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ABSTRACT

Motivation: Recently, a shift was made from using Gene Ontology

(GO) to evaluate molecular network data to using these data to con-

struct and evaluate GO. Dutkowski et al. provide the first evidence that

a large part of GO can be reconstructed solely from topologies of

molecular networks. Motivated by this work, we develop a novel

data integration framework that integrates multiple types of molecular

network data to reconstruct and update GO. We ask how much of GO

can be recovered by integrating various molecular interaction data.

Results: We introduce a computational framework for integration of

various biological networks using penalized non-negative matrix tri-

factorization (PNMTF). It takes all network data in a matrix form and

performs simultaneous clustering of genes and GO terms, inducing

new relations between genes and GO terms (annotations) and be-

tween GO terms themselves. To improve the accuracy of our pre-

dicted relations, we extend the integration methodology to include

additional topological information represented as the similarity in

wiring around non-interacting genes. Surprisingly, by integrating topol-

ogies of bakers’ yeasts protein–protein interaction, genetic interaction

(GI) and co-expression networks, our method reports as related 96%

of GO terms that are directly related in GO. The inclusion of the wiring

similarity of non-interacting genes contributes 6% to this large GO

term association capture. Furthermore, we use our method to infer

new relationships between GO terms solely from the topologies of

these networks and validate 44% of our predictions in the literature.

In addition, our integration method reproduces 48% of cellular com-

ponent, 41% of molecular function and 41% of biological process GO

terms, outperforming the previous method in the former two domains

of GO. Finally, we predict new GO annotations of yeast genes and

validate our predictions through GIs profiling.

Availability and implementation: Supplementary Tables of new GO

term associations and predicted gene annotations are available at

http://bio-nets.doc.ic.ac.uk/GO-Reconstruction/.

Contact: natasha@imperial.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

In many areas of biomedical research, ontologies play an import-

ant role in unification of knowledge as a hierarchy of terms and

their mutual relationships. Among widely used ontologies is

Gene Ontology (GO), which describes genes and gene products

in terms of their associated biological process (BP), molecular

function (MF) and cellular component (CC) (Ashburner et al.,

2000). GO is a current major source of information for annotat-

ing genes and proteins across various species and providing tools

for systematic assessment of experimental gene sets via enrich-

ment analysis.
Since its foundation, GO has been growing in size and com-

plexity containing today vast amounts of annotated biological

data. Initially, GO was manually curated by domain experts and

members of the research and annotation communities. However,

because of their inconsistency in translation to GO terms and

relations, manual curations have encountered many difficulties

(Ashburner et al., 2001). Additionally, rapid development of

technologies for biological data acquisition has resulted in an

accumulation of biological data exceeding our ability to interpret
(Chen and Xu, 2004).

To overcome these problems, many computational tools for

automatic gene and protein annotation have been devised. Much

effort has been invested in assessing the accuracy of such anno-

tation predictions (Radivojac et al., 2013). Methods for gene
annotation prediction have either followed approaches that

transfer annotations from well-observed to partially observed

genes based solely on sequence similarity (Loewenstein et al.,

2009) or approaches that directly predict function of unknown

genes using machine learning methods (Clare and King, 2003).

Recent methodologies focus more on integration of distinct bio-

logical data sources, which contribute to more accurate predic-

tions of gene annotation.
The availability of genomic-level information from high-

throughput measurements of genetic and protein interactions,

messenger RNA expression profiles and metabolic pathways

has created new opportunities for function prediction. A major

challenge is how to integrate all these diverse data to predict

annotations of yet unannotated proteins. Among the widely

used computational methods addressing this problem are

Bayesian reasoning (Chen and Xu, 2004), network-based analysis
(Mostafavi and Morris, 2010; Mostafavi et al., 2008), kernel-

based statistical learning (Lanckriet et al., 2004) and matrix fac-

torization-based data fusion ( �Zitnik and Blaz, 2014). All these

methods have demonstrated that the integration of complemen-

tary biological data significantly improves accuracy of gene func-

tion annotation prediction.
Recent work incorporated large gene and protein interaction

networks into a probabilistic clustering procedure to reconstruct

the GO (Dutkowski et al., 2013). It identified new terms and

relations that were missing from GO based solely on network

topology. This work provides evidence that a large part of GO

can be reconstructed using only topologies of molecular

networks.
In this work, we propose a new data integration method for

prediction of GO term annotations of unannotated genes and

finding new relations between existing GO terms purely from

network topology. The method is based on penalized non-

negative matrix tri-factorization (PNMTF) for heterogeneous*To whom correspondence should be addressed.
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data clustering (Wang et al., 2008, 2011). PNMTF has been used

