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incubation in Cellartis® medium. Albumin synthesis as well as 
the activity and gene expression of phase I and II metabolic 
enzymes did not decline during 120-h incubation in Cellartis® 
medium, with CYP2C9 activity as the only exception. Gly-
cogen storage and morphological integrity were maintained. 
Moreover, gene expression changes in hPCLS during incuba-
tion were limited and mostly related to cytoskeleton remod-
eling, fibrosis, and moderate oxidative stress. The expression 
of genes involved in drug transport, which is an important fac-
tor in determining the intracellular xenobiotic exposure, was 
also unchanged. Therefore, we conclude that hPCLS cultured 
in Cellartis® medium are a valuable human ex vivo model for 
toxicological and pharmacological studies that require pro-
longed xenobiotic exposure.

Keywords  Human precision-cut liver slices · Metabolism · 
Drug transport · Transcriptomics · Prolonged incubation

Introduction

In the past decades, development of new toxicity models 
that reduce or replace animal use gained much scientific 
interest. These methods include 2D and 3D cultures of 
freshly isolated cells, differentiated stem cells, or cell lines, 
either in monoculture or in co-cultures. Currently, it is gen-
erally assumed that 3D co-culture models reflect organ 
functions more closely than 2D monocultures. Precision-
cut liver slices (PCLS) have already shown to be a func-
tional and efficient liver model in various pharmacologi-
cal and toxicological studies (de Graaf et  al. 2007, 2010; 
Elferink et al. 2008; Vickers and Fisher 2013). For exam-
ple, PCLS have been widely used to study metabolic path-
ways of xenobiotics, to obtain kinetic data on metabolism 
and transport, or to study drug–drug interactions related 
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to inhibition or induction of various metabolic enzymes 
(de Graaf et  al. 2006; Lake and Price 2013; Olinga et  al. 
2008; Pfeiffer and Metzler 2004). In addition, many 3D 
liver models have been developed, including hepatocytes 
mono-cultures and co-culture systems with hepatocytes and 
non-parenchymal liver cells (Bell et al. 2016; Godoy et al. 
2013). The main advantage of the PCLS model above the 
other 3D liver models is the presence of all liver cells types 
in their natural relative ratio and tissue-matrix configura-
tion, allowing cell–cell and cell–matrix interactions, with 
all vital liver functions represented (de Graaf et  al. 2007; 
Soldatow et al. 2013). Moreover, the use of human PCLS 
(hPCLS) enables a direct in vitro identification of pharma-
cological and toxicological mechanisms relevant for human 
exposure (Vickers and Fisher 2013).

The toxicity of a xenobiotic compound often directly 
depends on its biotransformation, which leads to detoxifi-
cation or toxification of the parent compound. Therefore, 
presence and maintenance of the activity of the metabolic 
enzymes as well as transporter proteins, that transport the 
parent compound as well as metabolites in and out of the 
cells, is a key requirement for an in vitro liver model from 
a toxicological point of view (Lerche-Langrand and Toutain 
2000). Even though fresh PCLS contain the whole range of 
phase I and phase II metabolic enzymes and their viabil-
ity can be maintained for several days (Vickers et al. 2004, 
2011), the decline in xenobiotic metabolizing enzyme activi-
ties in culture, although not as rapid as in isolated hepato-
cytes in conventional 2D cultures, is still a major restriction 
(de Graaf et al. 2010; Ioannides 2013; Lake and Price 2013; 
Lerche-Langrand and Toutain 2000; Vickers et  al. 2011). 
Although this decline does not prevent the use of PCLS in 
cytochrome P450 induction studies or acute toxicity studies, 
their use in (sub)chronic toxicology studies, however, may 
yield data that are not representative of the in vivo situation 
(Ioannides 2013; Lake and Price 2013). Thus, optimization 
of PCLS metabolic functions in culture is an important factor 
for toxicological studies that require a prolonged drug expo-
sure (Lake and Price 2013; Olinga and Schuppan 2013).

Improved viability and functionality of the slices can be 
achieved by improving culture conditions such as medium 
composition (Olinga et al. 1997; Starokozhko et al. 2015). 
For example, a recent study on rat PCLS showed that the 
medium composition has a large impact on tissue viability 
and functions following 5 days of incubation (Starokozhko 
et al. 2015). It is generally known that for a proper predic-
tion of drug disposition and toxicity, it is very important to 
use human cells or tissues because of large species differ-
ences in these functions (Hadi et  al. 2013). However, full 
maintenance of these functions for more than 1–2 days has 
not yet been achieved in hPCLS (Renwick et al. 2000; Van-
denBranden et al. 1998; Vickers et al. 2011). Therefore, the 
aim of this study was to extend the functional viability of 

hPCLS to 5 days of incubation by investigating the stability 
of metabolic enzyme activities, synthesis functions, as well 
as the expression of the genes responsible for xenobiotic 
metabolism and transport in hPCLS during prolonged incu-
bation in three different culture media. Williams’ Medium 
E (WME) was chosen as a standard cell culture medium 
that is commonly used for PCLS incubation (Duryee et al. 
2014; Jetten et al. 2014; Westra et al. 2014). As a second 
medium we chose RegeneMed®, which was designed and 
used for long-term culture of primary human liver cells 
(Kostadinova et al. 2013) and which we tested on rat PCLS 
before (Starokozhko et  al. 2015). As a third medium, we 
tested Cellartis® Hepatocyte Maintenance Medium (Takara 
Bio Europe AB), which was originally designed as main-
tenance medium for induced pluripotent stem-cell-derived 
hepatocytes, to maintain viability, differentiation, and liver 
functions. We characterized the viability and morphologi-
cal and functional changes (albumin synthesis) in hPCLS 
during 5 days of incubation. Maintenance of phase I and II 
metabolism was studied both on gene expression and func-
tional levels. Moreover, we performed transcriptomic anal-
ysis of the gene expression using microarrays and focused 
on the expression of genes involved in drug metabolism, 
transport and toxicity, oxidative stress, and fibrogenesis.

