterns of the
same event type. Since the encoded graphs are different
across the patterns, it is difficult for an event type-wise,
batch threshold to precisely capture the graph variation
tolerance of each pattern. Thus, we conjecture that an
individual threshold would be more appropriate to regu-
late the subgraph retrieval quality of each pattern, thus
improving the event extraction precision.
For patterns encoding lower order events, i.e., events

that do not contain nested sub-events, learning a custo-
mized threshold is straightforward because their predic-
tion results can be individually assessed. For a given
threshold range, we can iteratively search for a threshold
leading to the maximum performance of a pattern. The
threshold is updated only if the current value results in a
larger number of correct event predictions and an
equivalent or better prediction precision. To alleviate the
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potential overfitting problem, a held-out data set is used
to validate the candidate threshold before finalizing each
update.
The same approach, however, cannot be applied to

patterns encoding higher level events as individually
measuring their performance is not feasible. Patterns
nested with lower order sub-events depend on the cor-
responding lower order patterns, while patterns cas-
caded with higher order sub-events rely on all the
patterns involved in the downstream, nested structures.
Instead of tracing the hierarchical event correlations to
evaluate each higher order pattern, we adopted a holistic
approach to learn individual thresholds using a genetic
algorithm (GA) [26] that automatically determines the
values for higher order patterns by evaluating the entire
event pattern set.
Our GA works with a population of potential thresh-

old settings. Given a threshold range, the GA simulta-
neously assigns a candidate threshold value to each
higher order pattern. The fitness function of GA evalu-
ates the performance of the whole pattern set under the
current threshold settings. The individually learned
thresholds of lower order patterns remains untouched
in the GA and the events produced by them serve as
potential arguments to contribute to the functioning of
higher level patterns. The GA iterates the fitness func-
tion and eventually returns a threshold setting that max-
imizes the F-score on the training data. Algorithm 1
formalizes our approach for learning the individual dis-
tance threshold for event patterns.
When evaluating pattern performance under different

threshold settings, graph matching between patterns and
sentences is performed only once with an assignment of
the maximum candidate threshold to all patterns. By
maintaining information on event predictions and corre-
sponding pattern thresholds together, performance of
various threshold settings can be efficiently computed.
This is important for the GA especially when a large
number of generations or population size is specified.
Algorithm 1 Pattern Threshold Learning Algorithm
Input: Dependency graphs of training and held-out

sentences Gt and Gh; A finite set of event patterns P =
{p1, p2, · · ·, pi, · · ·}, composed of lower order pattern
subset Pi and higher order subset Ph; A predefined
threshold value search range V = (vmin, vi, · · ·, vmax).
Output: A finite set of thresholds for patterns T = {t1,

t2, · · · , ti, · · ·}.
1: for all pi ∈ Pl do
2: for all vi ∈ V do
3: if updateSinglePattern(pi, vi, Gt, Gh) is satis-

fied then
4: ti ← vi
5: //updateSinglePattern() evaluates the indivi-

dual performance of pi with threshold vi, and

6: //ti updated only if vi results in more correct
predictions and an equivalent or better precision
7: Th ← geneticAlgorithm(P, Tl, Gt, V )
8: //geneticAlgorithm() undergoes procedures of selec-

tion, crossover and mutation, and returns an optimized
threshold setting T for P by evaluating P as a whole
9: return T

Pattern set optimization by empirical risk minimization
algorithm
The original pattern set optimization module [4] mea-
sures the prediction precision of patterns, and iteratively
eliminates patterns whose precision is lower than an
empirical threshold. We consider that the optimal event
pattern set should satisfy the following three criteria: (1)
maximum number of matches; (2) fewest number of
prediction errors; and (3) least redundancy in patterns.
Obviously, these criteria cannot be met simultaneously.
Considering that the total number of prediction matches
by the pattern set has been decided when the individual
threshold of each pattern is learned, our optimization
task becomes one of finding the best balance between
the criteria (2) and (3).
We implemented the well-known empirical risk mini-

mization (ERM) principle [8,27] to optimize the event
pattern set by balancing prediction errors on training
data against regularization on the overall redundancy of
the pattern set. The objective function of our problem is
shown in in Eq.(3).

f (P) = E(P, G) + λCp ≥ 0 (3)

E(P, G) in Eq.(4) models the prediction errors including
both wrongly predicted and missed events, produced by a
pattern set P evaluated against the gold annotation G.

