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Abstract

Maintenance of healthy mitochondria prevents aging, cancer, and a variety of degenerative diseases that are due to the
result of defective mitochondrial quality control (MQC). Recently, we discovered a novel mechanism for MQC, in which
Mieap induces intramitochondrial lysosome-like organella that plays a critical role in the elimination of oxidized
mitochondrial proteins (designated MALM for Mieap-induced accumulation of lysosome-like organelles within
mitochondria). However, a large part of the mechanisms for MQC remains unknown. Here, we report additional
mechanisms for Mieap-regulated MQC. Reactive oxygen species (ROS) scavengers completely inhibited MALM. A
mitochondrial outer membrane protein NIX interacted with Mieap in a ROS-dependent manner via the BH3 domain of NIX
and the coiled-coil domain of Mieap. Deficiency of NIX also completely impaired MALM. When MALM was inhibited, Mieap
induced vacuole-like structures (designated as MIV for Mieap-induced vacuole), which engulfed and degraded the
unhealthy mitochondria by accumulating lysosomes. The inactivation of p53 severely impaired both MALM and MIV
generation, leading to accumulation of unhealthy mitochondria. These results suggest that (1) mitochondrial ROS and NIX
are essential factors for MALM, (2) MIV is a novel mechanism for lysosomal degradation of mitochondria, and (3) the p53-
Mieap pathway plays a pivotal role in MQC by repairing or eliminating unhealthy mitochondria via MALM or MIV generation,
respectively.
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Introduction

Mitochondria are essential to oxidative energy production in

aerobic eukaryotic cells and are required for multiple biosynthetic

pathways [1]. Therefore, mitochondrial quality control (MQC) is

of significant importance for maintaining the steady and healthy

state of our bodies [2]. Dysregulation of MQC causes various

phenomena and diseases including aging, cancer, and degenera-

tive diseases [3]. However, mechanisms of MQC have not been

fully elucidated. Currently, two possible mechanisms are suggest-

ed. The first one is lysosomal degradation of the entire

mitochondrion, known as mitophagy, which is mediated by

double-membraned autophagosomes [4,5]. The second one is

protease-dependent degradation of damaged proteins within

mitochondria, which also plays a pivotal role in maintaining the

healthy status of mitochondria [6]. Previous studies have reported

the existence of several mitochondrial proteases including LON

and AAA proteases, which play a critical role in degradation of

mitochondrial proteins [7]. In addition to these two mechanisms,

we discovered a third mechanism for MQC, in which Mieap, a

p53-inducible protein, induces intramitochondrial lysosome-like

organella without destroying the mitochondrial structure

(designated MALM for Mieap-induced accumulation of lyso-

some-like organelles within mitochondria), leading to the elimina-

tion of oxidized mitochondrial proteins and improvement of

mitochondrial functions [8]. Interestingly, the mechanism was

completely different from canonical autophagy [8]. Although

MALM seems to play a crucial role in maintenance of healthy

mitochondria, a large part of the mechanism is still unknown.

NIX (also designated BNIP3L) is a BH3-domain protein that

belongs to the Bcl-2 family [9]. The homologous protein BNIP3

shares 55% amino acid sequence similarity with NIX [10]. NIX is

localized to the mitochondrial outer membrane and regulates cell

death [11]. Interestingly, in contrast to other mitochondrial Bcl-2

family proteins, NIX and BNIP3 are not involved in the release of

cytochrome c and the resulting caspase-dependent apoptosis, but

rather related to necrosis through the regulation of mitochondrial

permeability transition pore (MPTP) [12]. NIX was also shown to

localize to endoplasmic reticulum (ER) and increase the store of

Ca++, leading to Ca++ influx into mitochondria and cell death

[13]. NIX was also shown to regulate canonical autophagy of

mitochondria during the process of erythroid cell differentiation

[14,15]. Furthermore, the role of NIX and BNIP3 in hypoxia-

induced autophagy was also reported [16]. Although many
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functions have been suggested, the physiological role of NIX

remains unclear.

Degradation of the whole structure of mitochondrion is

mediated by autophagosomes in mammalian cells, which is called

as mitophagy [4]. Damaged mitochondria are initially sequestrat-

ed by double-membraned autophagosomes, which fuse to

lysosomes, leading to mitochondrial degradation [17]. Very

recently, NIX and Parkin/PINK1 were reported to mediate the

process of mitophagy in erythroid cells [14,15] and neuronal cells

[18,19], respectively. In that context, NIX may function as a

mitochondrial receptor for autophagy by interacting with LC3

[20]. The Parkin/PINK1 pathway regulates ubiquitylation of p62

and VDAC, leading to final clearance of the damaged mitochon-

dria by autophagosome-mediated autophagy [21]. Therefore, it is

likely that double-membraned autophagosomes play an essential

role in mitochondrial autophagy in mammalian cells. On the other

hand, Mizushima et al. reported that mitochondrial degradation

during the lens and erythroid differentiation occurred normally in

macroautophagy-deficient ATG52/2 mice, implying that there

are alternative pathways of mitophagy [22].

In contrast to mammalian cells, the delivery of unhealthy

mitochondria to cytoplasmic large vacuoles is the central

mechanism for degradation of mitochondria in yeast cells [23].

Yeast cells usually contain large vacuoles in the cytoplasm, which

are equivalent to lysosomes in mammalian cells [23]. There are

two non-selective pathways for degradation of mitochondria in

yeast (macroautophagy and microautophagy), in which the

vacuole nonspecifically uptakes mitochondria with the surround-

ing cytosol [23]. In contrast, selective microautophagy of

mitochondria specifically eliminates unhealthy mitochondria in

yeast cells [24]; the mitochondrial outer membrane protein Uth1p

plays a critical role in this process [25]. Interestingly, mitochon-

drial ROS and the ROS-modified mitochondrial outer membrane

may play a critical role in targeting damaged mitochondria in

yeast cells [26], whereas the depolarization of mitochondria was

suggested to trigger mitophagy in mammalian cells [5]. Recently,

ATG32, a mitochondrial outer membrane protein, was identified

to mediate selective degradation of mitochondria in yeast cells

[27,28]. However, Uth1p and ATG32 do not have any sequence

similarity with mammalian mitophagy-related proteins including

NIX and Parkin, suggesting that there may be many differences in

mitophagy between yeast and human.

Here, we report the role of NIX and ROS in MALM.

Moreover, we identified an additional mechanism for Mieap-

regulated MQC, in which the Mieap-induced vacuole (designated

MIV) eats unhealthy mitochondria, representing a novel mecha-

nism for mitophagy in mammalian cells. Furthermore, we

demonstrated that p53 and/or Mieap plays a pivotal role in

MQC by repairing or eliminating unhealthy mitochondria via

MALM or MIV generation, respectively.