Materials and methods

Human livers

Human liver material was obtained from the healthy parts 
of liver tissue of five individual patients, undergoing hepa-
tectomy for the removal of carcinoma, from donor liver 
tissue after reduced size liver transplantation or from liver 
tissue donated after cardiac death but not suitable for 
transplantation (See Table  4 for details, Supplementary 
materials). The experimental protocols were approved by 
the Medical Ethical Committee of the University Medical 
Center Groningen.

Preparation and incubation of human PCLS

hPCLS were prepared as described previously by de Graaf 
et  al. with minor modifications (de Graaf et  al. 2010). 
hPCLS of 5 mm in diameter and approximately 5 mg wet 
weight was used in this study. Slices were pre-incubated for 
1 h at 37 °C in a 12-well plate filled with 1.3 ml of WME 
(Gibco, Life Technology) saturated with 80 % O2/5 % CO2 
while gently shaking 90  times/min. Thereafter, they were 
transferred to another 12-well plate filled with 1.3  ml of 
three different media saturated with 80 %O2/5CO2: WME 
(with l-glutamine, Invitrogen, Paisly, Scotland) supple-
mented with 25  mM glucose and 50  mg/ml gentamycin 
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(Invitrogen), RegeneMed® medium: WME supplemented 
with RegeneMed® additives (L3STA), antibiotics (L3MAB) 
and supplements (L3STS) in ratio 100:15.1:1:2.5 (Regen-
eMed®, San Diego, CA, USA) or Cellartis® Hepatocyte 
Maintenance Medium: WME supplemented with Cellartis® 
Hepatocyte Maintenance Medium Supplements (Cat. No. 
Y30051, Takara Bio Europe AB, Gothenburg, Sweden) and 
50  mg/ml gentamycin. PCLS were incubated for 5  days 
with medium being refreshed daily.

ATP and protein content of hPCLS

Viability of hPCLS was determined at different time points 
(0, 24, 48, 72, 96, and 120 h) by means of the ATP content 
of the hPCLS as described previously using the ATP Bio-
luminescence Assay Kit CLS II (Roche, Mannheim, Ger-
many) (de Graaf et al. 2010). Protein content of the hPCLS 
was measured according to Lowry by using the Bio-Rad 
DC Protein Assay (Bio-Rad, Munich, Germany) using a 
bovine serum albumin calibration curve (Lowry et al. 1951) 
as previously described (Starokozhko et al. 2015).

Paraffin sections of hPCLS

hPCLS were collected after each experimental time point 
and fixed in 4 % formaldehyde in phosphate buffered saline 
(PBS) solution for 24  h at 4  °C and stored until analysis 
in 70 % ethanol at 4 °C. After dehydration in alcohol and 
xylene, the slices were embedded in paraffin and sectioned 
(4-µm-thick sections) perpendicular to the surface of the 
slice.

Morphological assessment

Morphological assessment of hPCLS was performed on 
paraffin sections, stained with hematoxylin and eosin (Klin-
ipath, the Netherlands) (H&E) as described previously (de 
Graaf et al. 2000).

Periodic acid‑schiff staining (PAS) and Sirius red 
staining

The glycogen content of hPCLS was determined by the 
periodic acid-Schiff (PAS) staining as described previ-
ously by Schaart et al. (2004), with some modifications as 
described before (Starokozhko et  al. 2015). Staining for 
fibrillary collagen was performed on 4-µm paraffin sections 
using picrosirius red (Sigma, Gillingham, UK). In brief, 
slices were deparaffinized and stained in picrosirius red dye 
(0.1 % picric acid). Thereafter, sections were washed two 
times in acidified water (5 ml/L glacial acid), dehydrated, 
and embedded in Depex.

Functional characterization of hPCLS

Phase I and II metabolism

To test the activities of different CYP isoenzymes, hPCLS 
were incubated for 3  h with a drug cocktail containing 
10 µM phenacetin (CYP1A), 10 µM bupropion (CYP2B6), 
50  µM mephenytoin (CYP2C19), 10  µM diclofenac 
(CYP2C9), 10 µM bufuralol (CYP2D6), and 5 µM mida-
zolam (CYP3A) in medium without phenol red. Medium 
was collected and stored at −80 °C until further analysis. 
Metabolite concentrations were measured by Pharmacelsus 
(Germany) by LC/MS according to in house protocols. The 
metabolite production was normalized per mg protein and 
per hour.

To assess both phase I and II metabolism, hPCLS were 
incubated with 100 µM 7-ethoxycoumarin (7-EC) for 3 h. 
7-EC is metabolized first to 7-hydroxycoumarin (7-HC) by 
Cytochrome P450, which further undergoes glucuronida-
tion [7-hydroxycoumarin-glucuronide (7-HC-G)] and sul-
fation (7-hydroxycoumarin-sulfate (7-HC-S). Furthermore, 
to measure directly phase II metabolism activity, hPCLS 
were exposed directly to 100 µM of 7-HC (Sigma-Aldrich, 
St. Louis, MO, USA) for 3  h. Medium was collected 
and stored at −20  °C until further analysis by HPLC as 
described before (de Kanter et al. 2004), using 7-EC, 7-HC, 
7-HC-G, and 7-HC-S as standards. The metabolite produc-
tion was normalized per mg protein and per hour.

Albumin production

Albumin production was measured using the Human Albu-
min ELISA kit (Bethyl Laboratories, Mongomery, USA) 
according to the supplier’s protocol. In brief, medium was 
collected every day and stored at −20  °C until analysis. 
Samples were diluted if necessary. The amount of albumin 
was calculated based on a standard curve of human albu-
min generated as a four-parameter curve fit. Values are 
expressed as ng albumin produced per hour, per mg total 
protein.

