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Lower spinal cord injuries frequently cause sexual dysfunction in men, including erectile
dysfunction and an ejaculation disorder. This indicates that the important neural centers
for male sexual function are located within the lower spinal cord. It is interesting that
the lumbar spinal segments contain several neural circuits, showing a clear sexually
dimorphism that, in association with neural circuits of the thoracic and sacral spinal
cord, are critical in expressing penile reflexes during sexual behavior. To date, many sex
differences in the spinal cord have been discovered. Interestingly, most of these are
male dominant. Substantial evidence of sexually dimorphic neural circuits in the spinal
cord have been reported in many animal models, but major issues remain unknown. For
example, it is not known how the different circuits cooperatively function during male
sexual behavior. In this review, therefore, the anatomical and functional significance of
the sexually dimorphic nuclei in the spinal cord corresponding to the expression of male
sexual behavior is discussed.
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INTRODUCTION
Sexual function and behavior significantly differ in sexes in adult-
hood, suggesting that the neural circuits also differ between
sexes. However, it is difficult to correlate evidence gene expres-
sion levels with results of behavioral modifications. It is possible
that the sexual differences are affected by a variety of extrin-
sic and intrinsic factors (Kawata, 1995; Morris et al., 2004;
Sakamoto, 2012). Masculine sexual behavior is complex and
modulated by intrinsic as well as extrinsic factors, including
sensory inputs, autonomic regulations and their circumstances
(Rosen and Sachs, 2000; Coolen, 2005). Spinal cord injuries
located at the lower levels frequently cause sexual dysfunc-
tion in men, including erectile dysfunction and an ejacula-
tion disorder (Sipski, 1998; Brown et al., 2006). This indicates
that the important neural centers for male sexual function are
located within the lower spinal cord. It is likely that the lum-
bar spinal segments contain several neural circuits, showing
a clear sexually dimorphism that, in association with neural
circuits of the thoracic (sympathetic) and sacral (parasympa-
thetic) spinal cord. They play an important role in eliciting
penile responses (i.e., erection and ejaculation) (Breedlove and
Arnold, 1983a,b; Breedlove, 1985; Morris et al., 2004; Matsuda
et al., 2008; Sakamoto, 2012) (see Figure 1). Substantial evi-
dence of sexually dimorphic neural circuits in the spinal cord
have been reported in many animal models, but major issues
remain unknown, such as how they cooperatively function during
male sexual behavior. In this review, the anatomical and func-
tional significance of the sexually dimorphic nuclei in the spinal
cord corresponding to the expression of male sexual behavior is
discussed.

LUMBAR SPINOTHALAMIC (LSt) NEURONS
Several studies have identified that a male-dominant sexual
dimorphism in the lumbar spinal cord is observed in rats
(Figure 1). These neurons are located within the third and fourth
lumbar segments of the spinal cord dorsolateral to the central
canal in lamina X and express galanin (Newton, 1992), chole-
cystokinin (Phan and Newton, 1999), and enkephalin (Nicholas
et al., 1999), possibly projecting to medial portion of the parvocel-
lular subparafascicular thalamic nucleus (mSPFp) (Ju et al., 1987;
Truitt et al., 2003). Therefore, they are a male-dominant sexu-
ally dimorphic nucleus, and so-called lumbar spinothalamic (LSt)
neurons (Ju et al., 1987; Truitt et al., 2003). In rats, the increased
Fos expression can be considered as a marker for neural activa-
tion. The activation of these LSt neurons is triggered by stimuli
associated with ejaculation specifically, but mounts or intromis-
sion did not trigger Fos expression in LSt neurons. It is suggested
that a specific subpopulation of LSt neurons signals information
associated with ejaculation in rats (Truitt et al., 2003). A spe-
cific population of LSt neurons in the lumbar segments (L3–L4
level) of the spinal cord acts as a “spinal ejaculation generator”
because ablation of these neurons by the selective toxins resulted
in a complete disruption of ejaculatory behavior in rats (Truitt
and Coolen, 2002). In contrast, other components of male sex-
ual behavior remain intact, suggesting that this population of
LSt neurons plays an important role in generation of ejaculation
and is part of a spinal ejaculation generator (Truitt and Coolen,
2002). Furthermore, these LSt neurons convey the sexual infor-
mation to the thalamus (Ju et al., 1987; Truitt et al., 2003), and
integrate the information within the neural connections between
LSt and autonomic/somatic centers in the spinal cord (Xu et al.,
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FIGURE 1 | Schematic drawings of neural sexual dimorphisms in the

