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Abstract: TRPA1, a nonselective cation channel, is expressed in sensory afferent that innervates
peripheral targets. Neuronal TRPA1 can promote tissue repair, remove harmful stimuli and in-
duce protective responses via the release of neuropeptides after the activation of the channel by
chemical, exogenous, or endogenous irritants in the injured tissue. However, chronic inflammation
after repeated noxious stimuli may result in the development of several diseases. In addition to
sensory neurons, TRPA1, activated by inflammatory agents from some non-neuronal cells in the
injured area or disease, might promote or protect disease progression. Therefore, TRPA1 works as a
molecular sentinel of tissue damage or as an inflammation gatekeeper. Most kidney damage cases
are associated with inflammation. In this review, we summarised the role of TRPA1 in neurogenic or
non-neurogenic inflammation and in kidney disease, especially the non-neuronal TRPA1. In in vivo
animal studies, TRPA1 prevented sepsis-induced or Ang-II-induced and ischemia-reperfusion renal
injury by maintaining mitochondrial haemostasis or via the downregulation of macrophage-mediated
inflammation, respectively. Renal tubular epithelial TRPA1 acts as an oxidative stress sensor to medi-
ate hypoxia–reoxygenation injury in vitro and ischaemia–reperfusion-induced kidney injury in vivo
through MAPKs/NF-kB signalling. Acute kidney injury (AKI) patients with high renal tubular
TRPA1 expression had low complete renal function recovery. In renal disease, TPRA1 plays different
roles in different cell types accordingly. These findings depict the important role of TRPA1 and
warrant further investigation.

Keywords: TRPA1; tissue damage; inflammation; kidney disease

1. Introduction

Renal failure is a major health problem worldwide [1]. Kidney diseases include
acute kidney injury (AKI) and chronic kidney disease (CKD). Various ischemic and toxic
substances can lead to kidney cell damage and inflammation-induced cell death, which
subsequently results in AKI. AKI is a common and devastating pathologic condition and
is defined as a rapid decrease in glomerular filtration rate [2]. AKI can be a reversible
condition and has with high incidence and mortality; AKI is also the main cause of CKD [3]
or end-stage renal disease (ESRD). Clinically, AKI is considered a significant risk factor
for CKD and ESRD. For example, about half of recovered and discharged patients with
hospital-associated AKI were diagnosed with CKD during the median follow-up period of
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3.3 years [4]. The relative hazard risk of chronic dialysis among patients who recovered
from dialysis-requiring AKI was 32.3 compared with controls [5].

Uremic toxins generated from high levels of metabolic end-products have become
clinically relevant in CKD progression. These toxins are tightly related to many CKD-
associated complications, such as hypertension, cardiovascular diseases, metabolic acido-
sis, anaemia, altered immune response, mineral and bone disturbances and neurological
complications [6]. Cardiovascular dysfunctions and altered immune responses, which
resulted in increased infections, have accounted for the risk of morbidity and mortality in
CKD [7]. Inflammation and oxidative stresses play important roles in these conditions of
CKD [8]. Moreover, patients with CKD typically suffer from chronic inflammation [9], and
the dysfunction of the antioxidative systems worsens with the degree of renal function [10].
The treatment of inflammation and oxidative stresses is very important in CKD-associated
complications. Inflammation is a crucial defence mechanism upon infection, and the dys-
regulation of inflammation may initiate a number of deleterious effects, including cytokine
overproduction and an increase in proinflammatory and oxidative stress mediators [11]. Of
interest, transient receptor potential ankyrin 1 (TRPA1), a member of the transient receptor
potential channel (TRP) family, is a gatekeeper for inflammation and a molecular sentinel
of tissue injury. In this work we will provide a comprehensive review of our current
knowledge on this ion channel relative to kidney diseases.

2. TRPA1 as Mediator in Inflammatory Response

The immune system promotes protective responses and behaviour in acute inflamma-
tion in response to tissue injury. At the site of an injury, inflammatory agents are released to
activate the neuronal and nonneuronal cells. The surrounding cells in the area of inflamma-
tion, such as keratinocytes, epithelial cells, and fibroblasts, release inflammatory mediators,
including ATP, adenosine, bradykinin, leukotrienes, tumour necrosis factor α, interleukins,
prostaglandins, proteases, and glutamate [12]. A subset of the primary sensory neurons
is then activated to release inflammatory neuropeptides to promote extravasation of the
plasma proteins, vasodilation, neutrophil accumulation, and hypersensitivity to thermal,
chemical, and mechanical stimuli. Therefore, the sensory neurons are very important
in sensing inflammation sites and promoting protective behaviour. Mounting lines of
evidence have shown that TRPA1 plays a key role in regulating neuropeptide release and
neurogenic inflammation [13].

