
ll
OPEN ACCESS
iScience

Article
Machine learning for artemisinin resistance in
malaria treatment across in vivo-in vitro platforms
Hanrui Zhang,

Jiantao Guo,

Hongyang Li,

Yuanfang Guan

gyuanfan@umich.edu

Highlights
Artemisinin resistance can

be predicted from

transcriptomes by

machine learning

Our model can be

transferred between in

vivo and in vitro and

different platforms

We identified top

transcription biomarkers

of artemisinin resistance

Zhang et al., iScience 25,
103910
March 18, 2022 ª 2022 The
Author(s).

https://doi.org/10.1016/

j.isci.2022.103910

mailto:gyuanfan@umich.edu
https://doi.org/10.1016/j.isci.2022.103910
https://doi.org/10.1016/j.isci.2022.103910
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.103910&domain=pdf


iScience

Article

Machine learning for artemisinin
resistance in malaria treatment
across in vivo-in vitro platforms

Hanrui Zhang,1 Jiantao Guo,1 Hongyang Li,1 and Yuanfang Guan1,2,3,*

SUMMARY

Drug resistance has been rapidly evolving with regard to the first-line malaria
treatment, artemisinin-based combination therapies. It has been an open ques-
tion whether predictive models for this drug resistance status can be generalized
across in vivo-in vitro transcriptomic measurements. In this study, we present a
model that predicts artemisinin treatment resistance developed with transcrip-
tomic information of Plasmodium falciparum. We demonstrated the robustness
of this model across in vivo clearance rate and in vitro IC50 measurement and
based on different microarray and data processing modalities. The validity of
the algorithm is further supported by its first placement in the DREAM Malaria
challenge. We identified transcription biomarkers to artemisinin treatment resis-
tance that can predict artemisinin resistance and are conserved in their expres-
sion modules. This is a critical step in the research of malaria treatment, as it
demonstrated the potential of a platform-robust, personalized model for artemi-
sinin resistance using molecular biomarkers.

INTRODUCTION

Malaria raises major public health concerns in southeastern Asia and Africa (Asenso-Okyere et al., 2011;

Conn et al., 2018; Dhiman, 2019; Mbacham et al., 2019; Organization and Others, 2020; Sachs andMalaney,

2002; Tabbabi et al., 2020; WHO, 2020). Plasmodium falciparum, one of the five Plasmodium species lead-

ing to malaria, is the main cause of mortality, resulting in 400,000 deaths each year (Fact Sheet about

Malaria, n.d., Cowman et al., 2016; Talapko et al., 2019). The most effective treatment is artemisinin

(ART)-based combination therapies, which has been used as the first-line treatment for malaria since

late 1990s (Miller and Su, 2011). Today, malaria remains to be a global health threat, and drug resistance

is a major contributor (Dhiman, 2019; Dondorp et al., 2009; Mok et al., 2015). After being transmitted

from mosquitoes into the human body, P. falciparum experiences the rest of its life cycle in peripheral

bloodstream and liver. In the blood stage, they propagate asexually in red blood cells in the form of

ring, trophozoite and schizont developmental stages in 48 h, resulting in daughter cells released in the pe-

ripheral bloodstream. The ART resistance of P. falciparum happens specifically at the ring stage, when the

parasites lose their apical complex and de-differentiate into round immature trophozoites, pushing their

nuclei to one side of the cell, making the cell morphologically resemble rings under the microscope

(Dondorp et al., 2009; Suresh and Halder, 2018).

In the past years, the research field has been tirelessly searching for the genomic and transcriptomic traits

associated with ART resistance (Ariey et al., 2014; Ashley et al., 2014; Cheeseman et al., 2012; Hunt et al.,

2010; Mok et al., 2015; Takala-Harrison et al., 2013). For instance, it has been reported that a point mutation

in the gene ubp1 confers ART resistance in a Plasmodium chabaudi mouse malaria model (Hunt et al.,

2010). This gene encodes a de-ubiquitinating enzyme, and the missense mutation reduces de-ubiquitinat-

ing activity and alters the associated protein degradation pathways (Hunt et al., 2007). In addition, multiple

loci on chromosomes 10, 13, and 14 have been identified to be associated with the heritable trait of ART

resistance (Cheeseman et al., 2012; Takala-Harrison et al., 2013). Particularly, mutations in the gene kelch

PF3D7_1343700 (‘‘K13-propeller’’) on chromosome 13 have been reported to be a significant molecular

marker associated with ART resistance (Ariey et al., 2014; Ashley et al., 2014; Zhu et al., 2018). Beyond

mutations, changes in expression of genes involved in the unfolded protein response (UPR) pathways

have been linked to human ART resistance (Mok et al., 2015).