E(P, G) = Nwrong + Nmissed (4)

Cp accumulates the information redundancy of each
pi ∈ P , measured by the percentage of non-essential

nodes
#{Vr − V ′

r}
#Vr

in pi, and l is a regularization para-

meter that determines the degree of the penalty on the
total redundancy.
Therefore, given an input pattern set P, our optimiza-

tion problem is to find a pattern set P* ⊂ P, which satis-

fies P∗ ⊂ arg min
P′⊂P

f (P′) , where P’ is a subset of

P. Clearly, minimizing f (P ) prefers compact and effec-
tive patterns encoding event arguments in an adjacent
context, and penalizes the redundant information in
complex patterns.
For our problem, a greedy backward elimination fea-

ture selection method is implemented, in which each
pattern is evaluated according to its impact on the
entire pattern set P, and the one whose removal incurs
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the largest reduction in f (P) is removed in each itera-
tion. The optimization terminates when f (P) cannot be
further reduced. Algorithm 2 shows the detailed
procedure.
With lCp regularizing the optimization, the final set

P* may not be the best pattern set in terms of minimiz-
ing the prediction errors on training data, but has better
generalizability on unseen data.
Algorithm 2 ERM-based Pattern Set Optimization

Algorithm
Input: A finite set of event patterns P = {p1, p2, · · ·, pi, · · ·},

where the distance threshold ti of pi is fixed.
Output: An optimized pattern set P*.
1: Pc ← P // Pc is the current pattern set
2: while Pc is not empty do
3: compute f (Pc)
4: maxGain = 0
5: for all pi ∈ Pc do
6: Pt ← Pc − {pi}
7: Δf = f (Pc) − f (Pt)
8: if Δf > maxGain then
9: maxGain = Δf
10: p* ← pi
11: if maxGain ≤ 0 then
12: go to Line 14
13: Pc ← Pc − {p*}
14: P* ← Pc
15: return P*

Implementation
Experiments in BioNLP-ST 2013
Data preprocessing
The BioC project [28] provides a unified BioC XML for-
mat to address the interoperability issue among existing
text mining tools. The shared task organizers provided
the preprocessed data in the BioC [28] compliant XML
format as supporting resources. We used the provided
text analyses such as tokenization, sentence segmenta-
tion, POS tagging and lemmatization. For the syntactic
analysis, considering that different syntactic parsers use
different underlying approaches to analyze text, we
employed both the Stanford parser [29] and the
McClosky-Charniak-Johnson (Charniak) parser [14] to
take advantage of the structural analysis of sentences
from multiple possible views. The Stanford parser per-
forms joint inference over the results of a lexicalized
dependency parser and an unlexicalized Probabilistic
Context-Free Grammar (PCFG) parser. The Charniak
parser conducts N-best parse reranking over a lexica-
lized PCFG model. According to a recent evaluation
[30] on parsers that are trained using the GENIA Tree-
bank corpus, both parsers achieve the state-of-the-art
performance on the biomedical text. In our experiments,
training sentences are parsed by both parsers to produce

dependency graphs for event pattern induction while
test sentences are parsed by the Charniak parser only
for event extraction.
ASM parameter setting
For the GE task, the ASM requires 16 parameters. In
addition to the distance function weights ws, wl and wd,
an individual threshold te is assigned to each of the 13
event types as they are likely to possess different event
contexts. Likewise, the ASM requires 43 parameters for
the CG task. We inherited the previous ASM para-
meters [4] determined on the 2011 GE task training
data using a genetic algorithm (GA) [26], and adapted
them to the 2013 tasks in terms of the event type and
the configuration of argument. For example, the same te
of the “Binding” events in the GE task is assigned to the
“Pathway” events in the CG task as the two event types
share similar argument configurations.
The parameter setting of the 2013 GE task is pre-

sented in Table 2 with the equal weight constraint ws =
wl = wd. The graph node matching criterion “P*+L”
requires the relaxed POS tags and the token lemmas to
be identical. We observed that it demonstrated a super-
ior performance among all the matching criteria, and
thus we used it in the ASM.
Distributional similarity model
Based on Pantel’s distributional similarity model [21], we
had the following modifications in our implementation:
(1) instead of surface words, we used lemmas generated
by the BioLemmatizer [15] along with their POS infor-
mation for better generalization and category disambi-
guation. (2) we took advantage of dependency contexts
where words appear rather than their linear contexts.
Besides dependent tokens, the dependency type and the
directionality are also captured from dependency graphs.
For example, “toxicity®amod” is a feature of the token
“nonhematopoietic JJ”. While we only included the first-
level dependencies of a word in the model, contexts of
multiple dependency depths can be flexibly used in our
implementation. (3) we scaled the resulting miw,c into