RNA isolation

RNA was isolated from slices incubated for 120 and the 0 h 
(control samples). RNA isolation was performed using the 
Maxwell® 16 LEV Total RNA purification kit (Promega, 
the Netherlands) with Maxwell® 16 LEV Instrument. 
Immediately after isolation, the RNA quality was assessed 
by measuring the 260/230 and 260/280 ratios, and the con-
centration was measured with the ND-1000 spectrophotom-
eter (Fisher Scientific, Landsmeer, the Netherlands). The 
quality (RIN value) and quantity of the RNA were further 
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determined by high-throughput Caliper GX LabChip RNA 
kit (Caliper) before the RNA amplification.

Amplification, labeling and hybridization of RNA 
samples

Ambion Illumina Total Prep RNA kit was used to tran-
scribe 300 ng RNA to cRNA according to the manufactur-
er’s instructions. A total of 750 ng of cRNA was hybridized 
at 58 °C for 16 h to the Illumina HumanHT-12 v4 Expres-
sion BeadChips (Illumina, San Diego, CA, USA). Bead-
Chips were scanned using Iscan software, and raw IDAT 
files were generated.

Preprocessing of gene expression data

GenomeStudio software (Illumina) was used to generate 
raw expression values from the IDAT files. The ArrayA-
nalysis Web service was used for further preprocessing the 
data, which uses the package “lumi,” for the R software 
environment (R Foundation for Statistical Computing, 
Vienna, Austria; Eijssen et al. 2013). Raw gene expression 
data were background-corrected (bgAdjust), variance-sta-
bilized (VST), and normalized by quantile normalization. 
Differentially expressed genes in slices incubated for 120 h 
with Cellartis® medium versus the control slices (0 h) were 
identified using the moderated t test in the ‘limma’ package 
of the R software environment (Ritchie et al. 2015). Genes 
that are regulated with a criterion of fold change of 1.5 
(≤ or ≥1.5), and FDR-corrected p value ≤0.05 (Benjamini 
and Hochberg method) was chosen for pathway analysis.

Gene expression pattern analysis

Gene expression pattern analysis of the data was performed 
by GEDI software (default settings) and metagene (set of 
genes whose expression change similarly in the incubated 
samples compared to control samples) signature of each 
sample is represented in a grid of 26 ×  25 tiles; each of 

the tiles contains genes that are highly correlated with each 
other (Eichler et al. 2003). The tiles are arranged such that 
each tile is also correlated with the adjacent tiles. Thus, it 
allows a global first-level analysis of the transcriptomic 
changes due to incubation.

Pathway analysis

Pathway analysis (canonical metabolic and signaling path-
ways) was performed to identify the significantly regulated 
pathways using QIAGEN’s Ingenuity® Pathway Analysis 
(IPA®, QIAGEN Redwood City, CA, USA). The annota-
tions of the genes related to metabolism, transport, and tox-
icity processes such as fibrosis and stress response genes 
were retrieved from the Ingenuity knowledgebase.

Statistics

Three to four different human livers were used for each 
experiment, using slices in triplicates from each liver. Sta-
tistical testing was performed with two way repeated meas-
ures ANOVA with the individual human as random effect. 
We performed a Tukey HSD post hoc test for pairwise 
comparisons. A p value of ≤0.05 was considered to be sig-
nificant. In all graphs the mean values and standard error of 
the mean (SEM) are shown. All statistical analysis was per-
formed using R version 3.2.2 (R Foundation for Statistical 
Computing, Vienna, Austria).

Results

Viability

The viability of the hPCLS during incubation for 120  h 
was assessed by ATP content (Fig. 1a). hPCLS incubated in 
RegeneMed® and Cellartis® medium maintained the ATP 
level at least up to 120 h of incubation. However, ATP con-
tent in hPCLS incubated in WME decreased significantly 

Fig. 1   ATP (a) and protein (b) 
content in hPCLS during 120 h 
incubation in three different 
media [WME (red line), Regen-
eMed® (green dotted line), 
and Cellartis® (blue dashed 
line)]. Data represent the aver-
age ± SEM of four experiments 
(four different livers), using 
three hPCLS for each group in 
every experiment (color figure 
online)
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over time (p =  0.03). The protein content remained con-
stant in slices incubated in RegeneMed® during 5 days of 
incubation, whereas it increased somewhat in slices incu-
bated in Cellartis® (p = 0.04) and significantly decreased in 
slices incubated in WME (p = 0.005) (Fig. 1b).

Morphological examination of hPCLS

The viability of hPCLS following incubation up to 120 h 
was also assessed by histomorphology (Fig.  2). After the 
slicing procedure, hPCLS had normal tissue architec-
ture with all liver cell types present. Following prolonged 
incubation in WME, substantial necrotic zones with pyk-
notic nuclei were observed in the slices. On the contrary, 
hPCLS incubated in RegeneMed® or Cellartis®, contained 
viable hepatocytes with occasional small necrotic areas. 
Slices showed a higher cell density due to substantially nar-
rowed sinusoids after 120  h of incubation. In the hPCLS 
incubated in Cellartis® medium, hepatocytes contained 
unstained areas, probably due to glycogen deposits (see 
below). These were also visible in the slices incubated in 
RegeneMed®, although less pronounced. The thickness of 
the slices incubated in RegeneMed® or Cellartis® increased 
during incubation (Fig.  2). Moreover, the formation of a 
new cell layer was observed during prolonged incubation 
of hPCLS in RegeneMed® and Cellartis®, which was posi-
tive for vimentin (Fig. 2e and f).

Sirius red staining revealed an increased collagen depo-
sition in slices incubated in all three media. In non-incu-
bated slices, collagen was deposited mainly around the 

portal vein, bile ducts, and hepatic vein, and only a few 
very thin collagen fibers were observed in some areas of 
the parenchyma. In slices incubated in Cellartis® medium, 
collagen fibers in the parenchyma became thicker and 
more visible. Moreover, occasional nodes of collagen were 
observed, which were mostly located in the portal area 
(Fig.  3, 1D). These changes were substantially more pro-
nounced in slices incubated in RegeneMed®, where large 
nodes of collagen located in the portal areas, as well as in 
the parenchyma were observed (Fig.  3, 1C). Slices incu-
bated in WME also showed an increase in collagen deposi-
tion in the parenchyma (Fig. 3, 1B).