1Department of
Computational Medicine and
Bioinformatics, The University
of Michigan Medical School,
Ann Arbor, MI 48109, USA

2Department of Internal
Medicine, The University of
Michigan Medical School,
Ann Arbor, MI 48109, USA

3Lead contact

*Correspondence:
gyuanfan@umich.edu

https://doi.org/10.1016/j.isci.
2022.103910

iScience 25, 103910, March 18, 2022 ª 2022 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

ll
OPEN ACCESS

mailto:gyuanfan@umich.edu
https://doi.org/10.1016/j.isci.2022.103910
https://doi.org/10.1016/j.isci.2022.103910
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.103910&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Althoughmany studies have focused on the relationship between individual genemutation and expression

anddrug resistance inmalaria, a systematic evaluation of the value of these biomarkers in clinical or pre-clin-

ical applications remains in need. The recentMalaria DREAM challenge, which blindly evaluated algorithms

for predicting ART resistance, addressed this need (Bionetworks, n.d.a). The Malaria DREAM challenge

leveraged an important dataset previously published (Mok et al., 2015), in which transcriptome profiles of

P. falciparum isolates from 1,043 patients weremeasured in vivowithout treatment and the resistance status

was reported. The participants of the challengewere asked to predict the in vitrodrug response of indepen-

dent isolates with expression data obtained before and after perturbations with dihydroartemisinin (DHA).

We are presenting here the top performing algorithm ranked by accuracy to the above-described question,

a machine learning model for predicting ART resistance based on the transcriptomic profile of the parasite.

This model addresses several key challenges in malaria genomics and drug research: how to build models

that can deliver across in vivo and in vitro datasets? Most of the P. falciparum experiments are cultured with

human blood and carried out in vitro, whereas clinical applications require themodel to be robust for in vivo

dataset. How to make models deliverable from one measurement platform to another and thus allow wide

application and generalization of themodels? Of note, the training dataset of the DREAM challenge comes

from a customized, two-color expression panel, whereas the test dataset came from one-color Agilent HD

Exon Array with much more probes for each gene. How to identify the biomarkers and create the minimal

panel of genes that both reveal the biological insights/pathways related to ART resistance and are capable

of making good predictions? We address the above challenges by developing a cross-platform, in vivo-

in vitro generalizable model for ART resistance prediction and analyzing independent contributions of

gene expression signatures. We identified four molecular signatures important to the model:

PF3D7_0523000 (pfmdr1), PF3D7_1245300, PF3D7_1372000, and PF3D7_0805000, creating a panel that

almost matched the entire transcriptome in performance when predicting the cross-in vivo-in vitro drug

resistance. Examination of co-expression modules reveals stable co-regulation modules of the top molec-

ular features related to ART resistance.

RESULTS

Study design to investigate the transferability of models for in vivo-in vitro and cross-

platform generalization

The overall study design intends to construct a model that is transferable across microarray platforms and

across in vivo-in vitro conditions. The training dataset comes from Mok et al., which is a large cohort (1,043

isolates) of transcriptomic data of P. falciparum collected from southeast Asia during 2012–2014 (Mok et al.,

2015). The parasite samples were directly taken from the peripheral blood of patients with acute falciparum

malaria. The customized, printed expression panel measured 4,978 genes out of �5,591 genes of the

P. falciparum genome. ART-resistance phenotype was identified by the rate of clearance of parasites in

the patient’s peripheral blood, which is quantified by the clearance half-life upon ACT treatment. In this

study, the samples with clearance half-life >5 h are considered as ART-resistant and labeled with ‘‘Slow’’

clearance rate. One the other hand, the samples with %5 h of clearance half-life are labeled as ‘‘Fast’’ in

terms of clearance rate and considered as non-ART-resistant samples (Figure 1).

This study, as shown below, starts with cross-validation with the above-described dataset. In addition, the

design of the test set differs from the training set in its sampling geographic site and timing of sample

collection, synchronization status, microarray platform, and measurement target, introducing new chal-

lenges to the prediction models. The in vitro test set consisted of unpublished data of 32 isolates collected

from the Thai-Mayanmar border (Figure 1A). The isolates are synchronized in vitro. Each isolate was exam-

ined twice, once without treatment and once with ART (DHA) treatment. The expression level was taken

separately at 6 and 24 h postinfection (hpi). The test data were measured using Agilent HD Exon Array

with much more probes (on average 12/gene) than the printed array in the training data (on average

2/gene) (Figures 1B and 1C). This test set was the test set for sub-challenge 1 of the Malaria DREAM chal-

lenge in which the task was to predict ART IC50, given a training set consisting of transcriptomes of para-

sites with known IC50. In addition, the training data used a two-color array and the test set used the Boz-

dech one-color array, which is expected to introduce challenges in data analytics (Patterson et al., 2006).

Due to the differences in the array platforms, the methods used to preprocess the arrays also differ (see

STAR Methods). The test set panel included noncoding RNAs, which are excluded in the training set.

This results in a total of 5,540 genes in the test set data. For the test set, a continuous value of IC50

upon ART treatment is given as the testing target. The direct test data on this challenge remain a hidden
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set for future model refinement by the scientific community. However, an independent test set of 30 iso-

lates collected in the exact manner and cohort was available through sub-challenge 1 of this challenge (Bio-

networks, n.d.a), which are used as the test set to evaluate model transferability in this study. Besides the

DREAM challenge dataset, we also collect four independent public P. falciparum transcriptome datasets,

of which two were sampled ex vivo and two in vitro, to further validate the robustness of transferability of

the cross-platformmodel in this study. All transcriptomes used in this study were analyzed by t-SNE to show

the differences between ART-resistance/sensitive samples, sampled condition (in vivo, in vitro or ex vivo),

independent studies, and treatment type (Figure S4).