for prediction of disease associations ( �Zitnik et al., 2013), iden-

tification of cancer subtypes (Liu et al., 2014), predicting pro-

tein–protein interactions (PPIs) (Wang et al., 2013) and detecting

phenotype–gene associations (Hwang et al., 2012).
Here, we extend this method to take multiple types of molecu-

lar network data and use them to reconstruct and update GO

with new information. We apply our method to Saccharomyces

cerevisiae data used by Dutkowski et al. (2013): PPI network,

genetic interaction (GI) network, gene co-expression (Co-Ex)

network and integrated functional network known as YeastNet

(Lee et al., 2007).
Our method takes all data in a matrix form and performs

simultaneous clustering of genes and GO terms inducing new

associations between genes and GO terms and between GO

terms themselves. We extend the integration methodology to in-

clude similarity in wiring around non-interacting genes. We

measure this by distance graphlet degree vectors (GDVs)

(Pr�zulj, 2007). Graphlets and graphlet-based measures have

bridged molecular network topology and biological function.

For instance, simple homogeneous clustering of proteins in a

PPI network based on the GDV similarity has revealed groups

of proteins with a common biological function (Milenković and

Pr�zulj, 2008; Milenković et al., 2010).
Therefore, we add these to incorporate more topology into the

integration process and improve accuracy of predictions. Using

various measures for assessing the quality of our prediction, we

systematically examined the contribution of these additional

topological constraints to GO prediction. Graphlet-based simi-

larity has not been exploited in any of the previous network

integration approaches.
Surprisingly, we find that our method can successfully recon-

struct almost the entire GO by using solely topology of molecu-

lar interaction networks. Furthermore, we predict new GO term

associations and gene annotations from integrated topologies of

molecular interaction network and validate our predictions.

2 METHODS

2.1 Matrix tri-factorization for data integration

We use a co-clustering algorithm based on PNMTF to integrate multi-

type biological data. The clustering analysis is used to infer new relations

between data objects that were not previously present in the data. Such a

technique makes use of all available information presented in the network

form, including both inter-type relations and intra-type constraints (Ding

et al., 2006; Wang et al., 2008). This algorithm aims to simultaneously

cluster data using the interrelatedness between data types under the guid-

ance of some prior knowledge given in the form of intra-type pairwise

constraints. These constraints often indicate similarity or dissimilarity

relationships between data objects of the same type. Constraints guide

the clustering procedure so that similar objects can belong to the same

cluster while dissimilar cannot.

The simplest co-clustering problem involves only two types of objects

(e.g. genes and GO terms) with size n1 and n2. If there are n1 objects of the

first type and n2 objects of the second type, then we have an inter-type

relationship matrix R12 2 R
n1�n2 with an entry R12ði; jÞ representing the

relationship between i-th data point in the first dataset and the j-th data

point in the second dataset. Simultaneous clustering of these datasets can

be seen as a solution of the non-negative matrix tri-factorization (NMTF)

problem where a given relation matrix, R12 2 R
n1�n2 can be

approximated as the product of three low-rank matrix factors:

R12 � G1S12G
T
2 ;

where non-negative G1 2 R
n1�k1
+ and G2 2 R

n2�k2
+ correspond to the clus-

ter indicator matrix of the first and the second dataset, and S12 2 R
k1�k2

corresponds to compressed low-dimensional version of the initial relation

matrix. Rank factors, k1 and k2, are often chosen to be much smaller than

the corresponding matrix dimensions (k1 � n1, k2 � n2). NMTF algo-

rithm minimizes the following objective function:

min
G1�0;G2�0

J= k R12 �G1S12G
T
2 k

2 ð1Þ

This objective function can be further used to incorporate intra-type

constraints whose violation causes penalties. Constraints that relate data

points, i and j, in two different datasets are represented via two constraint

matrices, �1 2 R
n1�n1 and �2 2 R

n2�n2 . Entries of the constraint matrix

are positive for dissimilar data objects because they impose penalties on

the current approximation given in the Equation (1). Entries of the con-

straint matrix are negative for similar objects because they are rewords

that reduce the objective function. Therefore, the constraint matrices can

be included as additional penalty terms in the objective function in the

following way:

min
G1�0;G2�0

J= k R12 �G1S12G
T
2 k

2

+trðGT
1 �1G1Þ+trðGT

2 �2G2Þ

ð2Þ

where tr denotes the trace of a matrix. This optimization problem is

known as PNMTF problem. Its solution produces two matrix factors,

G1 and G2, that can be interpreted as the cluster indicator matrices for

the first and the second dataset. Specifically, factor G1 is used to assign

data objects from the first dataset to clusters so that data object j is placed

in the cluster i if G1ði; jÞ is the largest entry in column j (Brunet et al.,

2004). This assignment procedure results in a binary connectivity matrix,

C, of size n1 � n1 with entry Cðp; qÞ=1 if objects p and q belong to the

same cluster and Cðp; qÞ=0 otherwise. Hence, an integration of all data

sources is achieved by clustering the first and the second datasets simul-

taneously using R12, �1 and �2 that encode the data.

Biological entities, such as genes and proteins engage in various mo-

lecular interactions, or are connected through GO relationships. We rep-

resent these as networks and integrate their network topology (also called

structure) in the form of constraints of the objective function. These

constraints are implemented into the objective function in the form of

network Laplacians (Hwang et al., 2012; Wang et al., 2011). That is, we

are now minimizing:

min
G1�0;G2�0

J= k R12 �G1S12G
T
2 k

2

+trðGT
1L1G1Þ+trðGT

2L2G2Þ

ð3Þ

where L�=D� � A� represents network Laplacian of the molecular net-

work of the � data type; A� is the network adjacency matrix, and D� is

the diagonal degree matrix with entries being row summation of the

matrix A�: D�ði; iÞ=
P

j A�ði; jÞ. These additional, Laplacian-based

terms encourage the connected or ontology-related genes (proteins) in

the network to be assigned to the same cluster. To integrate the network

data and predict GO term relationships from network topology, along

with new gene annotations, the term trðGT
1L1G1Þ imposes that interacting

genes get placed into the same cluster and similarly trðGT
2L2G2Þ imposes

that linked GO terms get placed into the same cluster.

2.2 Integration of various constraints on the same objects

Most of the biological datasets include various types of interactions (i.e.

constraints) over the same set of entities. For instance, genes might inter-

act via GIs, and they also might be related based on the correlation of
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their expression profiles. The former is known as a GI network, and the

latter as a gene Co-Ex network. To properly integrate this information

into the clustering procedure, we make an improvement to the regularized

PNMTF optimization problem. We extend it to take into account mul-

tiple constraints over the objects of the same type. Suppose we have a set

of N adjacency matrices: fA1
1;A

2
1; . . . ;AN

1 g, representing N data sources

relating objects of the first type. By adding these constraints in the

Laplacian form as penalty terms into our objective function (3), we end

up with the following:

min
G1�0;G2�0

J= k R12 �G1S12G
T
2 k

2

+
XN
�=1

trðGT
1L

�
1G1Þ+trðGT

2L2G2Þ

ð4Þ

Integration of all available information about a particular data type

has demonstrated to lead better predictions of new relations among data

objects. For example, the integration of all available human molecular

networks yields a successful reproduction of the existing and prediction of

new associations between diseases ( �Zitnik et al., 2013).

Unlike previous works where only network connections are considered

as constraints (Hwang et al., 2012; Liu et al., 2014; Wang et al., 2013;

Zhang et al., 2011; �Zitnik et al., 2013), our approach takes a step further

by incorporating additional constraints in the form of topological simi-

larity between nodes in a network that are not necessarily linked. Here,

we use the topological similarity measure based on GDVs. Graphlets are

small non-isomorphic-induced substructures of a large network (Pr�zulj

et al., 2004). There are 29 graphlets containing 2–5 nodes. By taking into

account the symmetries between nodes in a graphlet, we can distinguish

between 73 automorphic orbits. Counting how many times a particular

node touches any of 73 different orbits, we may define a 73-dimensional

GDV (see Supplementary Fig. S1). For node u, i-th coordinate of

its GDV vector, ui, denotes the number of times node u touches orbit i.

GDV vector represents local structural properties of a node, and there-

fore, it can be used to compare topologies around nodes in a network.