the 0[1] range using
λ, miw,c

1 + λ · miw,c
as unnormalized,

Table 2. ASM parameter setting in the 2013 GE task

Parameter Value Parameter Value

tGene expression 8 tUbiquitination 3

tTranscription 7 tBinding 7

tProtein catabolism 10 tRegulation 3

tPhosphorylation 8 tPositive regulation 3

tLocalization 8 tNegative regulation 3

tAcetylation 3 ws 10

tDeacetylation 3 wl 10

tProtein modification 3 wd 10

Liu et al. BMC Bioinformatics 2015, 16(Suppl 16):S2
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greater miw,c values may dominate the similarity compu-
tation between words. Empirically, a value of l = 0.01 is
used.
Compared to exisiting biomedical corpora that focus

on particular biological domains or topics, PubMed
abstracts cover a much wider range of words and cap-
ture their diverse usage contexts in biomedical texts.
Therefore, we randomly selected 5 million abstracts
from the whole PubMed and built our distributional
similarity model based on the random selection. To con-
centrate on representative context vectors for w, in the
computation we only consider miw,c for which c appears
more than 5 times. The final model is composed of
2.8 million distinct tokens and 0.4 million features.
When an amino acid such as “lysine” is queried to both
the original Pantel model and our modified model, the
top 15 tokens in the ranked list produced by our model
are all correct amino acid names.

Experiments after BioNLP-ST 2013
Pattern threshold learning
Two empirical search ranges of integer values: [0,12] and
[0,6] are used in Algorithm 1 for learning the individual
threshold of lower order patterns and higher order pat-
terns, respectively. A threshold higher than 12 for lower
order patterns may produce more correct predictions at
the expense of precision. However, the incurred lower
level false positive events will be propagated to the subse-
quent, recursive prediction of higher level events, leading
to a detrimental error accumulation.
Determining thresholds of lower level patterns through

explicit, individual search allows the GA to focus on the
combinatorial effects of thresholds of higher order pat-
terns from a holistic perspective. We set up the GA to
evolve for 100 generations.
Each generation consists of a population of 100 combi-

nations of potential thresholds. Starting with a random
population of 100 potential solutions, GA proceeds until
it reaches 100 generations. The population size and the
number of generations are decided with consideration of
the runtime cost of evaluating the fitness function. A
large population size or a large number of generations
would incur an expensive runtime cost of evaluation. An
equal weights ws = wl = wd = wn constraint is used
throughout our experiments performed after BioNLP-ST
2013.
Pattern set optimization
The regularization parameter l is determined by opti-
mizing l on the training dataset and testing on the
development dataset. Using the best value of l in the
previous step, we obtained the final event pattern set on
the union of the training and development sets.
According to Algorithm 2, it is time-consuming to re-

evaluate the entire pattern set Pc in each iteration. In

our implementation, we actively traced the patterns
potentially impacted by the removal of p*, so the algo-
rithm is efficient by re-evaluating in each iteration only
a small subset of Pc.

Results and discussion
In this section, we respectively report our performance
on the GE task and the CG task. We focus on the GE
task to discuss the performance of the event extraction
system and our attempted extensions both in and after
the 2013 shared task.

GE task
Datasets
The dataset of the 2013 GE task is composed of full-
text articles from PubMed Central. In terms of sections,
the task organizers divided articles into smaller seg-
ments [31]. The statistics of the GE dataset is shown in
Table 3.
To be consistent with the 3:1 training/development

data ratio in previous GE tasks [1,2], we combined the
development and the training sets, and reshuffled the
data randomly to create a training/development division
of 353/118. We report hereafter results on the training/
development data using the new partition.
GE results on development set in BioNLP-ST 2013
Table 4 presents the results on the development data
using event patterns from different parsers. We have
removed patterns that possess isomorphic graph repre-
sentations detected by an Exact Subgraph Matching
(ESM) algorithm [16], and reported only the numbers of
optimized, unique patterns. The ensemble pattern set
that contains patterns from both parsers obtains a
superior result over using an individual parser. It is
understandable that the Charniak parser produces a per-
formance close to the ensemble performance as event
extraction is performed on sentences parsed by the
Charniak parser. We used the ensemble pattern set in
the experiments.