The superfamily of TRP is composed of unique proteins expressed in almost every
cell type; these channels include TRPC (Canonical), TRPV (Vanilloid), TRPM (Melastatin),
TRPP (Polycystin), TRPML (Mucolipin), TRPN (NOMP-C) and TRPA (Ankyrin) according
to their amino acid sequence homology [14]. TRPA1 is the only member of the TRPA
subgroup in mammals. “A” in TRPA represents “ankyrin” repeats, which is composed
of a 33-amino-acid motif in the N-terminal domain of this channel protein. In humans,
16 ankyrin repeats are found in TRPA1. These repeats are located within many proteins and
function in protein–protein interactions; however, whether or not these repeats in TRPA1
mediate the interaction with other proteins remains unclear. The human TRPA1 gene,
which is located in chromosome 8, comprises 73,635 bases and 29 exons (Gene ID: 8989)
and encodes 1119 amino acids. Human TRPA1 contains a conserved six transmembrane
α-helix (TM1-6) as other members of the TRP family. A re-entrant pore loop between
TM5 and TM6 forms the central cavity of the channel and serves as two gates (Figure 1A).
Ca2+ permeation is controlled by the upper gate (D915 and G914), and the permeation
of the rehydrated cation is mediated by the lower gate (I957 and V961) consisting of two
hydrophobic seals. A two-step mechanism of TRPA1 gates upon electrophile action and
structurally conserved calcium control site was identified using cryo-EM technology [15].
In short, highly reactive cysteine (C621) and a nearby cysteine (C665) stabilize the loop in an
activating configuration upon electrophile stimulation. When the loop is in an active status,
the upper gate of TRPA1 widens the selectivity filter to enhance calcium permeability.
The lower canonical gate at the cytoplasmic end of the channel then opens to allow the
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passing of cations, such as calcium. A conserved calcium coordination site comprising
residues E788, Q791, Y799, N805, and E808 is found in TRPA1 as other calcium channels.
Furthermore, several residues responsible for the function and ion sensing of TRPA1 have
been reported. These findings provide a basic structural framework to understand how
TRPA1 is controlled by endogenous and exogenous agents and pave the direction for future
development of agonists or antagonists against TRPA1 (Figure 1B).
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TRPA1 is a very attractive therapeutic target because it is robustly activated by a wide
range of exogenous irritants that can cause pain and inflammation. For example, allyl isoth-
iocyanate, cinnamaldehyde and allicin, which are found in mustard, cinnamon and garlic
extracts, respectively, stimulate TRPA1. Air pollutants produced during the manufacturing
of polymers, fertilizers, pesticides and other products can activate TRPA1 [16–19]. Common
anaesthetics, such as isoflurane or lidocaine, also activate TRPA1 [20,21]. TRPA1 is targeted
by endogenous inflammatory agents, such as reactive oxygen species (ROS). In response to
tissue damage, cells release ROS, which subsequently causes lipid oxidation. The formation
of reactive carbonyl species, including 4-hydroxynonenal and 4-oxononenal, stimulate
TRPA1 directly [22,23]. TRPA1 is also activated by a fatty acid derivative, namely 15d-PGJ2,
which is generated around inflammation sites to mediate inflammatory responses and sensi-
tization [24]. Furthermore, the activation of TRPA1 can be modulated by G protein-coupled
receptors (GPCRs) via second-messenger signalling cascades. In fact, TRPs are downstream
effectors of GPCR nociceptive and pruritogenic signalling. This coordination forms the
GPCR–TRP axis to sense itch, pain, neurogenic inflammation and analgesia [25] and al-
lows TRPA1 to increase its repertoire of exogenous and endogenous stimuli. Extensive
studies have found that TRPA1 is activated by numerous electrophilic and nonelectrophilic
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modulators, natural compounds, intracellular Ca2+, metals (such as Zn2+, Cd2+, and Cu2+),
increased pH, cold and heat, mechanical stimulation, light, polyphosphates, phospho-
rylation, and interaction with TRPV1, ubiquitin hydrolase CYCL, PKA anchor protein
AKAP5 and neuroendocrine secretory protein secretogranin-3 [26]. The demand for TRPA1
antagonists has increased because of the important role of TRPA1 in pain, inflammation,
itch and respiratory disease. Natural compounds, such as camphor [27], borneol [28]
and lutein [29] can inhibit TRPA1. Resolvins are endogenously produced from omega-3
polyunsaturated fatty acid and are anti-inflammatory and proresolving lipid molecules.
At the submicromolar level, resolvin D1 inhibits cinnamaldehyde-activated TRPA1 [30].
The first synthetic antagonist of TRPA1 was developed in 2007 and named HC-030031 [31].
Various potent TRPA1 inhibitors are now available from different pharmaceutical compa-
nies, including Hydra Biosciences, Abbot, AMGEN, Pfizer, Glenmark and Renovis. On
the basis of genetic mutation, knockout animal studies and preclinical studies using small
molecule antagonists, TRPA1 remains an attractive target for pain, dermatological diseases
and respiratory diseases. Therefore, further development of TRPA1 antagonists for clinical
use is still warranted [32].