rodent lumbar spinal cord. The spinal levels are indicated on the lower
right. Anatomical features in males and in females are shown on the left
and right hemispheres, respectively. Sexually dimorphic cell numbers and
axonal projections in the spinal cord are shown by stars and fine dots
(males in blue; females in red), respectively. The density of the symbols is
proportional to the relative density of the sexual dimorphisms in the spinal
cord. L, lumbar; S, sacral; LSt, lumbar spinothalamic neurons; SNB, spinal
nucleus of the bulbocavernosus; SPN, sacral parasympathetic nucleus.

2005, 2006; Sun et al., 2009). However, the central and molecular
mechanisms, including the neuropeptides involved, that directly
regulate erection and ejaculation remain unclear.

THE GASTRIN-RELEASING PEPTIDE (GRP) SYSTEM IN THE
LUMBAR SPINAL CORD
Using immunohistochemistry for gastrin-releasing peptide
(GRP) in rats, we newly identified a collection of neurons con-
taining GRP in the lumbar spinal region (L3–L4 level), showing a
clear male-dominant sexual dimorphism (Sakamoto et al., 2008;
Sakamoto, 2011) (Figure 2). These GRP-expressing neurons
send axons onto the more caudal segments of the lumbosacral
spinal cord (L5–L6 and S1 levels), including the autonomic
sacral parasympathetic nucleus (SPN) as well as the somatic
spinal nucleus of the bulbocavernosus (SNB) (Sakamoto et al.,
2008). Double immunofluorescence of GRP and neuronal nitric
oxide synthase (nNOS), a marker for autonomic preganglionic
(SPN) neurons (Vizzard et al., 1995) clearly showed that GRP-
expressing fibers densely projected into the SPN (Sakamoto et al.,
2008). These GRP-expressing fibers surrounding cell bodies and
dendrites of the SPN neurons were observed in only males but
vestigial or absent in females (Sakamoto et al., 2008) (Figure 2).

FIGURE 2 | A newly discovered sexual dimorphism in the lumbar

spinal cord of rats that controls male sexual function.

Co-immunofluorescence for gastrin-releasing peptide (GRP) (green) and
neuronal nitric oxide synthase (nNOS) (red) confirmed that GRP-containing
axons surrounding the autonomic sacral parasympathetic nucleus (SPN)
neurons are significantly prominent in male rats, but vestigial or absent in
females. In addition, testicular feminization mutation (Tfm) male rats display
an entirely feminine pattern of GRP-containing fibers in the SPN autonomic
nucleus. Wt, wild-type. Scale bar, 50 μm. The figure was reproduced from
Sakamoto et al. (2008) with permission.

It is reported that the autonomic SPN neurons play a pivotal
role in controls of penile function and express high levels of
nNOS (Studeny and Vizzard, 2005). In rats, these GRP neurons
located in the lumbar spinal cord also express androgen receptor
(AR) but do not express estrogen receptor alpha subtype (ERα)
(Sakamoto et al., 2008; Sakamoto and Kawata, 2009). Using
genetically male (XY) rats carrying the testicular feminization
mutation (Tfm) of the AR gene, we examine whether androgens
direct sexual differentiation of these GRP neurons. These mutant
males develop testes embryologically and secrete testosterone
prenatally. However, their AR protein is dysfunctional, they
develop a complete feminine exterior phenotype, including a
clitoris rather than a penis. We found that the spinal cord of
genetic male rats, carrying the Tfm allele for AR hyperfeminine
characteristics, have even fewer GRP-positive neurons in this
region than do wild-type females (Figure 2). In this species,
GRP-containing presynaptic boutons have also been shown
by electron microscopic immunohistochemistry to innervate
nNOS-positive dendrites in the autonomic SPN of the lower
lumbar and upper sacral spinal cord (Sakamoto et al., 2008).