Table 3. Statistics of BioNLP-ST 2013 GE dataset

Attributes Counted Training Development Test

Full article segments 222 249 305

Proteins 3,571 4,138 4,359

Annotated events 2,817 3,199 3,301(hidden)

Table 4. Performance using different parsers on the
development set

Parser Type Event pattern Recall Precision F-score

Charniak 2,923 47.01% 66.01% 54.91%

Stanford 3,305 43.66% 67.67% 53.08%

Ensemble 4,617 47.45% 65.65% 55.09%
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When the distributional similarity model (DSM) is used
in graph matching, except biological entities, we granted
a node match as long as a pattern token is in the list of
top M most similar words of a sentence token. “DSM 3”
represents the top 3 similar words according to the DSM.
Further, for comparison we applied DSM to trigger
tokens only, as shown in Table 5.
We observed that with the DSM the recall is signifi-

cantly improved to 53.43%. However, a substantial preci-
sion decrease results in an unfavorable F-score lower than
the ensemble baseline in Table 4. After looking into the
specific graph matches, we realized that a large number of
the false positive events come from antonyms generated
by the DSM because they always appear in same contexts.
As a result, for instance DSM produces “decrease” and
“low” as the most similar words for “increase” and “high”.
Automatically removing the antonyms deserves further
investigation in our future work. When the top M most
similar words are used to generate additional patterns,
while the optimization process ensures the extraction pre-
cision, the recall does not increase as we expected. The
introduced false positive regulation-related events offset
the recall gain from non-regulatory events. As a result, we
obtained a performance comparable to the baseline.
Yih et al. [32] recently proposed a method named

PILSA by introducing a polarity-inducing vector space
representation into the traditional latent semantic analy-
sis to automatically identify antonyms. With the help of a
discriminative training, PILSA significantly outperforms
the previous methods. While the method was proposed
to handle antonyms in general English, considering that
the antonym problem we encountered is mostly related
to verbs and adjectives, we are interested in applying it to
our biomedical context in the future. In addition, instead
of choosing the top M most similar words, we will con-
sider thresholding the selected DSM variants by DSM
similarity in future work. This might alleviate the preci-
sion problem as some words do not necessarily have
close synonyms while others have many.
As shown in Table 6 compared to the shortest paths,

using all-paths does not lead to a substantial F-score
increase in our event extraction system. However, due

to that the number of patterns is more than doubled,
the runtime cost of pattern optimization is significantly
increased. In fact, the optimization process eventually
discarded a large number of all-paths patterns. We con-
sider that since the relation-signaling words have been
annotated as triggers in the event extraction task, they
are naturally included into our shortest path-based pat-
terns. This contrasts with the motivation of the all-paths
graph representation proposed for binary relation pro-
blems [6] in which relation-signaling words are often
missed on the shortest paths unless broader contexts
are explored. This partially explains why using all-paths
did not lead to a significant increase.
GE results on development set after BioNLP-ST 2013
The core components in our original [4] and the
extended systems include, respectively: (1) ASM without
node skipping; (1’) ASM with node skipping; (2) event
type-wise, batch pattern threshold; (2’) individual pattern
threshold; (3) precision-based optimization; and (3’)
ERM-based pattern set optimization. Therefore, the
event extraction system used in BioNLP-ST 2013 can be
represented by “1 + 2 + 3”, and the extended system
after the shared task denoted by “1’ + 2’ + 3’”. Table 7
provides the results on the GE development dataset
under various combinations of system components to
demonstrate the impact of different settings. Parameters
in Table 2 are used for the batch threshold setting. For
compactness, we use the index to denote the corre-
sponding system component hereafter.
Compared to our performance reported in BioNLP-ST

2013, our new extensions together improve the overall
F-score by 1.6%, with a 0.6% drop in recall but a signifi-
cant 6% increase in precision. Careful examination on
the prediction results confirms that the precision
improvement primarily comes from extensions 2’ and 3’.
The individual threshold is customized for each pat-

tern and helps to reduce the prediction errors of each
Table 5. Performance of integrated DSM on development
set