Excellent performance for within cohort prediction of ART clearance rate

The large collection of theMok et al. data allows us to evaluate themodels by two approaches. First, we can

evaluate the model performance by cross-validation within the 1,043 isolates. Cross-validation is a

commonly used scheme to evaluate model performance by holding out part of the data as the testing

set and using the other part as the training set. Second, we can evaluate themodel performance by training

a model on the Mok et al. data and test on the in vitro data as described earlier. In this section, we describe

the behavior of the model in the within-cohort cross-validation using theMok et al. data. Clearance half-life

was labeled ‘‘fast’’ or ‘‘slow’’ according to whether the parasite clearance half-life is longer than 5 h. We

labeled ‘‘slow’’ as 1 and ‘‘fast’’ as 0 in the following experiments.

We carried out 10-fold cross validation by including all genes as features (Figure 2). Specifically, in each

round, 10% of the isolates were held out as the test set, and 90% were used as the training set. We tested

a selection of base learners, including LightGBM, xgboost, random forest, Gaussian Process Regression

(GPR), and linear regression (see STAR Methods). Because an important goal of this study is to develop

Figure 1. Study design

(A) Demonstration of the training data given by the DREAM Challenge.

(B) Strategy of training in vivomalaria ART prediction models and transferring the model to in vitromalaria transcriptome

datasets. First, we imputed missing values and rank-normalized the expression data. Second, we cross-validated models

of different base learners. We then selected the base learner and sample conditions with best performance by cross-

validations and reverse test. Lastly, important predictive biomarkers are prioritized by SHAP analysis.
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a model transferable to transcriptome data collected using different platforms, which can be of drastically

different distribution, we also tested if rank normalization of the expression data changed performance.

LightGBM, a tree-based gradient boosting method, marginally excelled in performance for both Area

Under the Receiver Operating Curve AUROC and AUPRC measurements (Figure 2C) compared with other

alternatives. It achieved a mean AUROC [95% CI] of 0.8384 [0.8121, 0.8705], compared with XGboost

(0.7669 [0.7262, 0.7910]), random forest (0.7782 [0.7441, 0.8099]), GPR (0.8456 [0.8212, 0.8673]), and linear

regression (0.8448 [0.8206, 0.8668]). For AUPRC [95% CI], LightGBM performed at 0.6983 [0.6438,

0.7522], compared with XGboost (0.6613 [0.5994, 0.7234]), random forest (0.5752 [0.5049, 0.6387]), GPR

(0.6742 [0.6198, 0.7280]), and linear regression (0.6717 [0.6176, 0.7252]). Rank normalization does not

present substantial changes in performance (Figure 2E and Table S1); we chose to maintain this operation

to support cross-platform robustness.

Transferring models across platforms

The test data differ from the above-examined in vivo data in that it was collected from laboratory cultured

P. falciparum strains. This allows synchronization, and thus the gene expression levels were sampled under

four different conditions: (1) 6 h postinvasion (hpi), (2) 24 hpi, (3) 6 hpi and treated with dihydroartemisinin

(DHA) (6 hpi-p), and (4) 24 hpi and treated with DHA (24 hpi-p). We evaluated themodels based on different

base learners as described earlier for each of the expression data. Because the test target is IC50, we

labeled ‘‘slow’’ as 1 and ‘‘fast’’ as 0 in our training.

As expected, 6 hpi without treatment demonstrated the strongest performance, as the original trainingdata

were pretreatment as well (Figure 3D). In addition, LightGBMmaintains to be the strongest base learner. In

this case, rank normalization does not change the performance substantially, so we retained it in the prepro-

cessing steps (Figure 3E and Table S2). This combination achieved a Pearson correlation [95% CI] of 0.2318

A C

B D E

Figure 2. Model performances across platforms

(A and B) Distribution of ART resistance measurement labels in the in vivo and the in vitro datasets.

(C) Cross-validation performance in the in vivo dataset.

(D) Performance of transferring the model trained on in vivo dataset to the in vitro dataset, presented as the correlation

between prediction and gold standard (IC50) under four conditions.

(E) Performance of transfer learning with/without rank normalization.
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[0.1379, 0.5306], Spearman’s correlation of 0.2467 [0.1457, 0.3548], and a C-index of 0.5837 [0.5474, 0.6216]

between the predicted clearance rate and IC50. Of note, the gold standard used in training is nongranular

values but rather a binary value of ‘‘fast’’ and ‘‘slow.’’ Yet, we still received meaningful predictions using a

different microarray platform and data collection status (p < 1e-6) compared with random prediction.