Substantial evidence indicated that the presence of a GRP
receptor (GRPR) in the lumbar and sacral spinal cord of rats
based on specific binding of GRP (Sakamoto et al., 2008). The
higher expressions of GRPR at the mRNA and protein levels in
SPN neurons were also obvious from the immunochemical and
PCR analyses in rats (Sakamoto et al., 2008, 2009). Furthermore,
the rat homolog of GRPR agonists (rGRP20−29) (Ladenheim
et al., 1996) is able to restore a lot of the spinal reflexes of the
penis that are lost after orchiectomy (Sakamoto et al., 2008). The
agonists were mostly effective in reinstating ejaculatory reflex per
se, resulting in a greater frequency of ejaculation in treated cas-
trates than in gonadally intact control males (Sakamoto et al.,
2008). To probe whether GRPR activation of penile reflexes is
mediated by the spinal cord, we also administered RC-3095, a spe-
cific GRPR antagonist (Pinski et al., 1992; Roesler et al., 2004),
intrathecally to the lumbosacral spinal cord of gonadally intact
males. The antagonistic treatment significantly inhibited penile
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reflexes, including simple erections, dorsal flips of the penis, and
cup-like flaring erections of the distal glans, and also attenuated
the spontaneous ejaculation rate (Sakamoto et al., 2008). These
results indicate that the GRP/GRPR system controlling masculine
reproductive function is within the lower spinal cord (Sakamoto
et al., 2008).

The identification of this male-specific neural system using a
specific neuropeptide, GRP, that controls sexual function offers
new approaches for the development of pharmacological treat-
ments to relief the male reproductive dysfunction (Sakamoto,
2011). In addition to the parasympathetic nucleus, LSt neu-
rons in the spinal cord project to the sympathetic neurons of
the intermediolateral column in the thoracic spinal cord, which
is crucial for the emission phase of ejaculation (Coolen, 2005;
Kozyrev et al., 2012). The local administration of the specific
blocker for GRPR, RC-3095 significantly attenuated bursts in
response to dorsal penile nerve stimuli of the bulbocavernosus
muscles that are innervated by the SNB motoneurons during
ejaculation (Kozyrev et al., 2012). This supports our hypothesis
that GRP in the spinal cord plays a pivotal role in the regula-
tion of penile reflexes during masculine copulatory behavior in
rodents. Clinically, the next question is now: Does the spinal GRP
system exist and function in the human spinal cord? Future atten-
tion should be focused on comparative studies for the spinal
GRP system using other vertebrates, including humans and/or
primates.