All Tokens Recall Precision F-score

DSM 1 47.98% 52.56% 50.17%

DSM 3 48.68% 35.07% 40.77%

DSM 10 53.43% 19.38% 28.44%

Trigger Tokens Recall Precision F-score

DSM 1 48.06% 54.22% 50.95%

DSM 3 48.59% 37.00% 42.01%

DSM 10 53.35% 24.65% 33.72%

Table 6. Performance of using all-paths on development
set

Path Type Event Pattern Recall Precision F-score

All-paths 9,527 48.77% 64.64% 55.59%

Shortest paths 4,617 47.45% 65.65% 55.09%

Table 7. Performance comparison on development set
under various settings

System Setting Event Pattern Recall Precision F-score

1 + 2 + 3 4,617 47.45% 65.65% 55.09%

1l + 2 + 3 4,593 49.21% 64.48% 55.82%

1l + 2 + 3l 4,533 48.50% 67.36% 56.39%

1 + 2l + 3l 4,787 45.60% 72.14% 55.88%

1l + 2l + 3l 4,806 46.83% 71.89% 56.72%
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pattern by capturing more precisely the individual varia-
tion tolerance. As a result, more patterns are retained in
the final pattern set, rather than being eliminated by the
optimization process when using the type-wise, batch
threshold. The ERM-based pattern set optimization also
contributes to the noticeable 72% precision by modeling
the prediction errors more effectively as compared to
the precision-based optimization using a predefined
threshold. We observed that patterns possessing a pre-
diction precision above ¼, which would have been pre-
served in the original system [4], were actually removed
by the ERM-based optimization after assessing their pre-
diction errors and information redundancy. However,
the individual threshold incurs a drop in recall. As
observed in Table 7 settings that possess batch thresh-
old generally achieve a higher recall than the ones using
individual threshold.
We noticed that the node skipping extension to the ori-

ginal ASM algorithm mostly contributes to extracting
higher order events rather than lower level events. Based
on our observation, lower order events are generally
described in a narrow context composed of a focused set
of contextual words. For instance, without considering
event triggers and participating biological entities, only
56 different contextual words are used across all Tran-
scription event patterns from training data, such as “tran-
script”, “amount”, “marker” and “mRNA”. When a
Transcription event is mentioned in text, it is always
characterized by these context words. As a result, skip-
ping contextual nodes in these patterns harms their
extraction precision because the meaning of the encoded
event becomes erroneous, leading to the removal of the
patterns during optimization. In this case, essential con-
textual nodes in patterns are beyond our definition that
includes only event triggers and event arguments.
On the contrary, the description of higher order events

involves a much broader context consisting of an open
set of contextual words. For example, we extracted 300
non-essential nodes across all Positive_regulation event
patterns, involving words like “vector”, “role”, “ability”,
“activity” and “level”. This is understandable because
higher order events in text describe various kinds of

interactions among other events, and thus authors’
choice of words tends to be diverse and flexible. Com-
pared to the indispensable role of event triggers that
bridges the underlying sub-events, the weaker supporting
role of other nodes in higher order patterns enables the
possibility of leaving them out in the graph matching.
Since 1’ + 2 + 3’ and 1’ + 2’ + 3’ achieve a better F-

score than others on the development set, we focused
on both settings to experiment on the GE task test data.
GE results on test set in BioNLP-ST 2013
Considering that the DSM and all-paths extensions do not
lead to significant improvements, we applied the original
system settings to extract events from the test dataset.
Further, we took advantage of existing annotated resources
by adding the 2011 GE task data [33] and the EPI (Epige-
netics and Post-translational Modifications) task data [34]
as additional training instances for relevant event types of
the 2013 GE task. In the end, we obtained 14,448 event
patterns from our training data across all event types. For
one document, our system takes less than one second to
match it with all patterns and produce extraction results.
Our NCBI submission ranks 4th among 12 different

participating teams of the GE task, achieving a F-score of
48.93% on the 305 test documents. The overall perfor-
mance of top 8 systems is presented in Table 8. Also, it
provides a detailed performance comparison across dif-
ferent event types. “SVT” represents simple events that
involve a trigger and a theme only; “PTM” denotes pro-
tein modification related events that possess an optional
cause argument; “BIND” indicates Binding events that
take participants of varying numbers; “REG” stands for
regulatory events with complex semantic roles.
Our performance is close to the best-performing sys-

tems “EVEX” [35] and “TEES 2.1” [36]. While recall and
precision are generally adjustable and inversely related,
our system shows an overall good precision. This sug-
gests that automatically learned and optimized event
patterns not only have a stable generalization to unseen
text but also can identify events precisely.
Further, as shown in Table 9 we investigated the

impact of the additional training instances from 2011
tasks and the ensemble pattern set from different