3. The Role of TRPA1 on Neuron and Non-Neuron Tissue Damages

Tissue damage, caused by toxin, disease, or trauma, evokes an inflammatory response
at the site of injury to lessen harmful stimuli, mediate tissue repair and protect tissues from
further damage. However, alterations in the haemostatic balance between the nocicep-
tive and immune system reinforce the response to damaged signals, leading to chronic
inflammation-related diseases, such as asthma, itch, pain, rheumatoid arthritis, and colitis.
The TRPA1 channel is well known as a sensor of cellular stress, inflammation and tissue
damage [13,33].

Previous research focused on the role of TRPA1 in the regulation of neuropeptide
release and neurogenic inflammation. In mammals, TRPA1 is widely expressed in sensory
afferents that have cell bodies in nodose, dorsal root and trigeminal ganglia and innervate
peripheral targets, including the skin and viscera [34,35]. TRPA1 channel activation by
exogenous irritants, chemicals and proinflammatory agents is required for the release
of neuropeptides, such as substance P (SP), calcitonin gene-related peptide (CGRP) and
neurokinin A (NKA) [36,37] to promote and modulate inflammatory responses (Figure 2).
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Figure 2. The role of TRPA1 on neurogenic inflammation. TRPA1 is expressed by sensory afferents
with cell bodies in the vagal nerve, trigeminal ganglia and dorsal root ganglia that innervate periph-
eral targets. TRPA1 channel was activated by endogenous oxidative stress or proinflammatory agents
after tissue damage. Chemicals, toxicants and exogenous irritants released neuropeptides, such as
substance P (SP), calcitonin gene-related peptide (CGRP) and neurokinin A (NKA), to regulate tissue
injury and inflammation. Red dots indicate Ca2+ and blue dots indicate neuropeptides.
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3.1. The Role of TRPA1 in Neurogenic Inflammation

In cold and inflammatory pain, a clear link exists between TRPA1 activation and
inflammatory hypersensitivity. For example, AITC, an irritant in wasabi and other Bras-
sica plants [35], can directly activate the TRPA1 channel and then trigger the release of
SP and CGRP to promote thermal and mechanical hypersensitivity. TRPA1 is required
for hypersensitivity in inflammatory pain models [12]. Pharmacological blockage or ge-
netic knockout of TRPA1 significantly attenuates hypersensitivity [38,39]. Several studies
showed the role of TRPA1 in diabetic peripheral neuropathy; neuropathic tissue produces
ROS to upregulate TRPA1 in the dorsal root ganglion (DRG) and results in nociceptor sensi-
tisation [40–42]. Inflammatory pain studies extend to dental [43], postsurgical [44], muscle
pain [45], migraine [46] and arthritis [47]. In addition, pruritus is associated with many
inflammatory conditions and the histamine-related signalling pathway [48,49]. Several
studies have indicated the function of TRPA1 in the mediation of histamine-independent
or nondependent pruritis [50–52].

In airway inflammation, the respiratory tract is innervated by TRPA1-expressing
primary afferent fibres from the trigeminal nerve, vagal nerve and DRG [53,54]. Numer-
ous exogenous irritants and endogenous mediators of airway inflammation activate the
TRPA1 and further lead to the release of inflammatory neuropeptides [55], which induce
bronchoconstriction, vasodilation, recruitment of the immune cells and modulation of the
inflammatory response. These effects promote protective physiological responses, such
as coughing, increased mucus secretion and shallow breathing [56]. However, chronic
inflammation by these insults results in the development of diseases, such as chronic
cough, chronic obstructive pulmonary disease, asthma and reactive airway dysfunction
syndrome [57–59].