ONUF’S NUCLEUS (SNB)
Onufrowicz (1899) reported that a sexually dimorphic nucleus
is located in the motor pools of the sacral spinal cord in most
mammals, that innervates the penile functions involved in sexual
behavior; so-called Onuf ’s nucleus. In humans, Onuf ’s nucleus
are composed of a discrete group of motoneurons located in the
ventral motor pool of the sacral spinal cord that play an impor-
tant role in the micturition and defecatory as well as in rhythmic
contractions of perineal muscles during orgasm (Onufrowicz,
1899). The number of motoneurons in Onuf ’s nucleus in humans
is a sexually dimorphic: greater in men than that in women
(Onufrowicz, 1899; Sato et al., 1978; Nakagawa, 1980; Forger and
Breedlove, 1986). In rats, the SNB is located in the lumbosacral
spinal cord; it is homologous to Onuf ’s nucleus in humans in
that it innervates the striated perineal muscles attached to the base
of the penis (Breedlove and Arnold, 1980; Forger and Breedlove,
1986; Sengelaub and Forger, 2008) (Figures 1, 3). Although the
dorsolateral nucleus (DLN) innervating the ischiocavernosus
and external urethral sphincter is also sexually dimorphic, the
retrodorsolateral (RDLN) motoneurons that innervate foot mus-
cles show no sexual difference and are relatively unresponsive to
androgens (Jordan et al., 2002; Ottem et al., 2007) (Figure 3).
Male rats have more and larger SNB as well as DLN motoneurons
than females, a dimorphism that results from differences in peri-
natal androgen signaling through an AR-mediated mechanism
(Breedlove and Arnold, 1980) (Figure 3). This male-dominant
sex difference in SNB first found in rats has been extended to
many mammalian species, including mice, cats, gerbils, dogs,
hyenas, and monkeys (Ueyama et al., 1984, 1985; Forger and
Breedlove, 1986; Wee et al., 1988; Ulibarri et al., 1995; Forger

FIGURE 3 | Spinal nucleus of the bulbocavernosus (SNB) motoneurons

are more numerous in male than in female rats. The dorsolateral nucleus
(DNL) is also male-dominant sexually dimorphic, but the retrodorsolateral
(RDLN) nucleus is similar in both male and females. Scale bar, 200 μm.

et al., 1996). The sex-related difference in the number of SNB
motoneurons develops perinatally in rats. Prior to birth, the num-
ber of motoneurons in the SNB increases and reaches a maximum
in both sexes; at this time, functional neuromuscular junctions
have been established in the SNB system. However, in female rats,
these components (both motoneurons and muscles) die near the
time of birth unless the animals are exposed to testosterone dur-
ing the critical period (androgen surge) (Nordeen et al., 1985). If
an androgen surge occurs, it results in higher expression of AR in
both the perineal muscles and spinal motoneurons. In male rats,
testosterone primarily prevents the muscle from dying, which sec-
ondarily prevents the death of motoneurons in the spinal cord.
Testosterone is thought to induce the muscle to produce a neu-
rotrophic factor that protects the muscle, and the same factor or
an additional factor then protects the motoneurons from develop-
mental cell death. However, it is unclear which downstream genes
first respond to testosterone. In the SNB system, testosterone may
alter the expression of trophic factor genes to spare both the mus-
cle and innervating motoneurons. Ciliary neurotrophic factor
(CNTF) is a candidate trophic factor for the perineal neuromus-
cular junction because receptors for CNTF are expressed in the
motoneurons and in their target muscles (Davis et al., 1991; Ip
et al., 1993), and injection of CNTF into the perineum of new-
born rats spares the SNB system in normal females (Forger et al.,
1993).