Table 8. Performance comparison among top 8 systems in 2013 GE task

System SVT PTM BIND REG TOTAL

F1(%) F1(%) F1(%) F1(%) Recall(%) Precision(%) F1(%)

EVEX 76.59 65.37 42.88 38.41 45.44 58.03 50.97

TEES 2.1 76.82 66.49 43.32 38.05 46.17 56.32 50.74

BioSEM 76.11 74.37 49.76 35.8 42.47 62.83 50.68

NCBI 72.55 70.45 39.56 34.25 40.53 61.72 48.93

DlutNLP 74.42 69.36 42.43 32.92 40.81 57 47.56

HDS4NLP 79.07 73.17 37.32 21.64 37.11 51.19 43.03

NICTANLM 64.66 53.64 31.61 29.63 36.99 50.68 42.77

USheff 64.86 55.68 37.7 30.18 31.69 63.28 42.23
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parsers. The 2011 data increase our F-score by 3%, and
help us become the only team that detected “Ubiquitina-
tion” events from test data. We observed that compared
to using patterns from the Charniak parser alone, the
Stanford parser induced patterns do not bring in addi-
tional benefits on the test data.
GE results on test set after BioNLP-ST 2013
Similarly, we further incorporated the 2011 shared task
data into our system and tested settings 1’ + 2 + 3’ and
1’ + 2’ + 3’ on the GE task test data. Table 10 presents
the detailed comparison across event types between our
results during and after BioNLP-ST 2013.
A similar trend to the results on the development set

is observed on the test set. Our new extensions help to
improve the extraction precision by 3% to 65%. How-
ever, the 1% drop in recall coincidentally results in a F-
score identical to our performance in the shared task (1
+ 2 + 3).
We observed that the regularization parameter l plays

an important role in the ERM-based optimization pro-
cess. Its impact is primarily on patterns that possess
multiple non-essential nodes and produce a small num-
ber of events. It determines the inclusion or removal of
these patterns in the pattern set optimization. We opti-
mized l on the 2011 shared task data and validated it
on the 2013 data. Eventually, l = 6 and l = 3 are used
to produce the results for 1’ + 2’ + 3’ and 1’ + 2 + 3’ in
Table 10.
We also evaluated the individual impact of the 2011

data and 2013 data on the test set using the setting 1’
+2’ +3’ as presented in Table 11. The 2011 data achieves
a comparable performance to the 2013 data, and the
extensions help to improve the F-score by 0.8% (46.51%
vs. 45.75%) when only the 2013 data is used in training.
Based on the presented results, our extensions devel-

oped after BioNLP-ST 2013 contribute mostly to the
event extraction precision. We investigated the possible
reason for the recall loss by closely examining the

process of the ERM-based optimization. We realized
that the graph patterns derived from the shortest paths
connecting event arguments are sometimes too com-
pact, for instance the Positive_regulation pattern
“BIO_Entity activities” and the Gene_expression pattern
“presence of BIO_Entity”. The information redundancy
of these patterns is 0 because the participating biological
entities are directly connected with the event triggers
“activities” and “presence”. However, due to the lack of
a more detailed event context, such as a description on
the kind of “activities” or an environment causing the
“presence”, while producing correct predictions, these
patterns incur a much higher number of false positive
events. Therefore, even though the subsequent removal
of these patterns by the optimization module ensures
the overall precision, it results in an inevitable recall
decrease. Recovering the correct predictions from these
patterns requires additional context information beyond
the current graph representation. In this regard, super-
vised learning-based systems have demonstrated their
ability in exploring a broader context in a sentence by
taking advantage of all individual words and sequences
of words [6,12,13].

CG task
Datasets
The dataset of the CG task is based on an existing corpus
composed of abstracts from the angiogenesis domain [37].
The CG task targeted a challenging group of 40 cancer
biology related event types and involved 18 kinds of biolo-
gical entities describing the development and progression
of cancer [38,39]. Table 12 presents some statistics of the
CG dataset.
CG results on test set in BioNLP-ST 2013
When generalizing our system to the CG event extrac-
tion task, we also incorporated the corresponding anno-
tated data from the 2011 tasks into the training phase for
pattern induction. Considering the GE task has been the
signature task of the BioNLP shared task series since
2009, we focused our methodological extension attempts