Slices fixed at 0 h showed high and homogeneous glyco-
gen deposition. Following 5 days of incubation in Regen-
eMed® and Cellartis®, but not in WME, hPCLS maintained 
the ability to synthesize and deposit glycogen, which indi-
cates an adequate oxygen as well as nutrient supply and 
good energy balance during incubation. An intensive glyco-
gen deposition in the areas where large vacuoles in hepato-
cytes were seen indicates that those vacuoles are filled with 
glycogen. hPCLS incubated in WME did not contain gly-
cogen after 5 days of incubation (Fig. 3, 2A–2D).

Phase I and phase II metabolism

The activities of metabolic enzymes in hPCLS from dif-
ferent donors showed large inter-individual variation as 
expected based on well-described variations in the human 
population due to disease conditions, exposure to other 
drugs and food components and polymorphisms in drug 

Fig. 2   Hematoxylin–eosin staining of cross sections of hPCLS at 0 h 
(a) and incubated 120 h in WME (b), RegeneMed® (c) or Cellartis® 
(d). Vimentin staining of the new cell layer around the slice incubated 

for 120 h in RegeneMed® (e) or Cellartis® (f). Representative images 
are shown. Scale bar 200 µm for a–d, 100 µm for e and 50 µm for f
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metabolizing enzymes. Therefore, metabolite production 
levels at different days during incubation are expressed as 
relative to the value of the fresh hPCLS of the correspond-
ing liver (Fig. 4).

The incubation time had different effects on meta-
bolic enzymes in hPCLS incubated in the different media. 

Overall, the three media differed significantly in their 
effect on the activity of most of the tested CYP isoforms 
(CYP2C19: p  <  0.01, CYP1A: p  <  0.001, CYP2D6: 
p  <  0.001, CYP2B6: p  <  0.01). In WME the activity of 
CYP2D6, CYP2B6, and CYP3A at 120  h in hPCLS was 
lower compared to 3  h value, whereas the activities of 

Fig. 3   Cross sections of hPCLS at 0 h (a) and incubated 120 h in WME (b), RegeneMed® (c) or Cellartis® (d) stained with Sirius Red (1) or 
PAS (2). Representative images are shown. Scale bar 200 µm

Fig. 4   Phase I metabolite production of mephenytoin (a), midazolam 
(b), phenacetin (c), bufuralol (d), bupropion (e), and diclofenac 
(f) during 5  days by hPCLS incubated in WME (red line), Regen-
eMed® (green dotted line), and Cellartis® (blue dashed line). Date are 

expressed as relative values ± SEM to the value at 0–3 h incubation. 
3 (WME and Cellartis®) or 2 (RegeneMed®) donor livers were used 
for each study, using three hPCLS for each group in every experiment 
(color figure online)
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CYP2C9, CYP2C19, and CYP1A remained constant. 
In RegeneMed® the activity of four of the CYP isoforms 
declined in time (p  <  0.01 for CYP2D6 and CYP3A, 
p  <  0.001 for CYP2C9 and CYP2C19). The activity of 
CYP2B6 and CYP1A, however, were not significantly 
changed. On the contrary, in Cellartis® medium the activ-
ity of all tested cytochrome P450 isoforms did not decline 
during 120 h in hPCLS incubated, with a slight decrease of 
CYP2C9 as the only exception. Interestingly, the activity of 
CYP1A strongly increased over time in slices incubated in 
Cellartis® medium (p < 0.01 for overall effect of time).

7-EC is metabolized in the human liver mainly by 
CYP1A2 and CYP2E1 to 7-HC, which undergoes further 
glucuronidation (7-HC-G) and sulfation (7-HC-S) by uri-
dine UDP-glucuronyltransferases (UGTs) and sulfotrans-
ferases (SULTs), respectively. The total phase I metabolic 
rate of 7-EC is calculated as the total amount of 7-HC, 
7-HC-G, and 7-HC-S produced. The results show that 
the medium composition has a significant effect on 7-EC 
metabolism by hPCLS (p  <  0.001), in line with the find-
ings with the drug cocktail. Thus, metabolite production 
of 7-EC decreased substantially already after 24 h in slices 
incubated in WME or RegeneMed®, with a further decline 
over 120  h of incubation. hPCLS incubated in Cellartis® 
medium, on the other hand, had a constant or even increas-
ing overall metabolite production over time (Fig. 5a).

To study phase II metabolism separately, the slices were 
exposed to 7-HC. Phase II metabolism of 7-HC was shown 
to be affected by both time and medium composition 
(Fig. 5b, c). For example, production of both 7-HC-G and 
7-HC-S from 7-HC slightly declined over time in hPCLS 
incubated in RegeneMed®, whereas their production 
remained constant in Cellartis® medium. The SULT activity 
was stable also in hPCLS incubated in WME, but the UGT 
activity, however, declined over time. The phase II metabo-
lism of 7-HC in RegeneMed® and WME formed after oxi-
dation of 7-EC decreased apparently due to a decrease in 
Phase I metabolism. Moreover, it showed a different pat-
tern in Cellartis® medium toward higher production of glu-
curonides and lower sulfation rates (Fig. 5a) compared to 
the metabolism of 7-HC added directly to hPCLS, where 
sulfation rates in Cellartis® medium remained stable over 
time (Fig. 5c).

Albumin synthesis

Incubation time (p  =  0.02) and composition of medium 
(p < 0.001) had a significant effect on albumin synthesis in 
hPCLS. The effect of incubation time was different across 
media (p for interaction: 0.007), with a significant increase 
in albumin synthesis over time in Cellartis® and a constant 
level of synthesis in RegeneMed® and WME (Fig. 6).