Results

Mitochondrial ROS play a key role for discriminating the
unhealthy mitochondria in MALM

We recently discovered a novel mechanism for mitochondrial

quality control, in which Mieap induces the intramitochondrial

lysosomes that are involved in the elimination of oxidized

mitochondrial proteins [8]. However, there are many questions

that remain to be elucidated. One of the important questions is

what are the underlying mechanisms involved in Mieap’s ability to

differentiate between healthy (containing normal proteins) and

unhealthy (containing damaged and oxidized proteins) mitochon-

dria. To further characterize the mechanisms involved in MALM,

the effects of Mieap on normal cell mitochondria using HMEC4

and HCK-1T cells were examined. Interestingly, although Mieap

induced MALM in HCT116 cancer cells, Mieap failed to

recognize the normal cell mitochondria or induce accumulation

of lysosomes in mitochondria (Figure 1A). Moreover, the ROS

levels generated by the normal cell mitochondria were significantly

much lower than those generated by the cancer cell mitochondria

(Figure 1B). These results suggest that the ROS generated by the

unhealthy mitochondria might play an important role in MALM.

By using the ROS scavengers N-acetylcysteine (NAC) and

Ebselen, the role of mitochondrial ROS (mtROS) in MALM was

evaluated in the irradiated HCT116 cells. Since the mtROS

generation is enhanced by ionizing raddition (IR), we intended to

increase the ROS generation by the mitochondria and used the

IR-treated HCT116 cells. When Mieap was expressed in HCT116

cells, its signal (green) overlapped with that of the mitochondria

(red), implying mitochondrial localization of Mieap (yellow;

Figure 1C). However, treatment with NAC and Ebselen fully

inhibited mitochondrial localization of Mieap, despite the high

level of expression and the IR treatment (Figure 1C). Additionally,

in the absence of ROS scavengers, the mitochondrial signal (red)

merged with that of lysosomes (green) due to enforced expression

of Mieap in HCT116 cells, suggesting that MALM was induced by

Mieap (Figure 1D). However, as in the parental HCT116 cells,

MALM was completely blocked by NAC or Ebselen (Figure 1D).

These results suggest that Mieap recognizes and targets the ROS-

generating mitochondria as damaged and unhealthy organelles.

Further, the mtROS level generated by mitochondria plays an

important role in MALM in order to eliminate the damaged and

oxidized proteins in unhealthy mitochondria.

NIX is an essential mediator for MALM
To clarify the underlying mechanisms involved in MALM, we

attempted to identify the Mieap-binding partner(s). Under normal

conditions, Mieap is a cytoplasmic protein, but during cellular

stresses (e.g., IR, ADR, or H2O2), Mieap is rapidly localized to the

mitochondrial outer membrane and induces MALM. Therefore,

we hypothesized that Mieap may interact with mitochondrial

outer-membrane proteins to target and enter the ROS-generating

mitochondria. We tested whether Mieap interacts with several

mitochondrial outer-membrane proteins, including Bcl-2, Bax,

Bak, and NIX. Of these proteins, we found that only NIX could be

co-immunoprecipitated with Mieap (Figure 2).

To characterize the interaction between Mieap and NIX, two

Mieap mutants and two NIX mutants were generated (Figure 3A

and 3B). While both Mieap mutants were unable to induce

MALM (Figure S1), the MieapD273 mutant clearly localized to,

and entered, the mitochondria without lysosomal accumulation,

whereas the MieapD103–260 did not (Figure 3A). These findings

suggest that the coiled-coil motif of Mieap plays a pivotal role in

the targeting of and entry to the damaged mitochondria. As

reported previously, NIXD1–119 and NIX localized to the

mitochondrial outer membrane, but NIXD188–219 did not

(Figure 3B) [9].

We next carried out co-immunoprecipitation experiments with

the mutant Mieap and NIX proteins. MieapD273 and Mieap-full

interacted with NIX, but MieapD103–260 was unable to bind to

NIX, suggesting that Mieap interacts with NIX via the coiled-coil

domain (Figure 3C–D). Furthermore, NIXD1–119, but not

NIXD188–219, was able to bind to Mieap-full suggesting that

the mitochondrial localization of NIX and, most likely, its BH3

domain are critical components of this interaction (Figure 3E). We

also confirmed that Mieap is colocalized with NIX at mitochon-

drial outer membrane (Figure S2).

p53 Controls Mitochondrial Quality via Mieap

PLoS ONE | www.plosone.org 2 January 2011 | Volume 6 | Issue 1 | e16060



Figure 1. ROS plays a key role in Mieap-targeting the unhealthy mitochondria. (A) Exogenous Mieap does not affect normal cell
mitochondria. One cancer cell line (HCT116: colorectal cancer cells), and two normal human cell lines (HMEC4: human mammary epithelial cells, and
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We further prepared the NIX mutant, which does not contain

the BH3 domain (designated NIXDBH3), in order to examine the

role of the BH3 domain in the interaction of NIX with Mieap. As

expected, NIXDBH3 was able to localize to mitochondria

(Figure 3B), but failed to interact with Mieap-full (Figure 3F and

3G). Taken together, these results suggest that Mieap interacts

with NIX at the mitochondrial outer membrane via the coiled-coil

region of Mieap and the BH3 domain of NIX.

Since ROS plays a pivotal role for MALM in targeting

mitochondria, we speculated that ROS might affect the interaction

of Mieap with NIX. By using ROS scavengers, we examined the

effects of ROS on this interaction. The treatment with Ebselen

substantially inhibited the interaction of NIX with Mieap-full or

MieapD273 (Figure 4A). Consistently, in the absence of ROS,

both Mieap-full and MieapD273 were not co-localized with NIX

at the mitochondrial outermembrane (Figure 4A). These findings

indicate that the ROS generated by mitochondria may play a

critical role in the interaction of Mieap and NIX, leading to the

accumulation of lysosomes into mitochondria.

To evaluate the functional role of NIX in MALM, we prepared

NIX-knockdown cells using A549 and LS174T (A549–NIX-KD

and LS174T–NIX-KD, respectively) (Figure S3). Interestingly, the

mitochondrial localization and accumulation of Mieap following

IR was significantly impaired in these NIX-deficient cells

(Figure 4B). Accordingly, IR-induced MALM was also dramati-

cally inhibited in both the A549 and the LS174T NIX-KD cells

(Figure 4C). These results clearly suggest that NIX is an essential

factor for Mieap to target the unhealthy mitochondria.

Mieap induces vacuole-like structures that engulf and
degrade unhealthy mitochondria

During our studies examining the function of Mieap, we noticed

another unique phenomenon induced by Mieap. When Mieap

protein was overexpressed in cancer cells by infection with Ad-Mieap

at an MOI of 60, a few large, vacuole-like structures appeared in the

cytoplasm of the infected cells (Figure 5A). The phenomenon was

confirmed in all the examined cancer cell lines. We designated this

vacuole-like structure as MIV (Mieap-induced vacuole). Interestingly,

Mieap was localized around the edge of the MIV (Figure 5B).

In order to characterize the MIV, we first examined the

relationship between the MIV and mitochondria. The cells infected

with Ad-Mieap at an MOI of 60 were co-stained with an anti-Mieap

antibody (green) and DsRed-mito (red). Surprisingly, the mitochon-

drial signal was detected within the MIV (Figure 5C). A similar

result was seen using AcGFP-mito (Figure S4). We further examined

the relationships between the MIV and the ER and between the

MIV and Golgi. However, neither the ER signal (Figure 5D) nor the

Golgi signal (Figure S5) was detected within the MIV. This result

suggests that the MIV specifically targets the mitochondria.