We further evaluate the best-performing in vivo LightGBMmodel to four other public datasets for ART-resis-

tance prediction, where the ART resistance for each sample were available (Table S3) (Mok et al., 2011, 2015,

2021; Shaw et al., 2015; Zhu et al., 2018), and results were shown in Figure S5. We noticed that on ev vivo data,

the model achieved better cross-platform accuracy than in vitro data overall. The in vivomodel achieved 0.75

[0.6431, 0.9773] and 0.6894 [0.6065,0.8060] AUROC [95% CI)] on the GEO: GSE25878 and GEO: GSE59098 da-

taset, respectively. While on the in vitro dataset GEO: GSE151189, the model only achieved 0.5355 [0.4530,

0.6416] overall AUROC [95%CI]. Onepossible reason could be the ex vivo transcriptomes showmore similarity

to the in vivo data the model was trained on (Figures S4B and S4C). Interestingly, we also noticed the model

prediction heavily relies on the ex vivo cultured time, treatment by DHA, and developmental stages (hpi), indi-

cating these factors may change the expression levels of effector genes related to ART resistance.

Robustness in molecular features across in vivo and in vitro environment

It was very encouraging that amodel can bedeveloped and carried across such different in vivo and in vitro sce-

narios, and across experimental platforms, which prompted us to examine the top molecular features that

contributed to this prediction. We first used SHapley Additive exPlanations analysis (SHAP) to find out which

genes played important roles in the in vivo ART-resistance prediction (Lundberg and Lee, 2017). SHAP analysis

A B C

D

Figure 3. Top genes related to malaria ART resistance as identified by SHAP feature importance analysis and

performances of machine learning model after feature selection using the top ranked genes

(A) Top 30 genes of ART resistance prediction model visualized by SHAP analysis based on in vivo P. falciparum

transcriptome.

(B) Top 30 genes of ART resistance prediction model visualized by SHAP analysis based on in vitro P. falciparum

transcriptome. Mean SHAP values in both A and B were denoted by red dots. Genes were ordered by mean SHAP

contributions across all test examples in a 10-fold cross validation. 25% and 75% percentile of SHAP values were denoted

by low and upper limits of boxplots.

(C) Model performances for in vivo and in vitro predictions when including only top genes selected by SHAP analysis, as

evaluated by AUROC (for binary labels) and C-index (for continuous labels). ‘‘All genes’’ shows prediction performance

without feature selection.

(D) Comparison of in vitro prediction performances between using all top ten genes as features and leaving one gene out

at a time. Each dot denotes the performce of each of the ten models in cross validation, and the average perfornences of

all ten models were denoted by larger dots.
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is a feature importance analysis method that recently gained popularity, in which the importance of one feature

is considered in the context of all other features. This approach has the advantage to delineate gene features

that are important for predicting ART resistance versus the ones that happened to be correlatedwith an impor-

tant feature. Table 1 shows the top genes during the 10-fold cross-validation. Among them, there were five

genes recognized by all ten models, showing consistent importance (Figure S2). The SHAP analysis is test set

dependent. This unique feature allows us to test the robustness of these features further in the in vitro data.

We found the same set of top genes still showed significant contribution in in vitro prediction (Figures 3A,

2B, and S3). Of note, about �70% top genes (4 out of top 5, 7 out of top 10, 14 out of top 20, and 22 out of

top 30) were found to be sharedby both in vivo and in vitrodatasets, showing coherence in top-ranked features

across platforms (Figure 5A). Pfmdr1 is among the most significant contributors in both in vitro prediction and

in vivo prediction. This result supports the robustness of the identified molecular features.

We further investigated the functions of top contributing genes considering both in vivo and in vitro pre-

dictions of ART resistance in malaria (Figure 4A; Table 1). Among them, pfmdr1 (PF3D7_0523000),

P. falciparum multidrug drug resistance gene 1, has been reported to play an essential role in response

to a broad range of ACT antimalarials (Gil and Krishna, 2017; Koenderink et al., 2010; Sidhu et al., 2006).

Mutants and polymorphisms of this protein have been widely reported to be associated with antimalarial

drug resistance, and the increase of pfmdr1’s expression will increase susceptibility to ART (Chavchich

et al., 2010; Dahlström et al., 2009; Eastman et al., 2016; Gupta et al., 2014; Holmgren et al., 2006, 2007;

Imwong et al., 2010; Ngalah et al., 2015; Ould Ahmedou Salem et al., 2017; Sidhu et al., 2006; Sisowath

et al., 2007; Ursing et al., 2006). The identification of this gene among the top of the list and its positive

contribution to both IC50 and clearance rate corroborates the validity of the approach (Figures S2 and S3).