For that purpose, a measure of distance between nodes u and v is intro-

duced as (Milenković and Pr�zulj, 2008):

Dðu; vÞ=

X73

i=1
Diðu; vÞX73

i=1
wi

; ð5Þ

where Diðu; vÞ is defined as a logarithmic distance between nodes’ i-th

orbits:

Diðu; vÞ=wi �
jlog ðui+1Þ � log ðvi+1Þj

log ðmaxfui; vig+2Þ

To take into account mutual dependencies between orbits, a weight

wi=1� logðoiÞ
logð73Þ is assigned to each orbit i 2 f0; . . . ; 72g. The weight, wi,

measures to which extent orbit i is affected by other orbits. Higher

weights are assigned to orbits that are less affected by other orbits,

whereas lower weights are assigned to orbits that are affected by many

other orbits. The number of orbits that affect orbit i is given by oi.

Using the distance measure defined in Equation (5), GDV similarity

between nodes u and v is measured as

Sðu; vÞ=1�Dðu; vÞ

GDV similarity measure has been used for predicting biological func-

tion of unclassified proteins (Milenković and Pr�zulj, 2008), classification

of cancer and non-cancer genes (Milenković et al., 2010) and prediction

of new cardiovascular disease genes (Sarajlić et al., 2013).

Here, we include GDV similarity measure into our objective function

[Equation (4)] as followings. For each of the given data source � (i.e.

biological network), we construct a similarity matrix S� 2 R
n�n. Then, by

computing a statistically significant threshold for topological similarity of

two nodes in each of the GDV similarity matrices, we consider only data

objects (genes/proteins) with GDV similarity higher than the computed

threshold (see Supplementary Fig. S2):

S�ðu; vÞ=
1; ifS�ðu; vÞ � Sthreshold

�

0; ifS�ðu; vÞ5Sthreshold
�

8<
:

Topological similarity constraints are again implemented into the

objective function through Laplacian regularization:

min
G1�0;G2�0

J= k R12 �G1S12G
T
2 k

2

+
XN
�=1

trðGT
1L

�
1G1Þ+

XN
�=1

trðGT
1 ��

1G1Þ+trðGT
2L2G2Þ

ð6Þ

where, �=D� S is a Laplacian of S matrix, and D is the diagonal

matrix with entries equal to the row summation of S matrix.

2.3 Multiplicative update algorithm

We extend the original PNMTF algorithm (Wang et al., 2008) to handle

the additional penalty terms and network regularizations in Equation (6).

Solving the optimization problem results in the following multiplicative

update rules for matrix factors G1, G2 and S12 (Wang et al., 2008):

S12  ðG
T
1G1Þ

�1GT
1R12G2ðG

T
2G2Þ

�1
ð7Þ

G1ði; jÞ G1ði; jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR12G2S

T
12Þ

+
ij +½G1ðS

T
12G

T
2G2S12Þ

�
�ij+½

X
�

ðL
�
1+�

�
1 Þ
�G1�ij

ðR12G2S
T
12Þ
�
ij +½G1ðS

T
12G

T
2G2S12Þ

+
�ij+½

X
�

ðL
�
1+�

�
1 Þ

+G1�ij

vuuuuut

ð8Þ

G2ði; jÞ  G2ði; jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR12G1S12Þ

+
ij +½G2ðS12G

T
1G1S

T
12Þ
�
�ij+½ðL2Þ

�G2�ij

ðR12G1S12Þ
�
ij +½G2ðS12G

T
1 G1S

T
12Þ

+
�ij+½ðL2Þ

+G2�ij

vuut

ð9Þ

where we use+ and� signs in superscripts to denote non-negative matrices

M+ and M� of a matrix M, respectively, defined as M+= jMj+M
2 and

M�= jMj�M
2 . The algorithm starts by randomly initializing matrices G1

and G2, which are iteratively updated to minimize objective function in

Equation (6). The rigorous proof of the correctness and convergence of

these update rules can be found in (Wang et al., 2008). Under these

update rules, the objective function J [Equation (6)] is guaranteed not to

increase. Hence, we look at the change in the objective function between two

consecutive iterations and define the stopping criterion as jJn � Jn�1j5�.
In all our runs, parameter � is set to 10�5, which was shown to be

significant to minimize the objective function. Compared with the probabil-

istic clustering approach for GO reconstruction presented by Dutkowski

et al. (2013), our approach is computationally more demanding because of

slow convergence of multiplicative update rules. However, our approach is

more general, as it can integrate any number and type of heterogeneous data

that could lead to more accurate predictions.