We next examined the relationship between the MIV and the

lysosomes. Lysosomes were stained with an anti-LAMP1 antibody

(red), and the signal was compared to the Mieap signal (green). As

shown in Figure 5E and Figure S6, the LAMP1 signal

accumulated around the edge of the MIV. We also examined

the cathepsin D signal and detected a strong signal inside the MIV

(Figure 5E and Figure S6). We further examined the acidic status

inside the MIV using Lysotracker-red. Interestingly, the inside of

the MIV was strongly stained by Lysotracker-red, suggesting that

it is acidic and that the lysosomal enzymes in the MIV are active

(Figure 5E and Figure S6). These observations suggest that

lysosomes accumulate around the edge of a MIV and fuse to the

MIV membrane, after which the lysosomal contents, including

digestive enzymes, are released into the MIV, leading to the

degradation of the mitochondrion. Therefore, we conclude that

the MIV specifically engulfs and degrades mitochondria.

To validate the role of the MIV in mitochondrial degradation,

we used flow cytometry after staining the cells with Rhodamine123

(mitochondria) and NBD-C6-ceramide (Golgi). The mitochondrial

staining intensity in HCT116 after infection with Ad-Mieap at an

MOI of 60 was dramatically decreased in a time-dependent

manner (Figure S7). In addition, the intensity of the Golgi staining

was not affected by infection with Ad-Mieap, like Ad-LacZ (Figure

S7). The results clearly indicate that the MIV specifically engulfs,

degrades and eliminates mitochondria.

To further explore the nature of the MIV and the mechanism

for how MIVs engulf mitochondria, we performed electron

microscopy. The MIVs appeared as an osmium-positive, large,

vacuole-like structure (Figure 5F and Figure S8). The MIVs

contained a number of clear vesicles of various sizes (small to large)

and directly engulfed mitochondria (Figure 5F and Figures S8).

Some picture indicated that MIV-mediated uptake of mitochon-

dria is similar to yeast microautophay (Figure S8).

We further carried out the IF experiment to examine a

relationship between a mitochondrial outermembrane protein

NIX and MIV. Consistent with the result in electron microscopy,

NIX was degraded within MIV as soon as MIV engulfed

mitochondria (Figure S9), implying that mitochondria are not

likely to fuse to MIV, but rather be directly engulfed by MIV in a

specific manner that may be similar to selective microautophagy in

yeast (24).

In order to characterize the nature of the MIVs, we carried out

additional experiments. Since the MIVs are large vacuoles that

require a large amount of membrane components, we hypothe-

sized that the membranes of the MIVs may be supplied by the

endocytotic pathway. In order to evaluate this hypothesis, we

examined the relationship between endocytosis and the MIVs by

carrying out an IF experiment using Alexa488-EGF. As shown in

Figure 6A, a large portion of the labeled EGF accumulated within

the MIVs by 8 h after the addition, suggesting that MIV

generation is strongly related to the endocytotic pathway.

We further examined the effect of inhibitors against various

signaling pathways on MIV generation. Interestingly, two

HCK-1T: human cervical keratinocyte cells) were infected with Ad-Mieap, and 3 days after infection, IF experiment was carried out. Mieap protein was
stained with polyclonal rabbit anti-Mieap antibody (green). Lysosomes were stained with anti-LAMP1 antibody (green). Mitochondria were indicated
by the DsRed-mito protein signal (red). Scale bar = 20 mm. (B) Normal cell mitochondria produce much less ROS. The ROS level was detected in live
cells of HCT116, HMEC4 and HCK-1T by MitoSox-red (red) and DHR (green). A representative image in each cell is shown. The ROS level was also
analysed with DHR by FACS. Scale bar = 20 mm. (C) ROS scavenger inhibits mitochondrial localization and accumulation of Mieap. HCT116 Ad-LacZ-
infected and Ad-Mieap-infected cells of HCT116 were c-ray-irradiated, and 3 days after IR, in the presence or absence of the ROS scavengers NAC and
Ebselen, the cells were subjected to IF analysis. Mieap protein was stained with anti-Mieap antibody (green). Mitochondria were indicated by the
DsRed-mito protein signal (red). (D) ROS scavenger inhibits MALM. Using the protocol described in (C), lysosomes were stained with anti-LAMP1
antibody (green), and mitochondria were indicated by the DsRed-mito protein signal (red). (C) (D) The yellow area indicated mitochondrial
localization and accumulation of Mieap (C) or accumulation of lysosomes into mitochondria (D). Quantitative analysis of the yellow or red area was
carried out in 300–400 cells. Average values for the ratio of yellow to red (merged/mitochondrial; yellow bar graph) are shown with error bars
indicating 1 SD. p,0.01 (*) was considered statistically significant in the Ad-Mieap-infected cells with and without NAC or Ebselen. Scale bar = 20 mm.
doi:10.1371/journal.pone.0016060.g001
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inhibitors of phosphoinositide 3-kinase (PI3K), 3-methyladenine

(3MA) and LY294002, severely impaired MIV generation,

whereas ROS scavengers, Ebselen and NAC, inhibited the uptake

of mitochondria by the MIVs (Figure 6B) under a condition where

the Mieap protein was overexpressed. We also confirmed that

Ebselen and NAC inhibited MIV generation in the irradiated

NIX-KD cells (data not shown), implying that mtROS may also be

required for MIV formation under physiological expression levels

of Mieap after cellular stresses.

In yeast, lipid oxidation of mitochondrial outer membrane was

suggested to be critical in mitochondrial autophagy (26).

Therefore, we evaluated the effect of resveratrol on MALM and

Figure 2. Mieap interacts with NIX, but not Bcl-2, Bax, and Bak. (A), (B) Immunoprecipitation experiment. Using the plasmids designed to
express NIX, Bcl-2, Bax, and Bak, IP experiments were carried out to examine the interaction between Mieap and NIX, Bcl-2, Bax, or Bak proteins.
HCT116 cells were transfected by the plasmid designed to express the N-FLAG-tagged NIX, Bcl2, Bax, or Bak, and 2 h after the transfection, the cells
were infected with adenovirus vector designed to express Mieap at an MOI of 5. 36 h after the infection, the cell lysates were subjected to IP
experiment as described in Materials and Methods. IP: immunoprecipitaion, IB: immunoblotting, pre: cell lysate from HCT116 cells before
immunoprecipitaion, post: cell lysate from HCT116 cells after immunoprecipitation, mIgG: mouse IgG, rIgG: rabbit IgG.
doi:10.1371/journal.pone.0016060.g002
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Figure 3. NIX interacts with the coiled-coil regions of Mieap via its BH3 domain. (A) Deletion mutants of Mieap. The expression vectors for
two deletion mutants (D273 and D103-260) of Mieap were prepared, as well as Ad-Mieap-ãfull. IF experiment was carried out with anti-Mieap
antibody (Mieap: green) and DsRed-mito (Mito: red). HCT116 cells were infected with Ad-Mieap vectors at an MOI of 5. Scale bar = 10 mm. (B) Deletion
mutants of NIX. The expression vectors for NIX-full and three deletion mutants (NIXD188-219, NIXD1-119, and NIXDBH3) of NIX were prepared
(upper). The subcellular localization of NIX-full and NIX mutants was shown (lower). Red box indicates transmembrane region. Green box indicates
BH3 region. IF experiment was carried out with anti-FLAG antibody (NIX: green) and DsRed-mito (Mito: red). HCT116 cells were transfected by the
plasmids designated to express NIX and NIX mutants. Scale bar = 10 mm. (C–G) NIX interacts with Mieap via the coiled-coil domains of Mieap and the
BH3 domain of NIX. Immunoprecipitation experiment with various forms of Mieap and NIX was carried out to characterize the interaction of Mieap
and NIX (C, E, F, and G). IP: immunoprecipitaion, IB: immunoblotting, pre: cell lysate from HCT116 cells before immunoprecipitaion, post: cell lysate
from HCT116 cells after immunoprecipitation, mIgG: mouse IgG, rIgG: rabbit IgG.
doi:10.1371/journal.pone.0016060.g003
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MIV. As shown in Figure S10, resvetatrol almost completely

inhibited MALM and uptake of unhealthy mitochondria by MIV,

just like Ebselen. We could not find any difference between

resveratrol and Ebselen.