INTERACTION OF THE GRP SYSTEM WITH BOTH THE
AUTONOMIC AND SOMATIC NUCLEI IN THE SPINAL CORD
Orchiectomy of adult male rats results in the shrinkage of soma
size and dendritic arborization of SNB motoneurons as well as
in a reduction in the number of synaptic inputs, all of which can
be prevented by testosterone replacement for castrates (Breedlove
and Arnold, 1981; Kurz et al., 1986; Matsumoto et al., 1988;
Goldstein et al., 1990; Yang et al., 2004). In female rats, a long-
term testosterone treatment to castrates also increase the SNB
motoneuronal cell size, however, the increase did not reach to the
level observed in males (Breedlove and Arnold, 1981; Sengelaub
and Forger, 2008). The GRP system in the lumbosacral spinal
cord also showed similar results; regarding the lower sensitiv-
ity to androgens in adult females (Sakamoto et al., 2008, 2009)
and the AR signaling cascades that are necessary to maintain
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the GRP and SNB systems in the lumbosacral spinal cord in
adult males (Sengelaub and Forger, 2008; Forger, 2009; Sakamoto
and Kawata, 2009). It is interesting that the GRP and SNB sys-
tems, which are localized at the same lower spinal cord, might
interact directly or indirectly to modulate the male sexual func-
tion. Furthermore, the sexually dimorphic distribution of GRP-
containing fibers in the lumbosacral spinal cord (L5–L6 and S1)
is controlled by circulating testosterone levels (Sakamoto et al.,
2009) and mirroring changes in SNB motoneurons in male rats
(Kurz et al., 1986; Matsumoto et al., 1988; Matsumoto, 2001).
Recently, it has been reported using a mouse line specifically lack-
ing AR in the nervous system (ARNesCre) that the number of
SNB motoneurons is unrelated to both ARNesCre mutation sta-
tus (Raskin et al., 2012), although adult ARNesCre males exhibit
higher levels of circulating testosterone than controls (Raskin
et al., 2009). In the SNB, the central AR participates in the devel-
opmental regulation of both soma size and dendritic length but
not in the survival of SNB motoneurons (Raskin et al., 2012).
Immunohistochemical studies in the lumbosacral spinal cord
also demonstrated the expression of AR in the cellular nuclei
of SNB motoneurons in controls but not in ARNesCre males
(Raskin et al., 2012). However, loss of AR expression in the
nervous system caused a significant decrease in the number of
GRP-immunoreactive neurons compared with that in control lit-
termates (Sakamoto et al., 2014). Consequently, the intensity of
GRP axonal projections to the lower spinal cord (L5–L6 and S1
level) was greater in control males than that in ARNesCre males
(Sakamoto et al., 2014). Taken together, these results suggested
that nervous system AR participates in both morphological dif-
ferentiation and adult activation of SNB motoneurons, but not
directly in the survival of SNB motoneurons during neonatal
development (Raskin et al., 2012). In contrast, ARs expressed in
the nervous system play critical roles in the development as well
as in the maintenance of GRP neurons in the lumbosacral spinal
cord in males. The AR-deletion mutation may attenuate sexual
behavior and activity of mutant males via spinal GRP system-
mediated neural mechanisms (Raskin et al., 2009; Sakamoto et al.,
2014).

High-voltage electron microscopy (HVEM) is a powerful
methodology for studying chemical neuroanatomy at the ultra-
structural level, and the results with this method can be eas-
ily linked to the conventional light and electron microscopies
(Sakamoto and Kawata, 2012). We combined an immunohisto-
chemistry with a retrograde labeling technique utilizing a cholera
toxin beta subunit-horseradish peroxidase conjugate under the
HVEM. Three-dimensional (3-D) analysis by HVEM provided
clear solid visualization of synaptic contacts from the spinal GRP
system to the SNB motoneurons in male rats (Sakamoto et al.,
2010; Sakamoto and Kawata, 2012). By means of a double labeling
with immunohistochemistry and retrograde tracing, we observed
that the many GRP-immunoreactive axons directly contact den-
drites of the SNB motoneurons on a single section (Sakamoto
et al., 2010; Sakamoto and Kawata, 2012). The molecular and
neural regulations of male sexual behavior by the GRP system
at the spinal cord level are revealed by HVEM at the 3-D ultra-
structural level (Sakamoto et al., 2010; Sakamoto and Kawata,
2012). Because the bulbocavernosus muscles are considered to