In gastrointestinal inflammation, the gastrointestinal tract is innervated by TRPA1-
expressing primary afferent fibres from DRG that can detect inflammatory agents in
the gastrointestinal tract and mediate inflammatory hypersensitivity to these stimuli via
the regulation of neuropeptides release [60]. Experimental colitis models induced by
2,4,6-trinitrobenzene sulfonic acid or dextran sodium sulphate cause hypersensitivity to
colorectal distension and pain [61,62]. Upregulation of TRPA1 was reported in patients with
inflammatory bowel disease (IBD) [63], but the role of TRPA1 in IBD is still controversial.
Engel et al. demonstrated that the activation of TRPA1-expressing vagal sensory neurons
evokes a proinflammatory effect in the gut by releasing SP, and the blockade of TRPA1
decreases colitis [64]. However, Kun et al. reported the protective role of TRPA1 activation
in the colonic inflammatory response [63].

In the low urinary tract, TRPA1 is expressed in neuronal fibres that innervate the
bladder and urethra and is also expressed in urothelial cells. They are involved in low
urinary tract nociception and mechanosensory transduction [65]. TRPA1 can regulate
bladder pain and overactivity via the release of neuropeptides; an antagonist of TRPA1
can alleviate bladder hyperalgesia in cystitis and bladder pain [66,67]. Therefore, TRPA1 is
implicated in the pathology of overactive bladder and associated with spontaneous and
involuntary bladder contractions in spinal cord injury [68].

TRPA1 plays a specific role in the modulation of innate immunity, which can detect
and respond to noxious bacterial and viral materials. TRPA1 in vagal and somatic noci-
ceptors when rapidly activated by lipopolysaccharide (LPS) or endotoxin can cause pain,
neurogenic inflammation and vasodilation due to the release of local neuropeptides [69].
The mechanism of TRPA1 activation by LPS remains unclear. A study demonstrated that a
correlation exists among structural features in lipid A, the biologically active lipid moiety
in LPS and TRPA1 activation in vitro. Another study speculated that LPS insertion in the
bilayer of TRPA1 alters membrane tension and opens the TRPA1 channel [70,71]. Peripheral
nervous and immune systems represent the main sensory interfaces between the internal
milieu and the external environment, and TRPA1 may play an important role in danger
detection and neuroimmune interactions.
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3.2. The Role of TRPA1 in Non-Neurogenic Inflammation

Recent TRPA1 studies extended to the non-neuron cells [72]. The TRPA1 channel
is widely expressed in many different cell types, including keratinocytes and fibrob-
lasts [73,74], odontoblasts and dental pulp [75], chondrocytes and synoviocytes [76], en-
terochromaffin cells [77], vascular endothelium [78], urothelium [79], cornea [80], lung
fibroblasts, smooth muscle cells and epithelial cells [81] and cardiomyocytes and cardiac
fibroblasts [82,83]. A physiological or pathophysiological role for non-neuronal TRPA1
is related to inflammation, infection and immunity. Keratinocytes and different types of
fibroblasts express TRPA1, which can stimulate cutaneous inflammation via cytokine or
prostaglandin release and maintain the integrity of the immune response in the skin [74,84].
Odontoblasts originate from the outermost layer of the dental pulp and are responsible for
dentin formation. Human odontoblasts expressing TRPA1 may act as nociceptors to detect
noxious cold stimuli in teeth and mediate ATP release [75,85]. TRPA1 is upregulated after
exposure to lipopolysaccharide in dental pulp cells via P38/MAPK signalling to promote
differentiation and mineralisation [86]. TRPA1 is functionally expressed in synovial cells
and fibroblasts [87,88] that mediate the production of arthritis-related proinflammatory
factors or cytokines to lessen pain and to slow the progression of arthritis [87,89]. TRPA1
channel is widely expressed in enterochromaffin cells in the intestine and acts as a chemo-
sensor to regulate gastrointestinal motility via serotonin release [90,91], thereby alleviating
constipation and visceral pain. In the vasculature, cerebral endothelial TRPA1 can mediate
the vasodilatory response by ROS-dependent mechanism and monitor local oxidant and
redox status in the brain to regulate vascular flow and nutrient availability [92,93]. The
TRPA1 channel is expressed in the urothelial and smooth muscle cells in the bladder mu-
cosa that function as pathophysiological bladder sensory detector and regulate bladder
contraction [94–96]. In injured cornea, the loss of TRPA1 expression or the blockade of its
activity can alleviate corneal inflammation to reduce fibrosis and scarring [97]. In the respi-
ratory tract system, TRPA1 is localised to non-neuronal airway cells, including fibroblasts
and epithelial and smooth muscle cells, and it promotes non-neurogenic inflammation [98].
The stimulation of the lung epithelial cells by cigarette smoke, a major oxidant, increases the
TRPA1 mediated production of IL-8. In mice, epithelial TRPA mediates lung inflammation
due to cigarette smoke [99,100]. TRPA1, expressed in cardiac myocytes, plays a role in the
regulation of myocardial reperfusion injury. TRPA1 activators reduce myocardial injury in
the rat ischemia reperfusion (IR) model and reduce cardiac myocyte death during in vitro
hypoxia-reoxygenation [101]. However, another study revealed that the genetic ablation of
TRPA1 significantly decreased myocardial infarction after IR in mice. Functional TRPA1
in cardiomyocytes contributed to the release of acrolein, an IR-associated toxin, which
induced Ca2+ overload and hypercontraction. These data indicated that the IR activation
of TRPA1 worsens myocardial infarction [102]. The role and mechanism of TRPA1 in
myocardial IR are conflicting and are still controversial.