Fig. 5   Phase I and II metabo-
lism of 7-EC (a) and Phase II 
metabolism of 7-HC (b, c) dur-
ing 5 days by hPCLS incubated 
in WME (red line), Regen-
eMed® (green dotted line), and 
Cellartis® (blue dashed line). 
Data are expressed as relative 
values (±SEM) to the value at 
0–3 h incubation (color figure 
online)
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Gene expression of metabolic and transporter‑related 
genes

To further identify potential changes in drug metabolism, 
transport, and toxicology-related pathways during culture, 
we performed a transcriptomic analysis of slices incubated 
for 120  h in Cellartis® medium. As the functional results 
showed the best maintenance of hPCLS functionality in 
Cellartis® medium but a significant decline in WME and 
RegeneMed®, we did not perform transcriptomic analy-
sis of hPCLS incubated in the latter two media. Following 
120  h of incubation in Cellartis® medium, a limited pro-
portion, 704 genes were shown to be up- or downregulated 
(p < 0.05) compared to the 0 h control slices, out of which 
57.5 % were upregulated. In order to investigate the stabil-
ity of hPCLS during incubation with respect to expression 
of genes related to xenobiotic metabolism and drug trans-
port, we listed the significantly regulated genes involved in 
phase I and II metabolism (Table 1) as well as in drug trans-
port. Moreover, pathway analysis showed that the major-
ity of pathways related to liver damage such as cholestasis, 
steatosis, apoptosis, necrosis, or mitochondria damage were 
not up- or downregulated in hPCLS after 5 days of incuba-
tion in Cellartis® medium. Some pathways, however, were 
shown to be differentially regulated, among which oxidative 
stress and fibrosis. Therefore, we listed the differentially 
expressed genes involved in oxidative stress and fibrosis 
development in Tables  2 and 3. The list of top 20 signifi-
cantly regulated pathways is given in supplementary Fig. 7. 

Phase I and II metabolism

Table 1 shows the genes involved in drug metabolism and 
its regulation that were significantly regulated after 5 days 
of incubation. The gene expression of many of the phase 
I metabolism enzymes was stable in hPCLS during 5 days 
of incubation. Remarkably, CYPs known to play an impor-
tant role in drug metabolism, such as CYP1A1, CYP1A2, 
CYP3A4, CYP2B6, CYP2C9, CYP2C19, and CYP2C8 
were upregulated during incubation. Monooxygenases 
(FMO) or glutathione peroxidase was not affected after 
5 days of incubation. Among the aldehyde dehydrogenases, 
ALDH1A1, ALDH3A2, and ALDH8A1 were upregu-
lated after 5 days, and among the alcohol dehydrogenases 
only ADH5 was upregulated, while all other ALDH’s 
and ADH’s were unchanged. Some of the genes coding 
for phase II metabolism enzymes were upregulated after 
5  days of incubation, such as gluthatione S-transferases 
(GST’s) and UGT’s. SULTs, methyltransferases (MTs), 
and N-acetyltransferases (NATs, with the exception of 
NAT8) were not regulated. Most of the transcription factors 
involved in the regulation of drug metabolizing enzymes, 
such as PXR, CAR, GR, and FXR were unchanged, only 
AhR was somewhat downregulated (1.7 fold).

Transporters

Drug uptake (SLC’s) and excretion (MDR’s and MRP’s) 
transporters are important determinants for the intracellu-
lar exposure to drugs and their metabolites. The expression 
of the genes coding for the main human drug transporters 
(MRP’s and SLC’s) were unchanged after 5 days of incu-
bation, with the exception of MRP5, which was slightly 
(1.7-fold) upregulated. The changes in expression of other 
transporters, not directly involved in drug transport, were 
limited. For example, the expression of ABCA1, responsi-
ble for the efflux of cholesterol, and SLC27A5, responsible 
for fatty acid transport, were moderately (twofold to four-
fold) downregulated, whereas the expression of ATP2C1, 
responsible for calcium transport, was moderately (2.7 
fold) upregulated (Table 5, Supplementary materials).

Oxidative stress

During incubation, a limited number of genes involved 
in oxidative stress response was regulated (Table  2). The 
twofold to fourfold upregulation of aldo–keto reductase 
AKR7A3 (involved in the detoxification of aldehydes and 
ketones), carbonyl reductase CBR1 (involved in the detoxi-
fication of carbonyl compounds, such as quinones, prosta-
glandins, and various xenobiotics), glutathione synthetase 

Fig. 6   Albumin synthesis over time by hPCLS incubated in WME 
(red line), RegeneMed® (green dotted line) or Cellartis® (blue dashed 
line). Date are expressed as relative value to 24-h control (±SEM) 
(color figure online)
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Table 1   Significantly regulated 
genes involved in phase I 
and phase II metabolism and 
metabolism signaling

Gene title Gene symbol Fold change P 
value

Alcohol dehydrogenase 5 (Class III) ADH5 1.6 0.037

Aryl hydrocarbon receptor AHR −1.7 0.046

Aldehyde dehydrogenase 1 family, member A1 ALDH1A1 4.0 0.009

Aldehyde dehydrogenase 3 family, member A2 ALDH3A2 3.5 0.008

Aldehyde dehydrogenase 8 family, member A1 ALDH8A1 2.2 0.047

Calcium/calmodulin-dependent protein kinase II beta CAMK2B −3.3 0.046

Carboxylesterase 2 CES2 2.4 0.043

Cbp/P300-interacting transactivator, with Glu/Asp-Rich carboxy-
terminal domain, 2