The p53–Mieap pathway controls mitochondrial quality
by repairing or eliminating unhealthy mitochondria via
MALM or MIV

MALM plays a role in repairing mitochondria, whereas MIVs

degrade mitochondria. Therefore, we hypothesized that if MALM

is inhibited, MIVs should be enhanced in order to eliminate the

unhealthy mitochondria as an alternative pathway for mitochon-

drial quality control. To evaluate this hypothesis, we examined the

status of the MIVs in NIX-KD cells, in which MALM is severely

impaired (see Figure 4B and 4C). Infection with Ad-Mieap at an

MOI of 5 induced MALM in almost all A549-control cells

(Figure 7A). However, in A549–NIX-KD cells, infection with Ad-

Mieap was not able to induce MALM but dramatically induced

only MIVs (Figure 7A).

To validate these results under more physiological conditions,

we analyzed MALM and MIVs in IR-treated A549-control and

NIX-KD cells. When the mitochondria were damaged by IR,

endogenous Mieap induced MALM in all the control cells

(Figure 7B). In contrast, endogenous Mieap failed to induce

MALM but dramatically induced MIVs in the IR-treated NIX-

KD cells (Figure 7B). Furthermore, both MALM and MIV

generation were severely impaired in the IR-treated Mieap-KD

cells (Figure 7B).

To examine whether the MIVs actually engulf unhealthy

mitochondria, we evaluated the ROS levels generated by the

mitochondria and mitochondrial ATP synthesis activity in the IR-

treated A549 NIX-KD cells. As shown in Figure 8A, 8B and 8C,

the ROS levels in the NIX-KD cells (MALM (2), MIV (+)) were

much higher than those of the control cells (MALM (+), MIV (+)),

but lower than the Mieap-KD cells (MALM (2), MIV (2)).

Consistent with the result on ROS, mitochondrial ATP synthesis

activity in the NIX-KD cells was much lower than the control

cells, but higher than the Mieap-KD cells (Figure 8D). The similar

results were obtained in the LS174T cells (Figure S11). These

results suggest that the MIVs may engulf unhealthy mitochondria.

These results also suggest that if the damaged mitochondria

cannot be repaired by MALM, MIVs function as an alternative

pathway in mitochondrial quality control by eliminating the

unhealthy mitochondria. Therefore, Mieap regulates mitochon-

drial quality control by repairing or eliminating unhealthy

mitochondria through MALM or MIVs, respectively.

Initially, we identified Mieap as a p53-inducible gene. Therefore,

we reasoned that p53 might be involved in mitochondrial quality

control. We examined whether p53 regulates MALM and the

generation of MIVs in IR-treated A549-control and p53-KD cells.

MALM was induced in the control cells but not in the Mieap-KD

and NIX-KD cells (Figures 7B). Interestingly, both MALM and

MIVs were observed in a fraction of the control cells (5,10%),

suggesting that the MIVs are the physiological function of Mieap

or p53 (Figure 7C and 7D). As expected, MALM was severely

inhibited in the p53-KD cells (Figure 7B). In addition, we did not

observe any MIV structures in the p53-KD cells or in the Mieap-

KD cells (Figure 7B). We also obtained the similar results in

LS174T cells (Figure S12 and data not shown).

Consistent with the impairment of MALM and MIV genera-

tion, the mitochondrial volume was elevated in the p53-KD cells,

as in the Mieap-KD cells (Figure 9A and Figure S13). In addition,

the level of mitochondrial ROS was significantly increased after IR

treatment in the p53-KD cells, implying that dysfunctional and

unhealthy mitochondria accumulated in the p53-deficient cells

(Figure 9B). These results suggest that p53 also controls

mitochondrial quality via the Mieap pathway (Figure 9C and 9D).

Discussion

Recently, we discovered a novel mechanism for MQC, in which

Mieap, a novel p53-inducible protein, induced the intramitochon-

drial lysosomes that play a critical role in the elimination of

oxidized mitochondrial proteins [8]. Although the ability of Mieap

to recognize unhealthy mitochondria is important, the mechanism

remains unclear. However, the results in the present paper may

provide several clues to address this issue. First, mtROS play a key

role in targeting the unhealthy mitochondria. Second, NIX, a

mitochondrial outermembrane protein, is an indispensable factor

in MALM; Mieap appears to localize to and recognize the

unhealthy mitochondria by interacting with NIX. Third, mtROS

are required for the interaction of Mieap with NIX. Therefore, we

speculate that mtROS and NIX are essential factors for MALM.

The term ‘‘unhealthy mitochondria’’ generally refers to mito-

chondria with dysfunctional oxidative phosphorylation, which is

manifested by reduced ATP synthesis and the excess generation of

ROS [29]. Therefore, the role of mtROS in recognizing the

unhealthy mitochondria seems to be very reasonable for MALM.

However, since ROS are very small and soluble molecules, they are

likely to diffuse from mitochondria towards the whole cytoplasm as

soon as they are produced locally within mitochondria. If so, an

important question is how mtROS can mark unhealthy mitochon-

dria to be recognized by Mieap. A recent study reported that the

oxidation of mitochondrial membrane lipids by mtROS might

function as a tag of altered mitochondria, leading to selective

autophagy of damaged mitochondria [26]. These data indicate that

mtROS generated by unhealthy mitochondria oxidize and modify

the mitochondrial outer membrane lipids and/or proteins that may

function as a tag of unhealthy mitochondria.