In addition, TRPA1 is also expressed in macrophages [103], in which its function
is regulatory along with the other nociceptors. TRPA1 can participate in ATP-induced
oxidative stress and inflammation in human acute monocytic leukaemia cell line-derived
macrophages [104]. TRPA1, when upregulated in atherosclerosis plaque, regulates the
macrophages towards an inflammatory phenotype and alleviates atherosclerosis [105].
TRPA1 expression is increased in macrophage foam cells in the atherosclerotic aortas of
apoE−/− mice. The chronic administration of the TRPA1 antagonist or genetic ablation
increased atherosclerosis, and the chronic administration of the TPRA1 agonist decreased
the lesion. TRPA1 may be an important regulator in the pathogenesis of the atheroscle-
rosis and cholesterol metabolism of macrophage foam cells [106]. However, TRPA1 in
macrophages does not always play a protective role in cardiovascular disease. An an-
tagonist of TRPA1 can protect cardiac hypertrophy and improve cardiac function via
Ca2+-dependent signal pathways and inhibition of the M2 macrophages transition [107]. In
other organs, the TRPA1 agonist, cannabichromene, exerts an anti-inflammatory response
in activated macrophages by inhibiting nitric oxide production to ameliorate murine col-
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itis [108]. The TRPA1 agonist cinnamaldehyde can modulate the LPS-induced systemic
inflammatory response syndrome through TRPA1-dependent and TRPA1-independent
mechanisms [109].

4. Role of TRPA1 in Kidney Disease

Little is known about the role of TRPA1 in kidney disease. Therefore, we reviewed
and organised recent studies on role of TRPA1 in kidney disease, as shown in Table 1.
The role of TRPA1 in kidney disease as mediator of neurogenic inflammation via sensory
afferents has not been reported. The role of TRPA1 in kidney disease in published studies
focused on the role of TRPA1 in non-neuronal cells. Zhu et al. demonstrated that TRPA1
prevented sepsis-induced kidney injury and improved survival in mice. A septic kidney
injury model was created by caecal ligation and puncture (CLP). The study focused on
the effect of TRPA1 in mitochondrial dynamics, mitochondrial biogenesis and mitophagy.
TRPA1 inhibited mitochondrial mitosis, promoted fusion and enhanced the haemosta-
sis of mitochondria. Therefore, TPRA1 downregulated CLP-induced oxidative stress in
mitochondria and lessened the subsequently release of inflammatory cytokines [110]. In
addition to renal TRPA1 in mitochondria, the role of TRPA1 in macrophages has been
discussed in two previous studies. Ma et al. demonstrated that the knockout of TRPA1
exacerbated angiotensin II (Ang-II)-induced kidney injury in mice via the mechanism
of macrophage-mediated inflammation. Ang-II can induce hypertension and kidney in-
jury in mice, thereby mimicking hypertensive kidney disease. In the study, mRNA and
protein expression of TRPA1 in kidney tissue was reduced by Ang-II. Furthermore, the
knockout of TRPA1 enhanced Ang II-induced renal macrophage deposition and wors-
ened Ang II-induced renal inflammation in mice. The activation of TRPA1 suppressed
macrophage activation and induced macrophage apoptosis in vitro [111]. Ma et al. also
demonstrated that the knockout of TRPA1 exacerbates renal ischemia–reperfusion injury
(IRI) in mice. The protein level of renal TRPA1 was decreased by renal IRI. The knockout
of TRPA1 exacerbated IRI-induced renal dysfunction and tubular injury in mice. The
knockout of Trpa1 enhanced the IRI-elicited classical activation of macrophages, especially
M1 macrophages, and finally enhanced IRI-induced renal inflammation [112]. Furthermore,
TRPA1 is expressed in the renal tubular epithelium cells. However, the role of TRPA1 in
renal cells remains unclear [113,114]. Wu et al. showed that TRPA1 was upregulated in
the renal tubules of patients with acute tubular necrosis and was positively associated
with oxidative stress marker. Tubular TRPA1 expression showed significant positive cor-
relation with the severity of tubular injury. The incidence of the complete recovery of
kidney function was low in patients with AKI who have high TRPA1 expression in renal
tubules. Patients with high expression of TRPA1 in the renal tubule were highly likely
to show nonrecovery of the renal function, which hinted that renal tubular TRPA1 was a
risk factor for the recovery of renal function from acute tubular necrosis (ATN) [115]. Wu
et al. demonstrated that in vivo renal IR increases tubular TRPA1 expression in wild-type
mice and in vitro hypoxia–reoxygenation increases TRPA1 expression in renal tubular cells.
Trpa1−/− mice showed less IR-induced tubular injury, inflammation and dysfunction in
kidneys compared with the WT mice. H/R evoked a ROS-dependent TRPA1 activation
by Ca2+ influx, increased NADPH oxidase activity, activated MAPK/NF-kB signalling
and finally increased IL-8 [116]. Accordingly, TRPA1 might exert different effects on renal
epithelium and macrophages in renal inflammation and disease. A genetically modified
mouse model with cell-specific deletion of TRPA1 is required to assess the functional role
of TRPA1 in kidney disease.