be a homologous to Onuf ’s nucleus in humans, they play an
important role in the rhythmic contractions of perineal muscles
during ejaculation also in rats (Sachs, 1982). Therefore, these 3-
D results taken together suggested that GRP-containing afferents
to SNB motoneurons may control penile reflexes during sexual
behavior through the identified GRP-SNB synapses (Sakamoto
et al., 2010). Nevertheless, the functional synchronization of these
two neural systems in the lower spinal cord is required for nor-
mal penile reflexes (Sakamoto, 2011). Using HVEM, we further
demonstrated that the terminals of GRP neurons may form 3-
D multiple synapses with the dendrites of SPN neurons revealed
by a double immunohistochemical study (Oti et al., 2012). Using
a viral trans-synaptic retrograde tracing technique, Dobberfuhl
et al. (2014) recently reported that after the pseudorabies virus
(PRV) injection into the levator ani muscle, about a half of PRV-
positive neurons in the medial gray at the upper lumbar spinal
cord level expressed GRP. Interestingly, very few PRV-labeled
spinal interneurons were found in the medial region of the upper
lumbar spinal cord in preadolescent pups. These results indicate
the presence of either direct or indirect synaptic contacts from
GRP-containing neurons to SPN (autonomic) neurons and/or
to SNB (somatic) motoneurons, and these neural circuits might
develop during puberty. It has also been reported that GRPRs
are expressed in both the SPN and SNB (Sakamoto et al., 2008).
Thus, a spinal GRP/GRPR system could generate an ejacula-
tory behavior by synchronizing autonomic and somatic centers;
e.g., the SPN and SNB in the lumbosacral spinal cord. A set
of these findings supports the hypothesis that the GRP/GRPR
system may regulate male sexual behavior via afferents to both
SPN and SNB neurons, and coordinate autonomic and somatic
functions in response to penile reflexes during male copulatory
behavior.

AFFERENTS FROM THE SPINAL GRP SYSTEM TO THE BRAIN
Truitt and Coolen (2002) reported a potential ejaculation gener-
ator in the spinal cord in rats. Because LSt neurons project to the
brain thalamus and are involved in the relay of ejaculation-related
sensory information and/or sexual arousal to evoke ejaculation,
the discovery of the “spinal ejaculation generator” provides an
excellent target for further understanding of the neural processes
controlling ejaculatory behavior. Namely, the characterization of
hormonal dynamics involved in the modulation of either LSt
neuronal function or the activation of LSt neuronal target cites
is required for a better understanding of the molecular mecha-
nisms underlying the expression of male sexual behavior. GRP
and galanin might be possible candidates for neuromodulator(s)
regulating LSt neuronal activity (Truitt et al., 2003; Sakamoto
et al., 2008). In fact, local injection of galanin into the mSPFp sig-
nificantly attenuated male copulatory behavior in rats (Coolen,
2005), suggesting that LSt signaling might play an important role
in the refractory period after ejaculation. On the other hand, sim-
ilar microinjection of galanin into neighboring thalamic areas
did not affect any components of male sexual behavior (Coolen,
2005). Since the detailed molecular mechanisms of ejaculatory
behavior in the central nervous system remains unknown, further
investigation of the LSt-mSPFp interaction is required to draw a
firm conclusion.

Frontiers in Neuroscience | Neuroendocrine Science July 2014 | Volume 8 | Article 184 | 4

http://www.frontiersin.org/Neuroendocrine_Science
http://www.frontiersin.org/Neuroendocrine_Science
http://www.frontiersin.org/Neuroendocrine_Science/archive


Sakamoto Sex difference in the spinal cord

CONCLUSIONS
Further understanding of the neural and molecular basis of the
sexual dimorphism in the central nervous system will progress
our understanding of the expression of the sexually different
behavior. The expression of sexual behavior in vertebrates is
properly affected by the interactions between endocrine and
psychological factors. During the ontogeny, therefore, it is impor-
tant to know how, when, and where sex steroid hormones
(estrogens and/or androgens) behave in the sexual differenti-
ation of the brain and spinal cord via the genomic and/or
non-genomic actions. The sexually differentiated nervous sys-
tem is influenced by the region- and temporal-specific sex steroid
milieu, suggesting a significance of sex differences observed
in many neurobiological dysfunctions. Although this agenda is
especially difficult and controversial when applied to humans
because of the highly social species, interdisciplinary studies at
the molecular, behavioral, and social levels might be able to make
demonstration of the hormonally orchestrated sexual dimor-
phism in the nervous system and related clinical disorders in
humans.
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