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Studies on brain mechanisms enable us to treat various brain diseases and develop
diverse technologies for daily life. Therefore, an analysis method of neural signals is
critical, as it provides the basis for many brain studies. In many cases, researchers want
to understand how neural signals change according to different conditions. However,
it is challenging to find distinguishing characteristics, and doing so requires complex
statistical analysis. In this study, we propose a novel analysis method, FTF (F-value
time-frequency) analysis, that applies the F-value of ANOVA to time-frequency analysis.
The proposed method shows the statistical differences among conditions in time and
frequency. To evaluate the proposed method, electroencephalography (EEG) signals
were analyzed using the proposed FTF method. The EEG signals were measured during
imagined movement of the left hand, right hand, foot, and tongue. The analysis revealed
the important characteristics which were different among different conditions and similar
within the same condition. The FTF analysis method will be useful in various fields,
as it allows researchers to analyze how frequency characteristics vary according to
different conditions.

Keywords: F-value, ANOVA, electroencephalography, analysis of variance, time-frequency analysis

INTRODUCTION

Analysis methods for neural signals are essential tools to understand the mechanisms of brain
activity (Rubinov and Sporns, 2010; Yeom et al., 2020a). Neural signal analysis has important
academic implications and can be used in various fields, such as medicine, psychology, and
biomedical engineering. For instance, the brain area that causes seizure activity can be accurately
identified by analyzing neural activity patterns (Jeong et al., 2016; Kim et al., 2021). This is critical
to ensure that the patient is free from epilepsy following surgery. Moreover, analysis of neural
signals can be used to diagnose conditions such as Alzheimer’s disease (Dauwels et al., 2010a,b),
attention deficit hyperactivity disorder (ADHD) (Arns et al., 2013; Lenartowicz and Loo, 2014),
and schizophrenia (Boutros et al., 2008; Li et al., 2008). Accurate diagnosis of psychological diseases
enables prompt and appropriate treatments. Furthermore, movement intention can be predicted by
analyzing neural activity (Yeom et al., 2013, 2014, 2020b; Kobler et al., 2020; Mondini et al., 2020;
Sosnik and Ben Zur, 2020), and a paralyzed person can control a robot arm according to his or
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her intentions (Hochberg et al., 2012; Collinger et al., 2013).
Thus, patients who cannot move their bodies can control electric
devices according to their thought by analyzing neural signals.

However, analysis of neural signals such as
electroencephalography (EEG), magnetic encephalography
(MEG), electrocorticography (ECoG), and local field potential
(LFP) is quite challenging. Neural activity changes over time
and has different characteristics depending on frequency band
and brain region (Pfurtscheller and Lopes da Silva, 1999).
For example, the power of alpha waves (8 – 13 Hz) and beta
waves (13 – 30 Hz) decreases in the right motor cortex during
movements of the left hand (Blankertz et al., 2008). After such a
movement, the power of the beta waves increases (Yeom et al.,
2013). Likewise, the power of alpha and beta waves decreases
in the left motor cortex during movements of the right hand
(Blankertz et al., 2008). Other movements also cause changes in
power in related brain areas (Blankertz et al., 2008). A decrease
and increase in power are called event-related desynchronization
(ERD) and event-related synchronization (ERS), respectively
(Pfurtscheller and Lopes da Silva, 1999). Also, importantly,
analysis of neural signals is complicated because, even if the
neural signals are measured under the same conditions, they are
different each time. Therefore, it is difficult to identify which
changes are caused by differences between the conditions or
other noise effects.

Time-frequency analysis is a powerful method of analyzing
the characteristics of neural activity (Roach and Mathalon, 2008;
Tzallas et al., 2009; Fraiwan et al., 2012; Herrmann et al., 2014).
Time-frequency analysis visualizes the variation in signal power
as a color in both the time and frequency domains. Therefore,
the method allows intuitive analysis of the characteristics of
neural signals in both the time and frequency domains. The
method minimizes the effects of noise by repeatedly measuring
neural signals and calculating an average of all trials. However,
in this process, transitory or non-phase-locked activities can be
ignored (Pfurtscheller and Lopes da Silva, 1999). Time-frequency
analysis is a primary and general analysis method widely used
in neuroscience studies (Wacker and Witte, 2013; Herrmann
et al., 2014). However, using time-frequency analysis, it is difficult
to identify which characteristics occur according to different
conditions. For example, if time-frequency analysis is performed
for various conditions, the analyst needs to find the differences
while visually comparing the results.