Figure 4. NIX is an indispensable mediator for MALM. (A) ROS plays a critical role in the interaction of Mieap and NIX. The IP (upper) and IF
(lower) experiments for Mieap and NIX or for MieapD273 and NIX were carried out in the presence (+) or absence (2) of Ebselen. IP:
immunoprecipitaion, IB: immunoblotting, pre: cell lysate from HCT116 cells before immunoprecipitaion, post: cell lysate from HCT116 cells after
immunoprecipitation, mIgG: mouse IgG Scale bar = 10 mm. (B) NIX deficiency inhibits mitochondrial localization and accumulation of Mieap. A549- or
LA174T-cont and NIX-KD cells were c-ray-irradiated, and 3 days after IR, the cells were subjected to IF analysis. Mieap protein was stained with anti-
Mieap antibody (Mieap: green). Mitochondria were indicated by the DsRed-mito protein signal (Mito: red). The yellow area indicated mitochondrial
localization and accumulation of Mieap. Quantitative analysis of the yellow or red area was carried out in 300–400 cells. Average values for the ratio of
yellow to red (merged/mitochondrial; yellow bar graph) are shown with error bars indicating 1 SD. p,0.01 (*) was considered statistically significant.
Scale bar = 10 mm. (C) NIX deficiency inhibits MALM. Using the protocol described in (B), A549- or LS174T-NIX-KD and Mieap-KD cells were also
analysed on MALM. Lysosomes were stained with anti-LAMP1 antibody (LAMP1: green), and mitochondria were indicated by the DsRed-mito protein
signal (Mito: red). The yellow area indicated accumulation of lysosomes into mitochondria. Quantitative analysis of the yellow or red area was carried
out by the procedure described in panel (B). The average values of the ratio of yellow to red (merged/mitochondrial; yellow bar graph) are shown
with error bars indicating 1 SD. p,0.01 (*) was considered statistically significant between the control cells and Mieap-KD cells or NIX-KD cells. Scale
bar = 10 mm.
doi:10.1371/journal.pone.0016060.g004
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Figure 5. Mieap induces vacuole-like structures in order to eliminate unhealthy mitochondria. (A) Light microscopic analysis of MIV. MIVs
are detected by light microscopy (LM) in A549 and U373MG cells infected with Ad-Mieap at an MOI of 60. Arrows indicate MIVs. Scale bar = 20 mm. (B)
IF analysis of MIV. Mieap (green) signal is detected around the edge of MIV. Arrows indicate MIVs. Scale bar = 20 mm. (C) MIV eats mitochondria.
Mitochondria indicated by DsRed-mito are engulfed by MIV in A549 cells infected with Ad-Mieap at an MOI of 60. Mitochondria in A549 infected with
Ad-LacZ at an MOI of 60 are shown as a negative control. Scale bar = 20 mm. (D) MIV does not eat endoplasmic reticulum. Endoplasmic reticulum (ER)
indicated by DsRed-ER is not engulfed by MIV in A549 cells infected with Ad-Mieap at an MOI of 60. ER in A549 infected with Ad-LacZ at an MOI of 60
is shown as a negative control. Scale bar = 20 mm. (E) MIV contains active lysosomal enzymes. IF analysis of A549 infected with Ad-Mieap at an MOI of
60 was carried out with anti-Mieap antibody (green) and anti-LAMP antibody (red), anti-cathepsin D antibody (red), or Lysotracker-red (red). The
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In the case of MALM, we found that NIX plays a critical role in

targeting unhealthy mitochondria. Modification by ROS impairs

the function of some proteins, whereas other types of ROS

modification reversibly modulate the function of proteins, similar

to phosphorylation and dephosphorylation [30]. Therefore, we

propose that mtROS generated by mitochondria modifies NIX

and/or Mieap, thereby allowing NIX and Mieap to interact.

Although the precise nature of the putative ROS modification of

NIX and/or Mieap has not been identified, we hypothesize that

the ROS-regulated modification is likely to play a crucial role in

the interaction of Mieap and NIX, which allows Mieap to

distinguish healthy mitochondria from unhealthy mitochondria.

Further investigation on the modifications of NIX and/or Mieap

by ROS is necessary.

Another important question regarding the MALM mechanism

is how lysosomes enter mitochondria without destroying the

structure of mitochondria. We hypothesize that an unidentified

channel that is similar to the mitochondrial permeability transition

pore (MPTP) may regulate lysosomal translocation from the

cytoplasm to the inside of mitochondria. Interestingly, NIX was

previously suggested to regulate MPTP in the context of non-

apoptotic cell death [12]. Since NIX is an essential factor to induce

MALM by interacting with Mieap, we propose that NIX may

regulate or form a large hole that spans from the mitochondrial

outer membrane to the inner membrane, leading to the

translocation of lysosomes into the mitochondrial matrix under

the regulation by Mieap, although further investigation is

required.

In the present study, we identified an additional mechanism for

Mieap-regulated MQC. Inhibition of MALM in gamma-irradiat-

ed cells induced large vacuoles in the cytoplasm in a Mieap-

dependent manner. Surprisingly, the vacuoles (designated as

MIVs) specifically engulfed damaged mitochondria, implying that

MIV is a type of mitophagy in mammalian cells. However,

electron microscopy and immunofluorescence data indicated that

MIV is not related to canonical autophagy, which is mediated by

double-membraned autophagosomes. In addition, the damaged

mitochondria were directly contacted and engulfed by MIV.

Accordingly, alternative mitophagy pathways in which the

macroautophagy genes ATG5 and ATG12 are not essential for

mitochondrial degradation have been suggested [22,31]. We

hypothesize that the machinery for the uptake and degradation of

unhealthy mitochondria by MIV is likely very similar to selective

microautophagy of mitochondria in yeast. Kissova et al. reported

that both selective and non-selective mitophagy occur in yeast; the

former was unlikely to be mediated by canonical macroautophagy

or microautophagy but rather by ‘‘selective microautophagy’’

[24,32]. In the selective microautophagy of mitochondria, yeast

vacuoles directly contact and engulf mitochondria without

engulfing the surrounding cytosol [24]. Therefore, the mechanism

in yeast is likely related to the MIV-mediated mitophagy in human

cells.

In yeast, the mitochondrial outer membrane protein Uth1p

plays a critical role in selective microautophagy of mitochondria,

but no human homolog of the protein has been identified thus far.

There may be an unidentified mitochondrial outer membrane

protein in human cells that plays a critical role in recognizing

unhealthy mitochondria in the MIV-mediated mitophagy. NIX is

unlikely to be required for targeting and degrading unhealthy

mitochondria in the MIVs, since MIVs were shown to engulf and

degrade mitochondria in NIX-KD cells. Interestingly, the ROS

scavengers NAC and Ebselen did not inhibit the formation of

MIVs, but completely inhibited the uptake of damaged mito-

chondria by MIVs under a condition where the Mieap protein was

overexpressed. This result suggests that mtROS produced by

unhealthy mitochondria might also play a critical role in targeting

the MIVs to the unhealthy mitochondria. As described, the

oxidation of mitochondrial outer membrane lipids was shown to

be critical in selective microautophagy of mitochondria in yeast

[26]. Oxidation of mitochondrial outer membrane lipids by

mtROS may also function as a tag of unhealthy mitochondria for

the MIV-mediated mitophagy in human cells. Alternatively, like

MALM, an unidentified mitochondrial outer membrane protein

and/or its modification by mtROS may play a role in targeting

unhealthy mitochondria in the MIVs. Further studies are needed

to understand this mechanism.

In contrast to yeast cells, there are no large vacuoles under

normal conditions in the cytoplasm of mammalian cells. The

MIVs were induced by gamma-ray irradiation in a p53- and/or

Mieap-dependent manner. In addition, MIV generation was

enhanced by inhibition of the MALM pathway. The next

important question is how the MIVs are generated by Mieap.