Table 1. Twenty-two shared features (among top 30) between the in vivo and the in vitro datasets

Gene id

In vivo SHAP

importance

In vitro SHAP

importance Annotations

PF3D7_0805000 0.027577556 0.019392157 Alpha/beta hydrolase, putative

PF3D7_1038700 0.025549987 0.020552675 Plasmodium exported protein, unknown function

PF3D7_1245300 0.023449244 0.022728070 NEDD8-conjugating enzyme UBC12, putative

PF3D7_0523000 0.022131747 0.056972396 Multidrug resistance protein 1

PF3D7_1372000 0.020715635 0.018587311 Plasmodium exported protein (PHISTa),

unknown function

PF3D7_1328400 0.020094142 0.010121155 Conserved protein, unknown function

PF3D7_1349200 0.017402912 0.016821882 Glutamate–tRNA ligase, putative

PF3D7_0525700 0.016087702 0.010102856 Conserved protein, unknown function

PF3D7_1466400 0.013496112 0.020929573 AP2 domain transcription factor AP2-EXP

PF3D7_1243000 0.01083543 0.009874289 Syntaxin-16, putative

PF3D7_1359800 0.010260771 0.009438231 ADP-ribosylation factor, putative

PF3D7_0114900 0.00976088 0.009389257 Plasmodium exported protein, unknown function,

pseudogene

PF3D7_1117500 0.009725304 0.009184379 Tyrosine–tRNA ligase

PF3D7_0413400 0.009276499 0.014652890 Erythrocyte membrane protein 1 (PfEMP1), exon 1,

pseudogene

PF3D7_1107700 0.009240973 0.008681170 Pescadillo homolog

PF3D7_1244400 0.009191554 0.007895322 RNA-binding protein, putative

PF3D7_0205100 0.008908881 0.008790011 Conserved Plasmodium protein, unknown function

PF3D7_1133600 0.0087618 0.008062268 Conserved Plasmodium protein, unknown function

PF3D7_0830800 0.00846947 0.008136531 Surface-associated interspersed protein 8.2 (SURFIN 8.2)

PF3D7_1203000 0.008352643 0.010673660 Origin recognition complex subunit 1

PF3D7_0921200 0.008144911 0.009305749 Conserved Plasmodium membrane protein,

unknown function

PF3D7_1011400 0.007971128 0.008214462 Proteasome subunit beta type-5
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We found other interesting genes in this list. First, PF3D7_1372000 is a Plasmodium exported protein of

the Poly-Helical Interspersed Sub-Telomeric (PHIST) protein family (Tarr et al., 2014; Warncke et al.,

2016), also known as the PRESAN family (Oakley et al., 2007; Sargeant et al., 2006). Although detailed

functions of most Plasmodium exported proteins are yet to be revealed, in general, the parasite

exported proteins are pivotal for parasite survival by interacting and interfering activities of the infected

cells (Maier et al., 2008). A recent study has suggested that the expression level of PF3D7_1372000 is

associated with mutations of kelch PF3D7_1343700 (‘‘K13-propeller’’) (Siddiqui et al., 2020), whose muta-

tions have been reported to be a significant molecular marker associated with ART resistance (Ariey

et al., 2014; Zhu et al., 2018). Second, PF3D7_1245300 is a Nedd8-conjugating enzyme UBC12, which

has a central role in cell cycle and DNA damage repair (Karpiyevich et al., 2019). Because the malaria

parasite has a unique and unusual life cycle, the molecular machines in cell replication processes are

specially designed for its survival. As Plasmodium responds to ART-induced stress by delaying their

cell-cycle progression and inducing a state of dormancy during early ring-stage development (van Biljon

et al., 2018), it is likely UBC12 presents as an important feature through this mechanism. Leave-one-out

feature selection strategy based on the top ten genes shows that taking PF3D7_1245300 away will under-

mine in vitro prediction performance (Figure 3D), indicating this gene is crucial for P. falciparum’s survival

in both laboratory environments and in the human body. Two other genes, PF3D7_0805000, a putative

member of the alpha/beta serine hydrolase superfamily that mediates a variety of metabolic reactions

of ester hydrolysis, and PF3D7_1038700, another Plasmodium exported protein with unknown function,

appeared in the top list. The association between these two genes with ART resistance is currently

unknown.

We further investigated other proteins related to these top contributing genes based on the protein-pro-

tein interactome generated from blue native-polyacrylamide electrophoresis with quantitative mass spec-

trometry (Hillier et al., 2019). We first extracted interacting proteins with pfmdr1 and PF3D7_1245300 and

found 20 and 37 interacting proteins, respectively. The other three proteins of the top genes were not

observed in the interactome. Then we performed GO functional enrichment analysis of these proteins

and identified the significantly enriched protein clusters with FDR p value cutoff of 0.05 (Figure 4B). For

the multidrug resistance gene pfmdr1, the interacting proteins are associated with RNA processing,

COPII-coated vesicle budding, and formation of translation preinitiation complex. For the Nedd8-conju-

gating enzyme UBC12 (PF3D7_1245300), as expected, the interacting proteins are associated with protein

Figure 4. Cellular functions of top contributing genes in predicting ART resistance

(A) The functions of top contributing genes and their relationship with ART resistance.

(B) The functionally enriched protein clusters that interact with PF3D7_052300 and PF3D7_1245300. The prefix ‘‘PF3D7_’’

of these gene ids is omitted, and only the numbers are shown for simplicity.
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ubiquitination, a process previously found to be important for treatment resistance in malaria (Dogovski

et al., 2015; Tilley et al., 2016).