Although there have been many studies to overcome the
disadvantages of the time-frequency analysis (Addison et al.,
2009; Cohen, 2019), few studies have applied statistical methods
to the time-frequency analysis. Some studies applied the analysis
of variance (ANOVA) to the wavelet to evaluate the similarity
between the simulation model and the actual system (Atkinson
et al., 2017, 2018). However, these studies were aimed to evaluate
the simulation, and these methods could not provide information
on which characteristics differ among different conditions.

Analyzing differences depending on conditions is critical.
The analysis can be used to investigate the cause of diverse
diseases or diagnose it (Dubreuil-Vall et al., 2020; Sebastian-
Romagosa et al., 2020; Lin et al., 2021). Moreover, it is the
core technology in the brain-computer interface (BCI), which

controls computers or various electronic devices according
to various intentions (Gu and Hua, 2021; Panachakel and
Ramakrishnan, 2021). If the characteristics of neural signals
change a little under the same condition and a lot among
different conditions, the characteristics reflect the conditional
changes. This is the basic principle underlying the ANOVA
(Scheffé, 1999). In this study, we suggest a new analysis
method that can easily identify the neural characteristics
that reflect conditional changes by applying the F-value of
ANOVA to time-frequency analysis. To the best of our
knowledge, the proposed method is the first analysis method
that presents the statistical difference among conditions in both
time and frequency.

MATERIALS AND METHODS

Data Description
This study used publicly available EEG data from the Laboratory
of Brain-Computer Interfaces, Graz University of Technology
(Tangermann et al., 2012). The data is available at http://
www.bbci.de/competition/iv. Details of the data are described
in a previous paper (Tangermann et al., 2012). Briefly, EEG
measurements were recorded during four imagined movements
(left hand, right hand, foot, and tongue). Nine subjects
participated in the study, and the subjects were instructed
to imagine movements according to visual stimuli on the
screen. EEG was measured using 22-channel Ag/AgCl electrodes.
Electrooculography (EOG) was measured using 3-channel
unipolar electrodes. The left mastoid was used as the reference
and the right mastoid was used as the ground. The sampling
rate was 250 Hz. The signals were band-pass filtered at 0.5 to
100 Hz. A notch filter at 50 Hz was applied to remove line noise.
To evaluate the F-value time-frequency (FTF) analysis method
in another case, we also analyzed steady-state visually evoked
potential (SSVEP) data. The analysis results of the SSVEP data
are described in the Supplementary Material.

Experimental Paradigm
Subjects were seated in a comfortable chair during the
experiment. Visual instruction was presented on a computer
screen. At the beginning of each session, EOG signals were
measured during eyes open, eyes closed, and eye movements.
The recording was approximately 5 min. At the beginning
of each trial, a fixation cross was displayed at the center
of the screen. A short beep sound was presented together.
After 2 s, an arrow pointing in one of the four directions
appeared for 1.25 s. The fixation cross disappeared 6 s later.
Subjects were instructed to imagine movement according to
the direction of the arrow until the cross disappeared. The
arrow pointing to the left, right, down, and up corresponded
to the imagined movement of the left hand, right hand, foot,
and tongue, respectively. After the fixation cross, a black screen
was presented for a short break. Figure 1A illustrates the
experimental paradigm. EEG signals were measured during
two sessions on different days for each subject as shown in
Figure 1B. One session is for the training of the prediction
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FIGURE 1 | Experimental paradigm. (A) The experimental protocol. At the beginning of each trial, a fixation cross was displayed on the screen. A short beep sound
was presented together. After 2 s, an arrow pointing in one of the four directions appeared for 1.25 s. The fixation cross disappeared 6 s later. After the fixation cross,
a black screen was presented for a short break. (B) Configuration of the experiment. EEG signals were measured during two sessions on different days for each
subject. One session consisted of 6 runs divided by short breaks. One run included 12 trials for each imagined movement (total, 48 trials).

model, and the other session is for evaluation. The session for
training was used for the analysis to find distinguishing features.
One session consisted of 6 runs divided by short breaks. One
run included 12 trials for each imagined movement (total, 48
trials). Therefore, each movement was imagined in 72 trials
in each session.