2.4 Predicting associations between GO terms

Each factorization run produces matrix factors: G1 related to gene set,

and G2 related to GO terms. We use G2 factor to construct connectivity

matrix C as described in the Section 2.1. Clusters of mutually related GO

terms are obtained from the connectivity matrix. To assess reliability and

robustness of GO term associations prediction, we use the stochastic

property of our algorithm. We perform multiple runs with the same

rank parameters and different initial random initializations and construct

a set of 20 different connectivity matrices: fCð1Þ; . . . ;Cð20Þg. Then, we

compute the consensus matrix, C, defined as the average over all
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connectivity matrices. Thereby entries in the consensus matrix range from

0 to 1, and they can be interpreted as probabilities that two GO terms,

GOi and GOj, belong to the same cluster. To predict new GO term

associations, we are only interested in values of probability equal

to one because they correspond to the case of hard clustering, in

which there is no overlap between clusters, and hence, there is no

ambiguity in predicted GO term associations. The complete

algorithm for prediction of new GO term association is summarized in

Algorithm 1.

Algorithm 1 GO term associations prediction

Input: Relation matrix: R12; constraint matrices: L�
1 , L

�
1 , for networks �

2 f1; 2; 3; 4g L�2 for Gene Ontology; rank parameters k1 and k2
Output: Consensus matrix C

______________________________________________________________

for i 2 ½1; 20� do

Initialize G1 and G2

while not jJn � Jn�1j5� do
Update S12 using Equation (7) while keeping fixed G1 and G2

Update G1 using Equation (8) while keeping fixed G2 and S12

Update G2 using Equation (9) while keeping fixed G1 and S12

Compute connectivity matrix CðiÞ for GO terms using G2 for class

assignment

Compute the average connectivity matrix as: C= 1
20C

ðiÞ

Extract new GO term relations:

G= ðGOi;GOjÞj8GOi; 8GOj 2 fall GO termsg ^ Cði; jÞ=1g
�

To assess the statistical significance of GO term associations, we com-

pute the P-value in the following way. First, we remove any prior know-

ledge on GO term relations (i.e. we remove matrix L2). Then, we run our

algorithm 100 times, each time with different relations matrix obtained by

permuting the entries of the original relations matrix, R12. In total, we

obtain 100� 20=2000 different connectivity matrices. We define the

P-value of a particular GO term association as the fraction of connect-

ivity matrices in which that particular association is observed.

2.5 Rank parameters selection

Input parameters of our algorithm are factorization ranks, k1 and k2,

which we systematically examine and choose to achieve a correct reduc-

tion of dimensionality of our data. These factorization ranks capture the

meaningful information that can further be decomposed into clusters.

There is no agreed-upon procedure for choosing the right factorization

ranks. The most common approach, widely used in many dimension

reduction problems is cophenetic correlation coefficient, as a quantitative

measure of stability for clustering (Brunet et al., 2004). For a given fac-

torization rank, cophenetic correlation coefficient is computed over the

values of the consensus matrix, �ðCÞ. It is defined as the Pearson’s cor-

relation coefficient between the distance matrix, 1� C, and the matrix of

cophenetic distances obtained by the linkage used in hierarchical cluster-

ing for re-ordering C. If the clustering is stable, i.e. the entries in C are

close to 0 or 1, then �ðCÞ � 1, otherwise, if the entries are scattered

between 0 and 1, �ðCÞ51.

A simple generalization of this procedure applied to two types of our

data (genes and GO terms) includes computation of cophenetic correl-

ation coefficient for each of the consensus matrices, Cg (for genes), CGO

(for GO terms), and then we define the average cophenetic correlation

coefficient as

�avg=
�ðCgÞ+�ðCGOÞ

2
ð10Þ

We search for the values of, k1 and k2, that maximize �avg. We do this

by running our algorithm for all ðk1; k2Þ pairs such that 05k1; k2560, so

that we would capture the best dimensionality of our data (see below).

2.6 Datasets and preprocessing

To make our study directly comparable with the competing method for

reconstructing GO from network data, we run our method on the same

S.cerevisiae data as Dutkowski et al. (2013): PPI network from BioGRID

(Chatr-Aryamontri et al., 2013), GI network from DRYGIN (Costanzo

et al., 2010), gene Co-Ex network from SMD (Hubble et al., 2009) and

integrated function network, YeastNet, from (Lee et al., 2007). For each

of the these networks, we construct Laplacian constraint matrices,

fL
1
1;L

1
2;L

1
3;L

1
4g, respectively.