We went on to construct models only based on the top genes identified by SHAP analysis (Figure 3C). We

found that for within in vivo cross-validation, 30 genes can completely recover the performance of the model

using the entire transcriptome. In addition, the top genes identified in the above analysis successfully reaches

the performance of the entire gene panel when delivering the model to the in vitro test set. We acknowledge

the existence of fluctuation in performance after the sixth top genes. The likely reason is that SHAP identifies

independent features, and as we increase the number of features beyond six, the ones that are comparably

weaker yet orthogonal to the top features are included. Despite this limitation, this result supports the validity

of the top features we identified in this study as potential biomarkers for ART resistance.

Although kelch13 genetic mutations has been found to be significantly correlated with ART resistance

phenotype in the in vivo population study (pearson’|’s r = 0.6143, p < 1e-6), no significant correlation of

kelch13 transcription with ATR-resistance phenotype has been found (Mok et al., 2015). This result is

concordant with our SHAP analysis results, as kelch13 transcription level turned out with no contribution

to ART resistance prediction. Machine learning models with feature sets excluding kelch13 transcription

level still maintained similar performances (Tables S1 and S3). We also evaluated the ART-resistance model

performances in different genetic variation cohorts, including K13 KP/BTB mutations, crt-N326S, crt-I356T,

Figure 5. Co-expression networks of top genes in in vivo and in vitro dataset

(A) Sharing of top genes across in vivo/in vitro datasets.

(B and D) The co-expression network and the co-expression matrix of the top 30 genes in the in vivo dataset.

(C and E) The co-expression network and co-expression matrix of the top 30 genes in the in vitro dataset. We retained all

co-expression relationships with an absolute correlation value >0.4 in the plot. The five most important genes in either

in vivo or in vitro dataset were marked as red (except PF3D4_1038700, which was not shown in (C), as there were no other

genes that shared significant correlation (|r| > 0.4) with this gene).
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fd-D193Y, and mdr2-T484I (Table S4 and Figure S1). The ART-resistance model is still quite predictive

within K13 subgroups, with mutations (group 2) and heterozygous alleles (group 3) (Figure S1).

Conserved co-expression patterns of top-ranking features

We next examined if the top ranking features in the in vivo test and in the in vitro test share similar expres-

sion patterns or regulatory modules. We took the top 30 features for each and calculated the Pearson cor-

relation of expression values across all samples separately for the in vivo and in vitro datasets. This step

created co-expression networks (Figure 5). Among the top 30 genes, 22 are shared between in vivo and

in vitro tests, a piece of supporting evidence to the robustness of the features (Table 1 and Figure 5A).

We then examined if the co-expression networks of the top features share similarity between the in vivo and

in vitro datasets. We identified many co-expression relationships maintained across the in vivo and in vitro

datasets. For example, the correlation between PF3D7_0523000 and PF3D7_1466400 is 0.46 (p < 2.2e-16,

the smallest value storable in the computer) in in vivo dataset and 0.42 (p < 2.2e-16) in in vitro dataset.

Therefore, we calculated the correlation values of the network weights (i.e., correlation between genes)

for the 22 shared genes. The correlation is 0.55 (p < 2.2e-16), indicating strong and conserved co-expres-

sion modules involved in ART resistance.

DISCUSSION

In this study, we presented amodel that is transferable between in vivomeasured clearance rate and in vitro

measured IC50 for ART in malaria treatment and across expression measurement platforms. This is a mean-

ingful step in the research of malaria treatment, as the work demonstrated the potential and robustness of a

personalized model for ART resistance, which has not been achieved before. Some studies addressed the

prediction on either in vivo or in vitro study but did not generalize the model across different conditions

(Ford and Janies, 2020; Li et al., 2021; Sastry et al., 2021). In fact, previous studies reported that generating

predictive models for ART resistance has been challenging, as the in vitro IC50 of P. falciparum in standard

drug susceptibility assay correlates poorly with its clearance rate in vivo (Chotivanich et al., 2014; Fairhurst

and Dondorp, 2016). Thus, the ability of this model to deliver across drastically different scenarios makes

this model favorable.

Delivering models between platforms and in vivo-in vitro environments has always been a challenge for

many medical problems. Several techniques developed in this study may be instructive to other problems.

For example, rank normalization of the shared genes in the transcriptomic profiles can potentially help to

match two different sets of data and address batch effects. Tree-based algorithmsmay help interrogate the

interactions and overlaps between genes and construct robust models.

We discovered important biomarkers that can be used to create a simplified model for predicting ART

resistance. Among them, interesting molecular biomarkers were identified. Pfmdr1 (PF3D7_0523000),

P. falciparummultidrug drug resistance gene 1, was identified among the shared top genes by both in vivo

and in vitro datasets, consistent with previous reports stating that it plays an essential role in the response

processes of a broad range of ACT antimalarials (Chavchich et al., 2010; Dahlström et al., 2009; Eastman

et al., 2016; Gupta et al., 2014; Holmgren et al., 2006, 2007; Imwong et al., 2010; Ngalah et al., 2015;

Ould Ahmedou Salem et al., 2017; Sidhu et al., 2006; Sisowath et al., 2007; Ursing et al., 2006).