Time-Frequency Analysis
The proposed analysis method is related to time-frequency
analysis. To compare the proposed method with time-frequency
analysis method, time-frequency analysis was performed. For the
time-frequency analysis, EEG signals were epoched. Epoching
is segmentation of EEG signals based on an event. The event
corresponds to the time at which visual or audible stimuli
are given. In this study, EEG signals were epoched from −2
to 4 s relative to presentation of the arrow. Time-frequency
power spectra were calculated for each channel of the epoched
EEG data using continuous wavelet transform (CWT). To
calculate the CWT, complex Morlet wavelet was used. Time-
frequency power spectra were normalized by baseline power
for each frequency. Baseline corresponded to the recordings
taken from −2 to 0 s relative to the arrow cue. Time-frequency
power spectra were averaged by trials. All signal processing
was performed using MATLAB, 2020b (Mathworks, Natick,
MA, United States).

F-Value Time-Frequency Analysis
We suggest a novel F-value time-frequency analysis method.
It visualizes the F-value of ANOVA depending on frequency

over time, as shown in Figure 2. The F-value is calculated by
dividing the variance between groups (among different motor
imageries) by the variance within the group (within same
imagined movement). A high f-value means a small change
within the same condition and a large change among different
conditions. In other words, high F-values represent the neural
characteristics that vary according to different conditions. F-value
time-frequency analysis shows F-values in both the time and
frequency domains. Therefore, FTF analysis makes it easy to
examine what time and which frequency of the signals are
important for classification of the different conditions. The
F-value of FTF is calculated as follows:

F=
Between−group variance
Within−group variance

where between-group variance and within-group variance are
calculated as follows:

Between−group variance=
K∑
i=1

ni
(Y i−Y)

2

K−1

Within−group variance=
K∑
i=1

ni∑
j=1

(Y ij−Y i)
2

N−K

where [Yi] denotes the mean of samples in the i-th class, [ni]
is the number of samples in the i-th group (type of imagined
movement),[Y] denotes the mean of all 4 groups, [K] denotes
the number of groups, [Yij] is the j-th sample in the i-th
group and [N] is the total number of samples. In this study,
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FIGURE 2 | FTF analysis. Each colorful image represents the time-frequency spectrum of a single trial except the front image. The front image shows the results of
FTF analysis. Groups 1, 2, 3, and 4 correspond to imagined movements of the left hand, right hand, foot and tongue, respectively. The small black squares are pixels
at each time point and frequency.

the parameters were as follows: [n1=n2=n3=n4= 72], [K= 4],
[N= 72∗4 = 288]. The F-values are calculated at each time point
and frequency, as follows:

Ff ,t=
Between−group variancef ,t
Within−group variancef ,t

where [f ] denotes the frequency and [t] denotes the time point.
In this study, f ranged from 1 to 100 and t ranged from 1 to 1,500
(6 s ∗ 250 sampling rate). F-value for the significance level can
be determined by the table of the F-distribution (Beyer, 2019).
To find the F-value, a significant level should be determined. On
the F-distribution table, the F-value for the significance level is
the intersection of degrees of freedom (DOF) between-group and
DOF of within-group. Instead of the table, an online calculator is
available at www.danielsoper.com/statcalc/calculator.aspx?id = 4.

In this study, DOF of between-group and DOF of within-
group were 3 (K-1) and 284 (N-K), respectively. The F-value
for the significance level is 3.851286 for probability level 0.01
(p = 0.01). Figure 2 illustrates the FTF analysis method. Each
of the colorful figures represents the time-frequency spectrum
of a single trial except the front one. The front figure shows the
results of FTF analysis. Groups 1, 2, 3, and 4 represent the types
of imagined movement (left hand, right hand, foot, and tongue,
respectively). The small black squares are the pixels at each
time point and frequency. MATLAB code of the FTF analysis is
available at https://github.com/honggi82/FTF-analysis.