CITED2 4.1 0.029

Cytochrome P450, family 1, subfamily A, polypeptide 1 CYP1A1 136.6 0.0002

Cytochrome P450, family 1, subfamily A, polypeptide 2 CYP1A2 11.1 0.019

Cytochrome P450, family 1, subfamily B, polypeptide 1 CYP1B1 14.1 0.006

Cytochrome P450, family 24, subfamily a, polypeptide 1 CYP24A1 30.2 0.0005

Cytochrome P450, family 26, subfamily a, polypeptide 1 CYP26A1 4.7 0.017

Cytochrome P450, family 26, subfamily b, polypeptide 1 CYP26B1 2.9 0.033

Cytochrome P450, family 2, subfamily a, polypeptide 6 CYP2A6 10.3 0.041

Cytochrome P450, family 2, subfamily b, polypeptide 6 CYP2B6 2.9 0.037

Cytochrome P450, family 2, subfamily c, polypeptide 18 CYP2C18 4.0 0.017

Cytochrome P450, family 2, subfamily c, polypeptide 19 CYP2C19 6.0 0.046

Cytochrome P450, family 2, subfamily c, polypeptide 8 CYP2C8 2.6 0.041

Cytochrome P450, family 2, subfamily c, polypeptide 9 CYP2C9 4.0 0.043

Cytochrome P450, family 3, subfamily a, polypeptide 4 CYP3A4 11.7 0.047

Eukaryotic translation initiation factor 2-alpha kinase 3 EIF2AK3 −1.8 0.047

Fas cell surface death receptor FAS 2.8 0.021

Growth arrest and DNA-damage-inducible, beta GADD45B −11.0 0.011

Glutathione S-transferase alpha 1 GSTA1 20.4 0.044

Glutathione S-transferase alpha 2 GSTA2 30.9 0.019

Glutathione S-transferase alpha 3 GSTA3 1.8 0.035

Glutathione S-transferase alpha 5 GSTA5 8.9 0.047

Glutathione S-transferase Mu 4 GSTM4 2.0 0.029

Glutathione S-transferase Omega 1 GSTO1 3.6 0.017

Microsomal glutathione S-transferase 1 MGST1 4.1 0.014

Microsomal glutathione S-transferase 3 MGST3 1.8 0.034

N-Acetyltransferase 8 NAT8 8.2 0.008

Nuclear receptor co-activator 7 NCOA7 −2.0 0.039

N-Deacetylase/N-Sulfotransferase (heparan glucosaminyl) 2 NDST2 −1.9 0.035

Nuclear factor I/X NFIX −2.3 0.047

NAD(P)H dehydrogenase, quinone 1 NQO1 10.4 0.0006

Phosphoenolpyruvate carboxykinase 2 PCK2 4.3 0.024

Peroxisome proliferator-activated receptor gamma, co-activator 1 
alpha

PPARGC1A −3.7 0.021

Protein phosphatase 2, regulatory subunit a, beta PPP2R1B −5.3 0.027

Retinoic acid receptor, alpha RARA −2.7 0.030

Related RAS viral (R-Ras) oncogene homolog 2 RRAS2 2.2 0.039

Retinoid X receptor, gamma RXRG −2.3 0.049

Sp1 transcription factor SP1 −1.9 0.047

SRC proto-oncogene, non-receptor tyrosine kinase SRC 2.8 0.024

Ubiquitin carboxyl-terminal esterase L1 (ubiquitin thiolesterase) UCHL1 4.6 0.01

UDP glucuronosyltransferase 1 family, polypeptide A1 UGT1A1 17.9 0.008
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GSS (involved in glutathione synthesis, an important anti-
oxidant), peroxiredoxin PRDX2 and PRDX3 (antioxi-
dant enzymes which reduce hydrogen peroxide and alkyl 
hydroperoxides), and thioredoxin TXN (involved in many 
redox reactions) indicates that slices undergo some moder-
ate oxidative stress and respond by upregulating defense 
mechanisms. However, some stress markers, such as 
CCL5, IL10, and STAT3 were downregulated after 5 days 
of incubation.

Fibrosis

Pathway analysis showed that some of the genes involved 
in fibrosis development were regulated after 5 days of incu-
bation. For example, collagen genes COL16A1, COL1A1, 
COL3A1, COL6A3, FN1, decorin, and lumican were 
shown to be upregulated after 5 days (Table 3). COL’s and 
FN1 are responsible for collagen and fibronectin synthesis, 

respectively, while decorin and lumican play a role in col-
lagen fibril assembly. Moreover, several genes involved in 
TGF signaling pathways, such as BAMBI, SMAD4, TGFA, 
and TGFBR2, were moderately upregulated. These find-
ings are in line with the morphological observation of an 
increase in collagen deposition in slices after 5  days of 
incubation.

Discussion

PCLS have been extensively used for drug toxicity stud-
ies and are considered to most closely represent the origi-
nal liver, retaining all the liver cells in their natural envi-
ronment. Moreover, the use of hPCLS makes it possible to 
avoid extrapolation steps from animal to human studies, 
since it is recognized that results obtained from animal-
based models cannot be directly extrapolated to humans, 

Table 2   Significantly regulated genes involved in oxidative stress response

Gene title Gene symbol Fold change P value

Actin, beta ACTB 2.5 0.029

Actin gamma 1 ACTG1 2.2 0.017

Aldo–Keto reductase family 7, member A3 (aflatoxin aldehyde reductase) AKR7A3 4.0 0.039

Activating transcription factor 4 ATF4 −2.7 0.018

Carbonyl reductase 1 CBR1 2.1 0.023

Chemokine (C–C Motif) ligand 5 CCL5 −2.0 0.044

DnaJ (Hsp40) homolog, subfamily B, member 11 DNAJB11 −3.4 0.012

DnaJ (Hsp40) homolog, subfamily C, member 12 DNAJC12 −3.8 0.027

DnaJ (Hsp40) homolog, subfamily C, member 3 DNAJC3 −2.0 0.043

Ferritin, heavy polypeptide 1 FTH1 3.0 0.046

Glutathione synthetase GSS 1.9 0.041

3-Hydroxyacyl-CoA dehydratase 3 HACD3 2.6 0.009

Interleukin 10 IL10 −1.8 0.042

Peroxiredoxin 2 PRDX2 1.7 0.042

Peroxiredoxin 3 PRDX3 2.7 0.024

Signal transducer and activator of transcription 3 (acute-phase response factor) STAT3 −2.0 0.036