Table 9. Impact of 2011 data and ensemble pattern set
in 2013 GE task

System Attribute Recall Precision F-score

Ensemble 2013 + 2011 data 40.53% 61.72% 48.93%

Ensemble 2013 data 35.63% 63.91% 45.75%

Charniak 2013 data 35.29% 65.71% 45.92%

Table 10. Performance comparison on GE test set under different settings

System Setting SVT PTM BIND REG TOTAL

R P(%) R P(%) R P(%) R P(%) Rec.(%) Prec.(%) F1(%)

1 + 2 + 3 72.99 72.12 64.92 77.02 37.54 41.81 24.74 55.61 40.53 61.72 48.93

1’ + 2 + 3’ 74.07 72.85 64.92 68.50 40.54 39.24 25.26 49.45 41.41 57.80 48.25

1’ + 2’+ 3’ 68.55 81.57 59.69 77.03 31.23 49.76 26.18 53.69 39.32 64.74 48.93

Table 11. Impact of 2011 and 2013 data on GE test set

Data Attribute Recall Precision F-score

2011 data 35.60% 66.09% 46.27%

2013 data 35.90% 66.02% 46.51%

Liu et al. BMC Bioinformatics 2015, 16(Suppl 16):S2
http://www.biomedcentral.com/1471-2105/16/S16/S2

Page 13 of 15



on the GE task dataset. However, neither attempt led to
significant improvement on the GE task dataset. We con-
sider that a real methodology improvement should be
independent of datasets. Therefore, we only applied our
base system [4] to the CG task dataset to demonstrate its
generalization ability. We did not further explore the
three newly proposed extensions on the CG dataset given
their ineffectiveness on the GE task test data.
Our NCBI submission ranks 3rd among 6 different

participating teams of the CG task, achieving a F-score
of 46.38% on the 200 test documents. The primary eva-
luation results of all participating teams are given in
Table 13. The only two teams that participated in both
GE and CG tasks are “TEES-2.1” and our team. The
detailed results in terms of each of the 40 event types
are provided on the official website of the CG task
[39,40].
The task organizers provided annotations for all biolo-

gical entities but not for the optional “Site” argument
occurred in events such as “Mutation”, “Binding” and
“Phosphorylation”. Since entity recognition such as
detecting “Site” entities is beyond the event extraction
itself, we ignored the “Site” argument in our system.
However, this leads to a problem in the evaluation that
an event will be considered false positive if a “Site” argu-
ment is not identified although the other arguments are
all correctly detected. Furthermore, the overall task eva-
luation considers the detection of modifications of the
predicted events such as negation and speculation. These
arguments are required by the secondary task of the CG
task and appear in about 7.5% of the annotated test
instances. Thus, missing these arguments in our results
directly damages our final recall as we focused on the pri-
mary task only. We have requested the organizers to con-
duct an additional evaluation on core event extraction
targets without optional arguments such as “Site” and
arguments from the secondary task. More detailed

analysis will be conducted on the results as soon as they
become available.

Conclusion and future work
In the BioNLP-ST 2013, we adapted our ASM-based
system to the GE and CG event extraction tasks. We
attempted to integrate semantics into the graph match-
ing scheme using a distributional similarity model for
more events. We also evaluated the event extraction
impact of using paths of all possible lengths as key con-
text dependencies beyond using only the shortest paths
in our system. We achieved a 46.38% F-score in the CG
task, ranking 3rd and a 48.93% F-score in the GE task,
ranking 4th.
After the 2013 challenge, we further explored three

other ways to extend our system. We redesigned our
ASM algorithm by allowing nodes in pattern graphs to
be skipped with penalty, learned a customized threshold
for each pattern, and optimized the event pattern set
following the empirical risk minimization principle. We
demonstrated the impact of various system settings on
the event extraction performance. Our extensions lead
to a high 65% event extraction precision. However, due
to a 1% recall decrease, we achieved a F-score identical
to our original performance in the shared task.
In our future work, we are interested in investigating a

more appropriate method to determine the set of non-
essential nodes in pattern graphs. This will help the
ASM algorithm determine the correct pattern nodes to
skip, thus guiding the correct generalization of patterns.
We also plan to integrate our graph pattern representa-
tion and the ASM subgraph distance with supervised
learning algorithms to take advantage of their ability of
exploring a much broader event context. While the inte-
gration of a distributional similarity model in our system
did not lead to a performance improvement, in the
future we intend to use the method introduced in [32]
to address the antonym problem.
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