RESULTS

Figures 3A–D show the averaged time-frequency power spectra
for all subjects in channel C3. Figures 3A–D correspond to
the imagined movement of the left hand, right hand, foot, and
tongue, respectively. The red lines show the time points at
which arrows were presented on the screen. Blue represents a
decrease in power (ERD) and yellow represents an increase in
power (ERS) compared to baseline. The time-frequency power
spectra is given in arbitrary units (AUs) because the spectra were
normalized to the baseline. Figure 3A shows ERD at 9 – 40 Hz.
Figure 3B shows stronger ERD than Figure 3A at 9 – 40 Hz.
Figure 3C reveals a short period of ERD at 15 – 40 Hz and
ERS at 10 – 26 Hz after 0.84 s. Figure 3D shows the shortest
period of ERD at 15 – 22 Hz, ERS at 9 – 17 Hz after 0.54 s,
and weak ERS at 18 – 43 Hz until 3 s. Figures 3A–D generally
reveal ERS at 0 – 8 Hz from 0 to about 3.5 s. It is difficult
to determine which frequency causes the differences among
different conditions. Figure 3E illustrates the FTF analysis in
channel C3. The unit of FTF analysis is the F-value. The
figure shows significant differences among conditions occur at
8 – 16 Hz and 19 – 42 Hz from 0.55 to 3.36 s. The F-values
were low at 0 – 8 Hz, which commonly represented ERS in the
time-frequency analysis. The FTF analysis enables examination
of which frequency causes the difference. The analysis results
mean that ERS of delta and theta waves (0 – 8 Hz) is common
among different movements. The analysis also shows that short
ERD of beta waves between 0 and 0.5 s is similar among
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FIGURE 3 | Time-frequency analysis and FTF analysis. (A–D) are the averaged time-frequency power spectra for all subjects in channel C3 related to imagined
movement of the left hand, right hand, foot and tongue, respectively. The red lines show cue onset. The colors represent the increase or decrease in power in
arbitrary units (AUs). (E) Averaged FTF analysis for all subjects in channel C3. The unit of FTF analysis is the F-value. The F-value for the significance level is 3.851286
for probability level 0.01 (p = 0.01). It is clear that significant differences among conditions occur at 8 – 16 Hz and 19 – 42 Hz. X-axis, time; y-axis, frequency.

movements. The FTF analysis reveals that ERS or ERD at alpha
and beta waves (8 – 42 Hz) are critical features distinguishing
different movements.

Figure 4 represents the averaged FTF analysis for all
subjects in all channels. The multi-channel FTF analysis enables
researchers to examine the overall characteristics at one time
easily. Fz, C3, Cz, C4, and Pz are the channel locations in the
international 10–20 system. Channels C3, Cz, and C4 show
high F-values. Channel Cz is close to the brain area responsible
for foot movement. The brain area responsible for right-hand
movement is close to channel C3, and the brain area responsible

for left-hand movement is close to channel C4. Therefore,
FTF analysis reveals the areas that play a distinct role among
different movements.

Figure 5A shows the FTF analysis averaged across all subjects
and channels. Figures 5B,C represent the F-values of the FTF
analysis by topography over time at 17 – 27 Hz and 9 – 15 Hz,
which have significant F-values in Figure 5A. Crucial neural
characteristics that differ among the different conditions in
frequency, time, or location are readily examined by the FTF
analysis. Figures 5B,C reveal high F-values in the areas related
to the hands and foot.
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FIGURE 4 | Averaged FTF analysis for all subjects in all channels. Fz, C3, Cz, C4 and Pz are the channel locations in the international 10–20 system. The unit of FTF
analysis is the F-value. X-axis, time; y-axis, frequency.

DISCUSSION

F-Value Time-Frequency-Analysis
Visualizes Statistical Difference of Neural
Signals Among Different Tasks
Although time-frequency analysis is a powerful method of
analyzing the characteristics of neural activity, it is difficult to
identify which characteristics occur according to the different
conditions. On the other hand, the proposed FTF analysis
method represents the neural characteristics that vary according
to different conditions using statistical values. As shown in
Figures 3A–D, there are common changes and different changes
across conditions. Therefore, it is difficult to examine the
difference among tasks intuitively by time-frequency analysis.
FTF-analysis showed high F-values when neural activities were
different across conditions and low F-values when the neural
activities were similar in Figure 3E. F-values at 8 – 16 Hz and
19 – 42 Hz were significantly high. The frequencies 8 – 16 Hz
and 19 – 42 Hz approximately correspond to alpha and beta
waves, respectively. It is well-known that movements of different
body parts produce different ERD and ERS patterns at alpha
and beta waves (Blankertz et al., 2007, 2008; Tangermann et al.,
2012). Figures 3A–D represent different ERD and ERS at
8 – 16 Hz and 19 – 42 Hz. Figures 3A,B shows weak and strong
ERD, respectively. Figures 3C,D reveals weak and strong ERS,
respectively. Therefore, there are differences across conditions at
8 – 16 Hz and 19 – 42 Hz. On the other hand, F-values at 0 – 8 Hz
were low because ERS was common in Figures 3A–D. Moreover,
ERD was commonly observed at 15 – 20 Hz at 0 – 0.5 s. Therefore,
the F-values were low at 15 – 20 Hz at 0 – 0.5 s.