Currently, the mechanistic details remain unknown. However, the

data in the present study provide several clues to address this

question. First, Mieap protein was localized around the edge of

vacuole-like structures, implying that Mieap itself may constitute

the structure of the MIV membrane. Second, the Alexa488-EGF

incorporation experiment suggested that the MIV membrane

might be supplied from the cellular membrane by the endocytic

pathway. Third, inhibitors of PI3K blocked MIV generation,

supporting the involvement of the endocytic signaling pathway in

MIV generation. On the basis of these findings, it is likely that the

generation of the MIVs may be strongly related to the endocytic

pathway.

We demonstrated that Mieap plays a pivotal role in mitochon-

drial quality control by repairing or eliminating the unhealthy

mitochondria via MALM or MIVs, respectively (Figure 9C). The

mechanism seems to be similar to the ‘‘p53 smart’’ model that

regulates apoptosis [33]. In this model, p53 functions as a cell fate

determinant that kills cancerous cells by inducing apoptosis or

allows the cell to survive by repairing DNA damage [33]. In this

context, the decision is likely to depend upon the extent of the

damage. That is, when the damage is too severe to be repaired, the

cell will be killed. However, if the damage is mild to moderate, the

damage in the cell will be repaired and the cell will survive. Ser46-

phosphorylation of p53 plays a critical role in this mechanism by

selectively activating the p53 target genes involved in apoptosis

[34]. Currently, the precise mechanism for the Mieap-mediated

selection of repairing or eliminating the unhealthy mitochondria

remains unclear. In the present study, we confirmed that the ROS

level generated by the unhealthy mitochondria is essential for both

MALM and MIV formation. Therefore, we speculate that the

amount of ROS produced by the unhealthy mitochondria

(mtROS) may play a key role in this mechanism.

Mieap primarily functions to repair the unhealthy mitochondria

by inducing the MALM in order to degrade and eliminate the

strong red signals of cathepsin D and Lysotracker-red were detected within MIV. Scale bar = 20 mm. (F) Electron microscopy. MIV was examined by
electron microscopy (EM). Black and large vacuole-like structures are detected in A549 infected with Ad-Mieap at an MOI of 60, which contain various
sizes of vesicles. MIV directly engulfes mitochondria (indicated by arrows). Mitochondria are indicated by ‘‘M’’. A549 cells infected with Ad-LacZ at an
MOI of 60 are shown as a negative control. Scale bar = 500 nm or 10 mm.
doi:10.1371/journal.pone.0016060.g005
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Figure 6. MIV generation is related to the endocytic pathway. (A) EGF incorporated into the cell by endocytosis accumulates within the MIV.
Alexa488-EGF was added to the culture medium of Ad-Mieap-infected A549 cells before MIVs were generated (20 h after infection). At 0 or 8 h after
the addition, the IF experiment was carried out. Mieap protein was stained with polyclonal rabbit anti-Mieap antibody (red). The added EGF was
indicated by the Alexa488-EGF signal (green). Scale bar = 20 mm. (B) MIV generation is inhibited by PI3K inhibitors. The indicated inhibitors were
added to the culture medium of Ad-Mieap-infected A549 cells 6 h after infection; 36 h after infection, IF experiments were carried out. Mieap protein
was stained with polyclonal rabbit anti-Mieap antibody (green). Mitochondria were indicated by the DsRed-mito protein signal (red). Scale bar
= 20 mm.
doi:10.1371/journal.pone.0016060.g006
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Figure 7. The p53-Mieap pathway repairs or eliminates unhealthy mitochondria. (A) Mieap induces MIV as an alternative pathway. A549-
cont and NIX-KD cells were infected with Ad-Mieap at an MOI of 5, and 3 days after infection, IF experiment was carried out with anti-Mieap antibody
(Mieap: green), or anti-cathepsin D antibody (Cath-D: green or red). Mitochondria were stained by DsRed-mito protein (DsRed-mito: red). Light
microscopy (LM) and electrom microscopy (EM) experiments were also carried out with the same cells. Arrows indicate MIVs. Scale bar = 20 mm (IF
and LM) or 10 mm (EM). (B) Endogenous p53 and Mieap regulate both MALM and MIV. A549-cont, NIX-KD, p53-KD and Mieap-KD cells were irradiated
by c ray, and 3 days after IR, the experiments of IF, LM, and EM were carried out by the procedure described in panel (A). Arrows indicate MIVs. Scale
bar = 20 mm (IF and LM) or 10 mm (EM). (C) MALM and MIV are the physiological functions induced by p53. A549-cont cells were irradiated by c ray,
and 3 days after IR, the IF experiment was carried out. Mieap (green) and cathepsin D (green or red) were stained with anti-Mieap antibody and anti-
cathepsin antibody, respectively. Mitochondria (red) were indicated by DsRed-mito. Orange arrows indicate MALM, and yellow arrows indicate MIV.
Scale bar = 20 mm. (D) Electron microscopy. The same cells in panel (C) were examined by electron microscopy. Red arrows indicate MALM, and white
arrows indicate MIV. Scale bar = 10 mm.
doi:10.1371/journal.pone.0016060.g007
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Figure 8. MIV eliminates unhealthy mitochondria. (A) (B) (C) Mitochondrial ROS level. The control, NIX-KD, and Mieap-KD cells of A549 were c-
ray-irradiated, and the ROS generated by mitochondria in the cells were analyzed by MitoSox-Red on day 3 after IR. (A) Quantitative analysis of ROS
was carried out in 300–400 cells (lower panel). Average intensities of ROS per cell are shown with error bars indicating 1 SD. p,0.01 (*) was
considered statistically significant. (B) The representative images are shown. Scale bar = 20 mm (C) The ROS level was analyzed by FACS with
dihydrorhodamine (DHR). (D) ATP synthesis activity by the mitochondria. The cells were subjected to ATP synthesis assay on day 3 after IR.
Oligomycin, an inihibitor of mitochondrial oxidative phosphorylation, was used in the assay in order to detect non-mitochondrial ATP synthesis
activity. The average activities of ATP synthesis are shown with error bars indicating 1 SD. p,0.01 (*) was considered statistically significant.
doi:10.1371/journal.pone.0016060.g008
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Figure 9. The p53-Mieap pathway controls mitochondrial quality. (A) The DsRed-mito intensity increases in p53-defective cells. The cells
were c-ray-irradiated, and the mitochondrial intensity was analyzed by the DsRed-mito signal at the indicated times. The representative images were
shown (right panel). Quantitative analysis of mitochondrial intensity was carried out in 300–400 cells. Average intensities of mitochondria per cell are
shown with error bars indicating 1 standard deviation (SD; left panel). p,0.01 (*) was considered statistically significant. Scale bar = 20 mm. (B)
Mitochondrial ROS level increases in p53-deficient cells. The cells were c-ray-irradiated, and the ROS generated by mitochondria in the cells was
analyzed by MitoSox-Red (red) or DHR123 (green) without IR or at the indicated times after IR. The representative images are shown (upper panel).
Quantitative analysis of ROS was carried out in 300–400 cells (lower panel). Average intensities of ROS per cell are shown with error bars indicating 1
SD. p,0.01 (*) was considered statistically significant. Scale bar = 20 mm. (C) Hypothetical model of the p53-Mieap pathway for mitochondrial quality
control. (D) Hypothetical model for inactivation of the p53-Mieap pathway.
doi:10.1371/journal.pone.0016060.g009
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oxidatively damaged proteins within the mitochondria and

prevent further increases in mtROS generation, thereby contrib-

uting to the healthy functioning of mitochondria (Figure 9C).