PF3D7_1372000, a Plasmodium exported protein of the Poly-Helical Interspersed Sub-Telomeric (PHIST)

protein family (Tarr et al., 2014;Warncke et al., 2016), was also identified among the shared top genes. Liter-

ature has reported that the parasite exported proteins are pivotal for parasite survival by interacting and

interfering activities of the infected cells (Maier et al., 2008). In addition, UBC12, which plays a central

role in cell cycle and DNA damage repair (Karpiyevich et al., 2019), was identified, possibly reflecting the

mechanism that Plasmodium responds to ART-induced stress by delaying their cell-cycle progression

and inducing a state of dormancy during early ring-stage development (van Biljon et al., 2018). Other

important features whose molecular mechanisms are yet unclear were also identified, pointing to future

studies that follow-up and validate these new molecular markers for ART resistance.

Limitations of the study

Although our model has achieved satisfying performances on the same population study, we noticed

that during the cross-platform prediction, the performance has been impacted severely by the condition

ll
OPEN ACCESS

iScience 25, 103910, March 18, 2022 9

iScience
Article



of samples in the target datasets, i.e. in vivo, ex vivo, or in vitro, whether treated by DHA, developmental

stage (hpi). These observations imply that genes related to ART resistance expressed differently

under different conditions. Although many studies have addressed the dependency between ART

resistance with developmental stages (Intharabut et al., 2019; Mok et al., 2011, 2015), in vitro environ-

ments may also impact the ART-resistance phenotype, which needs more experimental assessments in

the future.

Furthermore, although top genes were identified in this study, further experimental evidence is

still needed to elucidate their roles in ART resistance. For further verification of these biomarkers,

gene function perturbations could be carried out on the ART-resistant strains in both in vivo and

in vitro conditions. For example, translation and ubiquitin-activating enzyme inhibitors were found

to antagonize the activity of DHA in vivo and in vitro on Plasmodium falciparum strains (Bridgford

et al., 2018). Moreover, atovaquone, a mitochondrial electron transport chain inhibitor, could

reverse the ART resistance in Cambodian Cam3.II line in vitro (Mok et al., 2021). Instead of broad inhib-

itors that deactivate certain pathways, more targeted gene silencing methods, such as RNAi or CRISPR,

would be recommended to inhibit certain top biomarkers, to elucidate the mechanisms of ART

resistance.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact and materials availability

This study generated no new materials. Further information and requests for resources should be directed

to and will be fulfilled by the lead contact, Yuanfang Guan (gyuanfan@umich.edu).

Data and code availability

d All Plasmodium falciparum transcriptome data used in this paper have been deposited in GEO and Syn-

apse storage, and are publicly available as of the date of publication. Accession numbers are listed in the

key resources table.

d All original code has been deposited at Github and is publicly available as of the date of publication at:

https://github.com/GuanLab/Predict-Malaria-ART-Resistance.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Data pre-processing

The in vivo prediction model was built based on clinical population data from the published paper by Mok

et al. (2015) and provided by the Malaria DREAM challenge. The P. falciparum isolates were collected �18

hours post invasion from 1,043 acute patients under varying treatment and health conditions mainly from

Southeast Asia. The parasite isolate transcriptome was analysed by Bozdech two-color microarray plat-

form, with 10,159 unique probes covering 5363 genes(Bionetworks, n.d.a). The Artemisia resistance status

of the P. falciparum isolates was labeled as ‘Fast’ or ‘Slow’, indicating the clearance rate of P. falciparum

after ART treatment.

The test transcriptome data was generated by Agilent HD Exon one-color microarray platform from 30

P. falciparum isolates collected from Thai-Myanar border from 2007 to 2012, as provided by the Malaria

DREAM Challenge, which includes 63,976 unique probes covering 5440 genes including non-coding

RNS(Bionetworks, n.d.a). The isolates were cultured in blood cells and treated by the artemisinin 6 and

24 hours post invasion (hpi). The IC50 of P. falciparum culture, i.e., the drug concentration that 50% of par-

asites die was recorded as an indicator of ART resistance. Higher IC50 means stronger ART-resistance,

therefore corresponds to a slow clearance rate.

The training and testing microarray data were then processed and normalized by different pipelines with

respect to their own microarray platforms (Bionetworks, n.d.a). The two-color in vivo microarray data were

processed by GenePix Pro v6.0 software, where features of each array were extracted with foreground

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

in vivo Plasmodium falciparum transcriptomes GEO GSE59099

in vitro Plasmodium falciparum transcriptomes Synapse Storage syn16924919

ex vivo Plasmodium falciparum transcriptomes GEO GSE25878

ex vivo Plasmodium falciparum transcriptomes GEO GSE59098

in vitro Plasmodium falciparum transcriptomes GEO GSE61536

in vitro Plasmodium falciparum transcriptomes GEO GSE151189

Software and Algorithms

ART-resistance prediction model Github https://github.com/GuanLab/Predict-

Malaria-ART-Resistance
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intensity > 1.5 fold background intensity for either channel, and went through background correction and

lowess normalization using the limma R package. Then the arrays were log normalized against co-hybrid-

ized 3D7 control, and the gene expression levels were acquired by averaging their ORF Probe intensities.