To apply multiplicative update rules, we make all data matrices of the

same dimension: we construct them over the union of genes presented in

all four data sources. The semantic structure of GO is also taken into

account in our integration algorithm. We extract all GO terms for

S.cerevisiae and create L2 constraint matrix as follows. First, we construct

a directed acyclic ontology graph using the four basic semantic types of

GO relations: is_a, part_of, regulates and has_part. Then, we assign value

0:9l to each pair of GO terms as a measure of association strength, where

l is the length of directed shortest path between terms in the ontology

graph. This allows us to also take into account mutual influence of hier-

archically distant non-adjacent GO terms (Zhu et al., 2005). The value of

0.9 is chosen from empirical observations, as described by �Zitnik et al.

(2013). Finally, we construct the Laplacian constraint matrix, L2, by

using these values of association strengths.

Annotation files from GO are used to construct the binary relation

matrix, R12, with entries R12ði; jÞ=1 if gene i is annotated by GO term j

and 0 otherwise. For each of the aforementioned biological networks, we

also compute GDV similarity constraint matrices: fL11;L
1
2;L

1
3;L

1
4g. As we

describe in Section 2.2, we only consider gene pairs with statistically sig-

nificant GDV similarity. All these network data are schematically repre-

sented in Figure 1.

3 RESULTS AND DISCUSSION

We apply our algorithm to identify new GO term relations and

annotate proteins with existing GO terms by integrating multiple

independent network sources given in the Table 1. We find that

the optimal rank parameters k1 and k2 are 58 and 56, respectively

Fig. 1. Schematic representation of datasets used in this study. Two types

of objects are represented: genes interconnected via four types of inter-

action networks (PPI, GI, Co-Ex and YeastNet) and GO terms intercon-

nected via directed semantic relations from GO hierarchy
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(see Supplementary Fig. S3). We examine the contribution of

each data source to the integration model.

3.1 Contribution of data to the integration model

We estimate the influence of each network on our integration

model by comparing the quality of the initial model (consisting

of four networks and their corresponding GDV similarity matri-

ces) with the quality of the model with one data source removed

from the initial set. Models are evaluated through residual sum

of squares (RSS), RSSðR12Þ=
P

ij½R12ði; jÞ � ðG1S12G
T
2 Þði; jÞ�

2,

and explained variance (Evar), EvarðR12Þ=1� RSSðR12Þ=P
ij½R12ði; jÞ�

2, that measure the performance of the matrix fac-

torization algorithm and its ability to accurately reproduce the

gene–GO term relation matrix. Low values of RSS and high

values of Evar indicate better quality of the model (Hutchins

et al., 2008).
We find that with the removal of each of the four data sources

(a network along with its corresponding GDV similarity matrix)

the value of RSS increases, while the value of Evar decreases,

implying that each data source contributes to the quality of the

model. Relative increase of RSS and relative decrease of Evar

(with respect to the initial model containing all the data), com-

puted by removing a particular network along with its corres-

ponding GDV similarity matrix, are shown in the top panel of

Figure 2. We find that the largest model degradation is achieved

with the removal of GI network and its corresponding GDV

similarity matrix. A similar result was reported by �Zitnik et al.

(2013): they found GIs to be the most informative data source in

prediction of disease–disease associations. Exclusion of the gene

Co-Ex network and its corresponding GDV similarity matrix

results in the smallest changes in RSS and Evar indicating that
Co-Ex data contribute the least to the quality of the model.

To examine the contribution of GDV similarities to our
model, we conduct the same experiment by removing only the

GDV similarity matrix of each of the biological networks from

the initial dataset. The results are shown in the bottom panel of
Figure 2.

We see that GDV similarities contribute to the quality of the
models. The smallest contribution to the model, a relative in-

crease of 0.32% in RSS, is that of the gene Co-Ex network.

Also, we examine contributions of all pairs of the four networks.
We confirm the observation of Dutkowski et al. (2013) that a

combination of YeastNet and Co-Ex network contributes the

least to the quality of the model (RSS=0:8 %, Evar=1%).

3.2 Recovering existing knowledge

Our integration of the biological networks and their correspond-

ing GDV similarities results in a set of highly reliable GO term
classes, represented as clusters in a block diagonal form of the

consensus matrix. Size distribution of these clusters and the con-

sensus matrix are shown in the Supplementary Figure S4. In add-
ition to this experiment, we also perform the same analysis on the

data consisting only of biological networks (excluding GDV simi-

larities from our integration procedure). This allows us to com-
pare the clustering results of different integration models and to

estimate the importance of additional topological constraints.
To evaluate the performance of our methodology in reprodu-

cing GO term relations, we look at the overlap between cluster

members and the existing GO hierarchy and find that on average
92% of cluster members are directly connected via semantic re-