However, when the damage to a mitochondrion is too severe and

MALM cannot repair the damaged mitochondrion that is

producing the high level of ROS, Mieap induces MIV formation

in order to eliminate the severely damaged and irreparable

mitochondrion (Figure 9C). Consistent with this hypothesis, the

inhibition of MALM by repressing NIX dramatically induced

MIV formation, and the mitochondria were engulfed and

degraded by the MIVs. Therefore, MIVs play a role as an

alternative and emergent system alongside MALM to maintain the

healthy state of mitochondria by eliminating severely damaged

mitochondria. Since MALM deficiency causes excess ROS

generation by mitochondria, the increased mtROS in the

cytoplasm may enhance MIV formation. We speculate that the

ROS-induced modification of Mieap may be involved in the

mechanism underlying the selection of MALM or MIV formation.

p53 is an important tumor suppressor gene and is mutated in

over 50% of human cancers. It encodes a sequence-specific

transcription factor that activates transcription of its target genes,

and we initially identified Mieap as a novel p53 target. Not

surprisingly, Mieap expression was downregulated in p53-mutated

cancers, especially following DNA damage. Hence, we reasoned

that p53 might be involved in mitochondrial quality control. As

expected, both MALM and MIV formation was severely impaired

following IR treatment in p53-KD cancers, and the accumulated

mitochondria generated higher levels of ROS. This clearly shows

that p53 regulates mitochondrial quality control by inducing the

repair or elimination of unhealthy mitochondria via MALM or

MIV formation, respectively (Figure 9C). We believe p53

promotes the elimination of ROS-damaged mitochondrial pro-

teins or promotes the degradation of damaged mitochondria via

the upregulation of Mieap, thereby maintaining healthy organelles

and preventing further increases in the ROS level. Increased ROS

generation by mitochondria can cause DNA damage and genomic

instability [3]; promote cell proliferation, survival and cancer

metastasis [35]; and activate tumor-promoting signaling pathways

such as NF-kB and AKT [36]. Therefore, preventing ROS

generation by unhealthy mitochondria might be an important

component of p53-mediated tumor suppression. Consistent with

this hypothesis, p53 deficiency has been reported to result in

increased ROS levels, and the ROS scavenger NAC can prevent

lymphomas in p53-null mice [37,38]. We hypothesized that one

mechanism of the p53-dependent antioxidant activity might be

explained by the p53–Mieap pathway (Figure 9D).

Recently, mitochondrial oxidative phosphorylation has been

shown to play a critical role in Bax- and Bak-induced apoptosis

[39]. Tomiyama et al. reported that ATP produced by

mitochondrial oxidative phosphorylation, but not by cytoplasmic

glycolysis, is required for the activation of Bax and Bak and the

subsequent apoptosis. This suggests that the accumulation of

dysfunctional mitochondria and impairment of mitochondrial

ATP synthesis due to inactivation of the p53–Mieap pathway leads

to resistance to apoptosis and contributes to cancer initiation and

progression (Figure 9D). Therefore, mitochondrial quality control

by the p53–Mieap pathway may also play an important role in

p53-dependent apoptosis.

Although there are many important questions that require

further study, the discovery of this unusual and important

mechanism in the cell may lead to a greater understanding of

the underlying mechanisms involved in various phenomena and

diseases that may be to the result of defective mitochondrial

quality control.

Materials and Methods

Cell lines
The following human cancer cell lines were purchased from the

American Type Culture Collection: LS174T and HCT116

(colorectal adenocarcinoma); A549 (lung cancer); The TERT-

immortalized normal cell lines HCK-1T (human cervical

keratinocyte cell) and HMEC4 (human mammary epithelial cell)

were provided by T. Kiyono (National Cancer Centre Research

Institute) and D.A. Galloway (Fred Hutchinson Cancer Research

Centre). Cells were cultured under the conditions recommended

by their depositors.

Immunocytochemistry
For immunocytochemistry, cells were grown on 8-well chamber

slides (16105 cells/well for LS174T and 26104 cells/well for all

others) at 37uC in conventional culture medium, and fixed in 2%

paraformaldehyde for 10 min at room temperature. Slides were

incubated with 0.1% Triton X-100 buffered in phosphate-buffered

saline (PBS) for 3 min, and washed three times with PBS at room

temperature. Cells were blocked with 3% bovine serum albumin

(BSA) in PBS for 1 h, and sequentially incubated with rabbit

polyclonal anti-Mieap antibody (1:200) or mouse monoclonal anti-

LAMP1 antibody (1:200) for 1 h at room temperature. After

washing three times with PBS, slides were incubated with

fluorescein isothiocyanate (FITC)-conjugated goat anti-rabbit

immunoglobulin G (IgG) antibody, FITC-conjugated goat anti-

mouse IgG antibody, Alexa Fluor 546 goat anti-rabbit IgG

antibody, or Alexa Fluor 546 goat anti-mouse IgG antibody for

1 h at room temperature. Slides were treated with 1 mM TO-

PRO-3 (Invitrogen) for 15 min to stain the nuclei, and then

washed four times with PBS. Slides were mounted with

VECTASHIELD H-1000 (Vector Laboratories), and observed

under an Olympus IX70 (Olympus) inverted fluorescence

microscope coupled with a Radiance 2000 laser-scanning confocal

system (Bio-Rad).

Establishment of p53-KD, Mieap-KD or NIX-KD cell lines
using RNA interference

We established p53-KD and Mieap-KD cell lines using LS174T

and A549 cells, as described previously [8,40]. We also established

NIX-KD cell lines using LS174T and A549 cells. NIX expression

was inhibited in these cell lines by retroviral expression of short-

hairpin RNA (shRNA) (NIX-KD: 59-gatccccGTTCTGTGT-

CTTTAAGCATttcaagagaATGCTTAAAGACACAGAACtttttg-

gaaa-39) against the NIX sequence. We also established control

cell lines by infection with an empty retroviral vector (Control).

Construction of recombinant adenoviruses
Replication-deficient recombinant viruses were generated and

purified as described previously [41]. In brief, blunt-ended cDNAs

were cloned into the SmiI site of the cosmid pAxCAwtit (Takara),

which contains the CAG promoter and the entire genome of type

5 adenovirus except for E1 and E3 regions. BspT104I digested-

cosmids were transfected to 293 (human embryonic kidney cell

line) cells. Viruses were propagated in the 293 cells and purified.

DNA-damaging treatments
Cells were seeded 12 h before the treatment and were 60–70%

confluent at the time of the treatment. To examine the expression

level of Mieap and to induce MALM, or MIV by mitochondrial

damage in response to genotoxic stresses, in all the figures and

supplementary figures, the cells were c-irradiated at 60 Gy using a
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60Co source. We confirmed that MALM and MIV were inducible

by c-irradiation at as low as 1 Gy and 10 Gy, respectively (data not

shown).

Antibodies
Rabbits were immunized with the recombinant amino (N)-

terminal domain of Mieap. Antibodies were subsequently purified

on antigen affinity columns. The other primary antibodies used in

this study were mouse monoclonal anti-beta-actin antibody

(Sigma), mouse monoclonal anti-LAMP1 antibody (BD Pharmin-

gen), mouse monoclonal anti-FLAG antibody (Sigma), mouse

monoclonal anti-cathepsin D antibody (Novus biological).