Int. J. Mol. Sci. 2021, 22, 3415 8 of 14

Table 1. Review of previous articles on TRPA1 in kidney disease.

Authors Year Research Object Cellular
Location Injured Model Effect Inflammation and

Oxidative Stress Results

Zhu et al. [110] 2018 Basic Mice Mitochondria Septic kidney
injury Protective Decreased

TRPA1 prevented sepsis-induced renal
injury by inhibiting mitochondrial mitosis
and enhancing mitochondrial hemostasis.

Ma et al. [111] 2019 Basic Mice Macrophages Ang II -induced
kidney injury Protective Decreased

TRPA1 prevented Ang-II induced kidney
injury via the downregulation of
macrophage-mediated inflammation.

Ma et al. [112] 2020 Basic Mice Macrophages Renal IRI Protective Decreased
TRPA1 prevented renal IRI via the
downregulation of macrophage-mediated
inflammation.

Wu et al. [115] 2019 Clinical Human Tubular
epithelium AKI with ATN Potential

detrimental
Correlated with
TRPA1 expression

TRPA1 expression positively correlated
with the severity of tubular injury. AKI
patients with high expression of tubular
TRPA1 had low complete renal recovery.

Wu et al. [116] 2021 Translational In vitro, mice,
and human

Tubular
epithelium

Hypoxia-
reoxygenation,
renal IRI

Detrimental Increased

Renal tubular epithelial TRPA1 acts as an
oxidative stress sensor to mediate
ischemia-reperfusion-induced kidney
injury through MAPKs/NF-κB signaling

Ang-II = angiotensin II, AKI = acute kidney injury, ATN= acute tubular necrosis, IRI = ischemia-reperfusion injury.
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5. Conclusions

Tissue damage can induce a series of inflammatory responses at the site of an injury.
The TRPA1 channel is a molecular sentinel of tissue damage and an inflammation gate-
keeper in both neuron and non-neuron cells. Kidney disease occurs due to tissue damage
that is related to inflammation. Recently published research investigated the role of TRPA1
in non-neuronal cells in the kidney. In vivo TRPA1 can prevent sepsis-induced renal in-
jury by enhancing mitochondrial haemostasis and decreasing Ang II-induced or renal
ischemia-reperfusion injury through the downregulation of macrophage-related inflamma-
tion. However, renal tubular epithelial TRPA1 is an oxidative stress sensor which mediates
hypoxia–reoxygenation injury in vitro and ischaemia–reperfusion-induced kidney injury
in vivo through MAPKs/NF-kB signalling. It is also a risk factor for the recovery of renal
function from AKI patients with ATN. The role of renal tubular TRPA1 is detrimental for
these models. Hence, further investigation is warranted.
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