Thioredoxin TXN 2.6 0.043

Table 1   continued Gene title Gene symbol Fold change P 
value

UDP glucuronosyltransferase 1 family, polypeptide A3 UGT1A3 3.0 0.037

UDP glucuronosyltransferase 1 family, polypeptide A4 UGT1A4 7.8 0.021

UDP glucuronosyltransferase 1 family, polypeptide A6 UGT1A6 10.2 0.024

UDP glucuronosyltransferase 2 family, polypeptide A3 UGT2A3 6.4 0.01

UDP glucuronosyltransferase 2 family, polypeptide B11 UGT2B11 4.4 0.011

UDP glucuronosyltransferase 2 family, polypeptide B15 UGT2B15 11.0 0.011

UDP glucuronosyltransferase 2 family, polypeptide B17 UGT2B17 7.3 0.012

UDP glucuronosyltransferase 2 family, polypeptide B4 UGT2B4 4.1 0.019

UDP glucuronosyltransferase 2 family, polypeptide B7 UGT2B7 2.2 0.033
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due to among others the differences in metabolism and 
transport of xenobiotics (Chu et al. 2013; Karthikeyan et al. 
2016).

The viability of hPCLS was preserved during 5  days 
of incubation in Cellartis® and RegeneMed® medium, but 
not in WME, which was different compared to our previ-
ous studies on rat PCLS, where slices incubated in WME 
retained their viability during prolonged incubation similar 
to slices incubated in RegeneMed®. hPCLS incubated in 
WME decreased in protein content following incubation, 
likely due to the decline in their viability and cell death. 
hPCLS incubated in RegeneMed®, however, maintained 
their protein content during incubation, whereas the protein 
content in slices incubated in Cellartis® medium gradu-
ally increased somewhat during incubation, which might 
indicate protein synthesis and/or cell proliferation. Cell 
proliferation can also be responsible for the observed ca. 
20–40 % increase in thickness of the slices during incuba-
tion in RegeneMed® and Cellartis® medium, which was far 
less than previously observed in rat PCLS (Starokozhko 
et al. 2015). Even though the slices increased in thickness 
during incubation, the oxygen penetration to the inner cell 
layers was sufficient, since no necrotic/hypoxic bands of 
cells were seen in the inner part of the slices. Only occa-
sional necrotic areas were observed in hPCLS cultured 
in Cellartis® and RegeneMed® medium, whereas slices 

incubated in WME had large necrotic regions with pycnotic 
nuclei. The formation of a new cell layer around the slices 
during culture has been already described before for rat 
PCLS by us (Starokozhko et al. 2015). This newly formed 
cells layer in hPCLS was positive for vimentin indicating 
the mesenchymal origin of these cells.

The hPCLS incubated in RegeneMed® and Cellartis® 
medium showed good maintenance of glucose homeostasis 
and albumin synthesis, whereas the slices in WME partially 
lost these capacities, which can at least partly be explained 
by the absence of insulin in WME, whereas both the other 
media contain insulin.

Biotransformation in the liver can lead to detoxification 
or toxification of a drug and liver transporters can increase 
or reduce the actual intracellular exposure to a xenobiotic. 
Therefore, the expression and functionality of metabolic 
enzymes and transporters in the human in  vitro model at 
the levels comparable to in  vivo values is an important 
requirement for toxicity studies. The stability of expression 
of genes involved in drug metabolism and transport, as well 
as stress and toxicity responses have been characterized 
up to 24 h in hPCLS culture before (Elferink et al. 2011). 
However, the stability of these genes and, importantly, the 
activity of phase I and II metabolic enzymes during pro-
longed hPCLS culture has never been fully investigated. 
This is an particularly important requirement for toxicity 

Table 3   Significantly regulated 
genes involved in fibrosis 
development

Gene title Gene symbol Fold change P value

BMP and activin membrane-bound inhibitor BAMBI 2.0 0.037

Collagen, type XVI, alpha 1 COL16A1 2.1 0.041

Collagen, type I, alpha 1 COL1A1 12.3 0.006

Collagen, type I, alpha 2 COL1A2 9.1 0.015

Collagen, type III, alpha 1 COL3A1 8.7 0.021

Collagen, type VI, alpha 3 COL6A3 7.2 0.006

Decorin DCN 2.3 0.038

Fibronectin 1 FN1 1.9 0.025

Interferon (alpha, beta, and omega) receptor 1 IFNAR1 −2.2 0.041

Insulin-like growth factor 1 (somatomedin C) IGF1 −3.4 0.039

Insulin-like growth factor 2 IGF2 −3.2 0.017

Insulin-like growth factor binding protein 6 IGFBP6 1.8 0.026

Interleukin 4 receptor IL4R −3.8 0.019

Lipopolysaccharide binding protein LBP −1.7 0.037

Leptin LEP −1.9 0.039

Lectin, galactoside-binding, soluble, 3 LGALS3 3.5 0.017

Lumican LUM 6.4 0.022

SMAD family member 4 SMAD4 1.6 0.048

Signal transducer and activator of transcription 1, 91 kDa STAT1 −2.0 0.041

Synovial apoptosis inhibitor 1, synoviolin SYVN1 −1.9 0.026

Transforming growth factor, alpha TGFA 2.2 0.021

Transforming growth factor, beta receptor II TGFBR2 2.4 0.035

Vitronectin VTN −1.7 0.047
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studies that require prolonged exposure to the drug. There-
fore, we characterized the changes in phase I and II meta-
bolic enzymes both on gene expression and functional lev-
els. Moreover, we assessed the changes in hPCLS viability, 
morphology and functionality following 5 days of incuba-
tion in three different media.