lations in GO. These cluster-induced GO term relations are con-

firmed to be statistically significant (P � 0:01, computed as

explained in Section 2.4). A slightly lower score of 90% is

Table 1. All networks used in this study

Data Matrix

representation

Matrix

dimension

NNZa

PPI L
ð1Þ
1 3401� 3401 26 596

GI L
ð2Þ
1 3090� 3090 22 480

Co-Ex L
ð3Þ
1 228� 228 3410

YeastNet L
ð4Þ
1 3351� 3351 21 146

GDV similarity (PPI) �
ð1Þ
1 1609� 1609 93 536

GDV similarity (GI) �
ð2Þ
1 1550� 1550 89 434

GDV similarity (Co-Ex) �
ð3Þ
1 122� 122 2524

GDV similarity (YeastNet) �
ð4Þ
1 1453� 1453 88 986

L2 GO semantic

structure

3993� 3993 15 872

R12 Gene

annotation

5051� 3993 45 782

Note: Matrix dimensions are given before unioning genes in all data to obtain the

same dimension of matrices (see Section 2.6). GDV matrices are of different

dimension than L- matrices because they contain only genes that are statistically

significantly similar (see Section 2.2).
aNumber of non-zero entries in a matrix.

Fig. 2. Relative contribution of each data source to the integration model

measured by RSS, blue, and Evar, red. The top panel shows the relative

changes in RSS and Evar with the removal of a particular network and its

corresponding GDV similarity matrix. The bottom panel shows the same

measures but only with removal of GDV similarity matrices
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http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu470/-/DC1
-
-
co-expression
co-expression
co-expression
co-expression
to the 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu470/-/DC1
-


achieved when considering only the network data without GDV

similarity matrices, indicating that graphlet similarity matrices

contribute to capturing relations, which would otherwise be

missed.

Furthermore, we examine the robustness of this result to the

removal of particular datasets. Surprisingly, we find that omis-

sion of GDV similarity matrix of gene Co-Ex network con-

tributes the most to the predictive performance of our

algorithm, leading to the maximum of 96% of recovered

GO terms. Hence, inclusion of GDV similarity of gene Co-

Ex network introduces noise into the integration procedure,

wrongly guiding the clustering process, which in turn results

in lower prediction performance. This is a consequence of the

random GDV similarity distribution over all genes in the gene

Co-Ex network (Supplementary Fig. S2C). Given that inclu-

sion of GDV similarity matrix of the Co-Ex network impairs

the predictive performance of our algorithm and because we

have shown that its exclusion makes minimal effect on the

quality of the model, we discard that data source from further

analysis.

Surprisingly, recovering 96% of GO terms that are directly

related in GO (this is not a percentage of recovered relations

between GO terms) by is_a, part_of, regulates and has_part as-

sociations, indicates that entire GO could, in principle, be recon-

structed solely from topologies of molecular interaction

networks. Reporting this statistic is consistent with what previ-

ous studies using a similar methodology reported ( �Zitnik et al.,

2013). When we say that ‘96% of GO terms is recovered’, we

mean that our methodology correctly identifies a set of 96% of

GO terms that contain relations between them. This does not

mean that this set is fully connected (i.e. that each pair of GO

terms in it is related). Our set of 96% of GO terms contains 78%

of all relations currently present in GO. To our knowledge, be-

cause a large part of GO is sequence derived, this is the first

conformation that network topology and sequence carry similar

biological information.
To further validate the performance of our methodology in

reconstruction of GO terms, we use the gene–GO term relation

matrix, reconstructed from matrix factors R̂12=G1S12G
T
2 . Its

entries indicate the annotation strength of a gene, i, related to

a GO term j, with R̂12ði; jÞ=0 denoting absence of annotation,

while R̂12ði; jÞ=1 denoting the highest confidence of annotation.

We define GO term j	 as a candidate to annotate gene i if the

association score R̂12ði; j
	Þ is larger that the mean of association

scores over all known annotations of gene i. To identify only

high confidence gene-GO term predictions, we pick j	 that are

in the top 5% of largest association scores between GO term j	

and all other genes. As before, we run our algorithm with and

without GDV similarities (we exclude GDV similarities of Co-Ex

network for reasons presented above).
We compute the percentage of reproduced, high confidence

GO terms for CC, BP and MF separately. The results are

shown in Figure 3a. Better results are achieved when GDV simi-

larity matrices are included in the prediction model. Specifically,

we capture 41% of BP terms, 41% of MF terms and 48% of CC

terms. The BP and MF results outperform those of Dutkowski

et al. (2013), whereas they achieve a higher percentage of repro-

duced GO terms in CC.