Although F-values were high at broad areas in Figure 4
because of volume conduction, F-values were higher at channels
C3, C4, and Cz than other channels. In the case of EEG, it is
difficult to say that the EEG signal at a specific location represents
the response of a specific brain area. However, the C3, C4, and
Cz channels are close to the brain areas responsible for the right
hand, left hand, and foot movements, respectively (Seeck et al.,
2017). Moreover, neural responses to the right hand, left hand,
and foot movements, are often observed at C3, C4, Cz (Blankertz
et al., 2007, 2008; Tangermann et al., 2012). Therefore, it means
that FTF analysis shows well the neural characteristics that vary
according to different conditions in time, frequency, and channel.
The neural characteristics of imagined tongue movements were
not clearly observed with time-frequency analysis and FTF
analysis. It seems that the tongue-related area of the brain may
be more lateral than the measured channels (de Klerk et al., 2015;
Wennberg et al., 2019).

Although we analyzed one case of data, the results showed that
the proposed FTF analysis effectively represents the differences
of neural signals in time, frequency, or area among conditions.
We plan to apply FTF analysis to neural signals in various cases
through future studies.

Time-Frequency Analysis and F-Value
Time-Frequency Analysis Are
Complementary
Although FTF analysis identifies neural characteristics that
change according to different conditions, it does not mean that
the FTF analysis is better than the time-frequency analysis.
Time-frequency analysis is especially useful for analyzing neural
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FIGURE 5 | F-value topography in specific frequency bands. (A) FTF analysis averaged across all subjects and channels. The 17 – 27 Hz and 9 – 15 Hz frequency
bands show significant F-values. (B) F-value topography over time at 17 – 27 Hz. (C) F-value topography over time at 9 – 15 Hz. The unit of topography is the
F-value.

activity under one condition. Figures 3A–D show different
ERD and ERS patterns depending on the type of imagined
movement. Therefore, time-frequency analysis provides valuable
information on a specific condition, such as imagined movement
of the left hand, whereas FTF is a powerful tool for finding
characteristics that differ depending on multiple conditions.
Therefore, time-frequency analysis and FTF analysis can be used
complementary to each other. FTF analysis can be used in
various studies, including those related to the brain but also those
related to sound, communication, and so on (Akansu et al., 2010;
Varanis et al., 2021).

F-Value Time-Frequency Analysis Has
the Disadvantages of Time-Frequency
Analysis
F-Value Time-Frequency (FTF) analysis uses time-frequency
analysis for F-value calculation. Any time-frequency analysis
can be used for the FTF analysis because the F-values are

calculated among values of time-frequency analysis. Not
only traditional methods but also recently proposed methods
also can be applied to the FTF analysis (Cohen, 2019; Yang
et al., 2019; Liu et al., 2020; Varanis et al., 2021). However,
FTF analysis has the disadvantages of time-frequency
analysis because it is based on time-frequency analysis.
Time-frequency analysis requires a trade-off between time
resolution and frequency resolution (Grochenig, 2001). It
means that based on the uncertainty principle, the frequency
resolution decreases to increase the time resolution, and
the time resolution decreases to increase the frequency
resolution. Short-time Fourier transform (STFT) uses fixed
resolution in time and frequency (Varanis et al., 2021).
However, high-frequency requires high-time resolution
and low-frequency requires low-time resolution. CWT
increases temporal resolution as frequency increases using
a wavelet (Varanis et al., 2021). Time-frequency analysis
can be obtained by calculating the absolute values of the
CWT. Generally, the CWT’s absolute values are calculated for
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each trial’s signals and then averaged by trials. The process for
calculating the absolute values removes the phasor information.
Therefore, even if there is important information in the phase,
it is difficult to know with time-frequency analysis. Furthermore,
the averaging process reduces the transitory or non-phase locked
activities, although the process diminishes the noise.

CONCLUSION

In this study, we suggest a novel analysis method that can
be used to easily identify neural characteristics that reflect
conditional changes by applying the F-value of ANOVA
to time-frequency analysis. F-value time-frequency analysis
represents the statistical differences among conditions in
both the time and frequency domains. EEG signals during
4 movement imagination tasks were analyzed by the FTF
method. It was easy to observe critical characteristics
that differed in terms of time, frequency, and location.
The FTF method will be useful in various fields that
analyze how frequency characteristics vary according to
different conditions.
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