The in vitro single-color microarray data were processed by Agilent Feature extraction and QC pipeline,

then quantile normalized by the preprocessCore R package. Then samples were log normalized against

NF54 control, and batch corrected by the sva R package. Then the gene expression levels were obtained

by the reshape R package.

The microarray data usually contains missing values due to artifact and technical failures. If the expression

level of gene i of sample j is missing, we fill into the average gene expression level of gene i, based on the

data from the rest of samples.

xi =
1

N

Xj =N

j =O
xij

In order to make a robust cross-platform model, we used rank normalization to process the raw gene

expression data, specifically,

N : the total number of samples

m : the total number of genes

xij : the expression level of gene j in sample i

xir : the expression level of rth ranked gene in sample i

Ri : the expected expression level of ranked i gene in a sample

Xi :
�
xj1 ; xj2 ; xj3 ; :::; xjm

�
=
�
xr1 ; xr2 ; xr3 ; :::; xrm

�
where xr1<xr2<xr3<:::; xrm

Ri =
1

N

XN

1
xri

Xi
0 = fR1;R2;R3; :::;Rmg

The microarray record of sample i is transformed from Xi to Xi’ . The preprocessed in vivo and in vitro data

was then used in the model training and prediction.

Model training

We tested five types of base learners, including LightGBM, XGboost, random forest, GPR and linear regres-

sion. The first three base learners are tree-based and the later two are kernel-based algorithms. For

LightGBM, we used gradient boosted decision trees, with 5 as the number of leaves, a learning rate of

0.05 and a total of 800 estimators, and 1000 boosting rounds. For random forest, we used a maximal depth

of 2 and 100 estimators. For GPR we used dot products and a white kernel. For all other base learners, we

used the default parameters. ten-fold cross validation was used to evaluate the performance of models.

The ten in vivo models were transferred to in vitro data to make predictions of the ART resistance of

P. falciparum.

For cross-platform prediction, the shared genes were used in model construction. Each P. falciparum strain

was sampled under four different conditions (6 hpi, 24 hpi, with or without ART perturbation), and each

sample carried two biological replicates. We conducted cross-platform prediction on the 4 conditions,

respectively. For each condition, the average prediction values of the two biological replicates are used

as the final prediction.

SHAP feature importance analysis

We conducted SHAP (SHapley Additive exPlanations) analysis to evaluate the contributions of different

genes in ART resistance prediction. The SHAP value describes the average marginal contribution of a

feature across all instances (Lundberg and Lee, 2017). We summed up absolute values of SHAP values of

all samples for each feature. The summary plot sorting features by the sum of the absolute SHAP values

over all samples are included in Figures S2 and S3.

ll
OPEN ACCESS

14 iScience 25, 103910, March 18, 2022

iScience
Article



Co-expression and functional analysis of top genes

We conducted co-expression analysis on rank normalized gene expression level among the top-ranked

genes by SHAP analysis, for both in vivo and in vitro datasets. The co-expression significance between

two genes is defined as the Pearson’s correlation of their normalized expression level across all samples.

For example, for gene i and j in all N samples, Xi and Xj refer to the rank normalized expression level of

both genes, respectively. Then,

Xi = fxi1; xi2; :::xing
Xj =

�
xj1; xj2; :::xjn

�

where n refers to the total number of samples in the dataset. The co-expression level ri,j between two

genes is:

ri;j = cor
�
Xi ;Xj

�

where ri,j is the Pearson’s correlation between gene i and gene j. The co-expression network of both in vivo

and in vitro dataset was constructed based on the significantly correlated genes (ri,j >0.4) and visualized

using ggraph.

QUANTIFICATION AND STATISTICAL ANALYSIS

Evaluation of prediction performances

Because in vivo data and bore binary labels, we used AUROC (Area under the Receiver Operating Curve)

and AUPRC (Area under the Precision Recall Curve). For the in vitro data, because the evaluation is a real

value, we used Spearman and Pearson’s correlations and C-index, as clearance rate and IC50 do not share

the same distribution (Figures 2A and 2B). The C-index is calculated as the following:

C � index=

X

i;j

1pi<pj : 1IC50i<IC50j

X

i;j

1pi<pj

pi : the predicted value of sample i; ranges from 0 to 1:

IC50 : the IC50 of sample i:

1pi<pj = 1if pi<pj;else 0

1IC50i<IC50j = 1if IC50i<IC50; else 0:

C-index is equivalent to AUROC when predicting binary labels.

For external validation datasets, the labels were also binary, thus we use AUROC for performance evalua-

tion. AUPRC was not used for horizontal comparison since the baseline for each dataset is different. 95%

confidence intervals of all performances were calculated by bootstrapping.

The Pearson and Spearman’s correlation coefficient, AUROC and AURPC were calculated using Python

Sklearn module. The code implementing c-index was provided in the github repository (see Data and

code availability in Resource Availability section).
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