3.3 Validating predictions

Among all the statistically significant (P � 0:01) GO term asso-

ciation predictions, we find 132 not presented in GO (see

Supplementary Table S1). To further increase confidence, we

extract these associations from clusters with fewer than three

GO terms that are stable over multiple factorization runs. We

find that 14 of the 132 associations are between GO terms that

have high semantic similarity and also confirm that additional 31

associations agree with predictions of Dutkowski et al. (2013).

For example, our approach predicts term GO:0035267 (NuA4

histone acetyltransferase complex) as a parent of GO:0032777

(Piccolo NuA4 histone acetyltransferase complex), which was

also reported by Dutkowski et al. (2013) and submitted to the

GO Consortium for inclusion into the ontology. We further per-

form literature curation to validate the remaining predicted GO

associations. We find literature support for another 13 of them

(Supplementary Table S1). Hence, we validate 58 of 132 of our

predictions.
Our approach not only identifies novel GO term association

but it also makes highly reliable predictions for new gene–GO

term relations. We predict new functional annotation of 972

genes (see Supplementary Table S2). Highly reliable predictions

are those with association strength in the top 5%, as described in

Section 3.2. For instance, we predict three genes, YDR101C,

YDR49C and YNL132W, to be involved in ribosomal subunit

biogenesis (GO:0042273) and find that the same functional pre-

diction was previously reported through different approaches by

Chen and Xu (2004) and Joshi et al. (2004). To validate the 972

predicted annotations, we use the new unpublished full set of

yeast’s GI profiles from Boone Lab (Boone, 2014). The data

consist of Pearson’s correlation coefficients of genetic profiles

between gene pairs. We create the distribution of these correl-

ations between newly annotated gene pairs for which we predict

GO annotations. We compare this distribution of genetic profile

correlations between the same number randomly sampled pairs

of genes (we sampled multiple times and got consistent results).

We observe higher correlations for predicted gene pairs than for

random pairs (Fig. 3b). Moreover, using two-sample

Kolmogorov–Smirnov (KS) test, we show that these two distribu-

tions significantly differ (KS statistics, D=0.2 and P-value,

P=1:5� 10�6). Thus, these results are highly consistent with

our predictions of new annotations. This validates our predicted

Fig. 3. (a) The fraction of GO terms in each of CC, BP and MF obtained

from entries of reconstructed gene–GO term relationship matrix obtained

with and without GDV similarities (denoted in red and yellow colors,

respectively). (b) Distribution of correlations of GI profiles among pre-

dicted genes associated to GO terms plotted against distributions of ran-

domly selected gene pairs. Value of correlation, presented here, is shifted

in the positive range: [0,2]
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GO annotations. Even though GI profiling analysis provides

evidence that our algorithm is able to successfully predict new

gene functions, additional biological validation would be needed

for better understanding of these newly assigned functions.

4 CONCLUSIONS

We introduce a method for reconstruction of GO that is based

on integrating solely the topology of biological networks. It cap-

tures 96% of the existing GO term relations and is capable of

successfully identifying additional GO term associations as well

as predicting gene annotations. Our method is general in the

sense that it can integrate any heterogeneous systems-level inter-

action data. Therefore, it can easily be extended with new data

that could consequently enhance the model’s predictive perform-

ance. This work suggests that the entire GO could be recon-

structed from molecular interaction networks.
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Milenković,T. et al. (2010) Systems-level cancer gene identification from protein

interaction network topology applied to melanogenesis-related functional gen-

omics data. J. R. Soc. Interface, 7, 423–437.

Mostafavi,S. and Morris,Q. (2010) Fast integration of heterogeneous data sources

for predicting gene function with limited annotation. Bioinformatics, 26,

1759–1765.

Mostafavi,S. et al. (2008) Genemania: a real-time multiple association network in-

tegration algorithm for predicting gene function. Genome Biol., 9, S4.

Pr�zulj,N. (2007) Biological network comparison using graphlet degree distribution.

Bioinformatics, 23, e177–e183.

Pr�zulj,N. et al. (2004) Modeling interactome: scale-free or geometric?

Bioinformatics, 20, 3508–3515.

Radivojac,P. et al. (2013) A large-scale evaluation of computational protein func-

tion prediction. Nat. Meth., 10, 221–227.
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