Here, for the first time, the stability of the activity of 
liver enzymes involved in drug metabolism was achieved 
during prolonged 5 days incubation in hPCLS. Earlier stud-
ies showed a progressive decrease in CYP apoprotein levels 
and activity levels during 72-h incubation (Renwick et al. 
2000). In our study the activity of the tested CYP isoforms 
was stable in Cellartis® Hepatocyte Maintenance medium, 
with a slight decrease in CYP2C9 as the only exception. 
Glucuronidation and sulfation rates also remained stable 
in hPCLS incubated in Cellartis® Hepatocyte Maintenance 
medium during 5 days. The activity of various phase I and 
phase II metabolic enzymes in hPCLS cultured in WME or 
RegeneMed® medium, however, declined in time. Metabo-
lism of 7EC increased over time in slices incubated in Cel-
lartis® Hepatocyte Maintenance medium, which is in line 
with the upregulation of CYP1A2, one of the enzymes 
responsible for 7-EC oxidation (Yamazaki et al. 1996). The 
significant upregulation of CYP1A activity has to be taken 
into account during toxicity studies which involve this iso-
enzyme, since it might lead to over- or underestimation of 
toxicity of a tested drug depending whether its oxidation by 
CYP1A leads to toxification or detoxification of a parent 
compound, respectively.

Transcriptomics analysis of hPCSL incubated in Cellar-
tis® medium showed that transcriptional effects were only 
observed in a smaller fraction of the global transcriptome 
(704 genes out of 31,000), and the changes in gene expres-
sion of phase I and II metabolic enzymes and drug trans-
porters were limited. Among the CYPs, 13 isoforms were 
upregulated and none of the CYPs were downregulated in 
hPCLS after 5 days of incubation. This is a major achieve-
ment as previously downregulation of CYP expression 
was reported during prolonged incubation (Vickers et  al. 
2011). As the expression of PXR and AhR is not changed, 
the significant upregulation of the PXR and AhR signaling 
pathways, which is based on the upregulation of the CYP 
enzymes, might be due to either the presence or increased 
activity of co-regulators. The slight decline in CYP2C9 
activity is not in line with the fourfold increase in CYP2C9 
gene expression. A decreased activity of the NADPH-
cytochrome P450 reductase is unlikely to be the cause of 
this discrepancy, as the other Cytochrome P450 isoenzymes 
show constant or even increased activity. The expression of 
phase II metabolic enzymes was upregulated (UGTs and 
GSTs) or unchanged (SULTs, NATs, MTs) after 5  days. 
None of the phase II metabolism enzymes were down-
regulated during incubation. Also the increased expression 

of the UGTs did not result in increased enzyme activity. It 
cannot be excluded that the synthesis of the co-substrate is 
a rate-limiting factor for conjugation. Moreover, the expres-
sion of all the main drug transporters remained constant 
during 5 days of incubation, indicating that the exposure of 
the cells to the drugs and metabolites is representative for 
the in vivo situation.

Most of the pathways known to be involved in liver 
toxicity were unchanged in hPCLS during 5 days of incu-
bation, with the exception of liver fibrosis and oxidative 
stress. Oxidative stress in PCLS is a known response to the 
slicing procedure and culture conditions, in particular, the 
high oxygen tension (Martin et al. 2002). In our study, the 
regulation of genes involved in oxidative stress pathways 
was slight or moderate (fold induction  <4). On the other 
hand, upregulation of antioxidant and other detoxification 
pathways indicates that the natural defense mechanisms 
can be activated in hPCLS during prolonged incubation. 
The development of fibrosis in hPCLS during incuba-
tion was reflected both in collagen deposition, as well as 
in upregulation of genes involved in fibrogenic pathways, 
such as COLs and FN1. These findings are in line with our 
previous studies on liver slices incubated in WME, which 
described the suitability of hPCLS to study the effects and 
toxicity of antifibrotic drugs (van de Bovenkamp et  al. 
2008; Westra et al. 2014).

Our findings that Cellartis® Hepatocyte Maintenance 
medium maintains high metabolic functionality and viabil-
ity of hPCLS for 5 days suggests that this medium prevents 
the de-differentiation which occurs in hPCLS in the com-
monly used culture medium like WME, which is charac-
terized by a rapid loss of functionality, possibly by lack of 
specific differentiation signaling molecules. Interestingly, 
Cellartis® Hepatocyte Maintenance medium was initially 
developed for culturing hepatocytes derived from human 
pluripotent stem cells. In stem-cell-derived hepatocytes, it 
promotes a mature hepatocyte phenotype, e.g., expression 
of adult drug metabolizing enzymes such as CYP2C9 and 
CYP3A4 in stem-cell-derived hepatocytes from day 21 
after start of differentiation and onwards (Ghosheh et  al. 
2016), without the presence of specific PXR or CAR induc-
ers. Further studies are currently performed to test whether 
hPCLS can be maintained for longer than 5 days in Cellar-
tis® Hepatocyte Maintenance medium which would open 
up for long-term use of hPCLS. In addition, it would be 
interesting to attempt to adjust the medium composition in 
a way that leads to a somewhat lower CYP1A activity and 
thus a more balanced CYP activity profile.

In conclusion, we showed that hPCLS retain their viabil-
ity and functionality during 5 days of incubation. The type 
of incubation medium influences liver viability, morphol-
ogy, and functions, with the best results shown with Cellar-
tis® Hepatocyte Maintenance medium. Synthesis functions, 
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activity and gene expression of phase I and II metabolic 
enzymes did not decline during 120-h incubation in Cellar-
tis® medium, with the CYP2C9 activity as the only excep-
tion. Moreover, gene expression changes in hPCLS during 
incubation were limited and mostly related to the cytoskel-
eton remodeling, fibrosis and moderate oxidative stress, 
whereas other pathways involved in liver toxicity were not 
regulated. The expression of genes involved in drug trans-
port was also unchanged during 5 days, which is an impor-
tant factor that determines the final intracellular xenobi-
otic exposure. Taken together, we conclude that hPCLS 
are a valuable human in vitro model for toxicological and 
pharmacological studies and can be used for studies that 
require prolonged xenobiotic exposure. Moreover, the use 
of human slices enables direct identification of toxicologi-
cal effects of drugs relevant for human, thereby reducing 
experimental animal use and facilitating animal to human 
extrapolation steps.
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