FACS analysis
For FACS analysis of mitochondrial ROS production, the cells

were incubated with 10 mM Dihydrorhodamine123 (Sigma) for

2 h at 37uC with serum-free media in the dark. Subsequently,

these cells were collected by treatment with Trypsin-EDTA

solution and centrifugation, washed in PBS, and re-suspended in

cold PBS. Stained cells were immediately analyzed in a FACS

Calibur Flow Cytometer (Becton Dickinson).

To analyze the mitochondrial intensity, the cells were incubated

with 10 mM Rhodamine123 (Sigma) for 15 min at 37uC in the

dark. Subsequently, the cells were isolated by centrifugation,

washed in PBS and re-suspended in PBS. To analyze the Golgi,

the cells were incubated with 10 mM NBD-C6 ceramide (Invitro-

gen) diluted in Hank’s buffered salt solution (HBSS) for 30 min at

4uC in the dark. Subsequently, the cells were incubated with

HBSS for 30 min at room temperature in the dark. Stained cells

were isolated by centrifugation, washed in PBS and re-suspended

in PBS. The stained cells for mitohcondria and Golgi were

immediately analyzed in a FACS Calibur cytometer (Becton

Dickinson).

Quantitative analysis of accumulation of Mieap and
lysosomes within mitochondria

HCT116 cells were seeded on eight-well chamber slides (16105

cells/well for LS174T and 26104 cells/well for all other cells) at

37uC in conventional media. After 12 h, the cells were infected

with Ad-DsRed-Mito at an MOI of 30, and 12 h later they were

infected with Ad-Mieap at an MOI of 5. 24 h after infection with

Ad-Mieap, the cells were c-ray irradiated, and 2 h after IR, the

ROS scavengers, 5 mM NAC (Sigma) and 10 mM Ebselen, were

added to the culture medium. 72 h after IR, the cells were

subjected to IF analysis. The mitochondrial signal (red area) and

the overlapping of the Mieap and mitochondrial signals (yellow

area) or the overlapping of the mitochondrial and lysosomal

signals (yellow area) were analyzed by LuminaVision image

analysis software in 300–400 cells, as described above. Similar

experiments were carried out upon the NIX-KD cells.

Immunoprecipitation
In order to examine the interaction of Mieap with NIX, Bcl2,

Bax, or Bak, HCT116 cells were transfected by the plasmid

designed to express the N-FLAG-tagged NIX, Bcl2, Bax, or Bak,

and 2 h after the transfection, the cells were infected with

adenovirus vector designed to express Mieap at an MOI of 5. In

order to confirm the interaction of Mieap with NIX, the various

forms of Mieap or NIX were expressed in HCT116 by infection

with adenovirus vectors designed to express Mieap and Mieap-

mutants at an MOI of 5 or transfection of plasmids designed to

express the N-FLAG-tagged NIX and NIX-mutants, respectively.

36 h after the infection, the cells were lysed on ice for 15 min in

500 ml NP40 lysis buffer (1% NP40, 150 mM NaCl, 25 mM Tris-

HCl pH 7.6, Complete protease inhibitor cocktail (Roche)). After

lysis, cell debris was removed by centrifugation at 12,0006 g for

15 min, and the supernatant was collected. The supernatant was

precleared by absorbing it with normal IgG and 20 ml of protein-A

or Protein-G sepharose beads for 1 h at 4uC. The beads were

removed by centrifugation, and the supernatant was subjected to

IP by adding 1 mg rabbit polyclonal anti-Mieap antibody or 1 mg

mouse monoclonal anti-FLAG antibody. As negative controls,

normal rabbit IgG or normal mouse IgG was used for IP. The

antibody mixtures were allowed to react on a rotating devise

overnight at 4uC. Then, Protein-A or Protein-G sepharose beads

were added, and the mixtures were incubated for an additional 2 h

at 4uC. The beads were washed five times in cold lysis buffer, and

immune complexes were released from the beads by boiling them

in 2 x Laemmli sample buffer. Samples were loaded onto 10–15%

SDS-PAGE gels, and electrophoresed proteins were subjected to

western blot analysis with anti-FLAG antibody or anti-Mieap

antibody as described above.

Visualization of subcellular organelles
Mitochondria, ER and Golgi were visualized by infection with

recombinant adenovirus vectors or transfection with plasmids

designed to express organelle marker proteins such as DsRed-Mito

for mitochondria, DsRed-ER for ER and AcGFP-Golgi for Golgi.

Alternatively, to visualize mitochondria, cells were incubated with

50 nM MitoTracker-Red (Invitrogen) or 50 nM MitoTracker-

Green (Invitrogen) for 30 min at 37uC before fixation. To visualize

lysosomes, 50 nM LysoTracker-Red (Invitrogen) for 30 min at

37uC before fixation.

Transmission electron microscopy
LS174T-control and Mieap-KD cells (1.56105 cells/24-well

plate) or Ad-Mieap and Ad-LacZ infected HCT116 cells (66104

cells/24-well plate) were irradiated by c ray at 60 Gy. 3 days after

IR, the cells were fixed in 2.5% glutaraldehyde in phosphate

buffered saline (PBS) at 4uC for 2 h. The cells were washed with

PBS, post-fixed in 1% OsO4 buffered with PBS for 2 h, dehydrated

in a graded series of ethanol and embedded in Epon 812. Ultrathin

sections (90 nm) were collected on copper grids, double-stained with

uranyl acetate and lead citrate, and then observed using

transmission electron microscopy (H-7100, Hitachi).

EGF endocytosis assay
EGF coupled to Alexa Fluor 488 (Invitrogen) was used as an

endocytic probe. A549 cells were infected with Ad-Mieap and Ad-

LacZ at an MOI of 60 on 8-well chamber slides. Twelve hours

later after infection, cells were maintained in serum-free media for

6 h at 37uC. For EGF-uptake cells were first washed in ice-cold

PBS and then incubated on ice in uptake-medium (RPMI, 2%

BSA, 20 mM HEPES, pH 7.5) containing 5 mg/ml Alexa Fluor

488-EGF. After incubation on ice for 1 h, the cells were washed

three times in ice-cold PBS to remove unbound ligand. Cells from

one well were fixed to give the total amount of bound ligand and

the remaining wells were transferred to a 37uC incubator. At each

indicated time point, the cells were fixed and processed for

confocal microscopy.

Experiments with various inhibitors
A549 cells were infected with Ad-Mieap at an MOI of 60. Six

hours later after infection, cells were incubated in solution

containing each drug as follows: 50 mM 3-Methyladenine; 3MA,

25 mM LY294002 (Calbiochem), 25 mM PD98059 (Calbiochem),
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25 mM N-acetylcysteine; NAC, 10 mM Ebselen (Sigma).

24 h after infection, the cells were fixed and processed for

immunocytochemistry.

Quantitative analysis of ROS
ROS generation by mitochondria in living cells was analyzed

with the mitochondrial superoxide indicator MitoSOX-Red

(Invitrogen) or dihydrorhodamine123 (DHR123) (Sigma). The

cells were seeded onto a 35-mm glass-bottomed dish (Biousing

Biotechnology) (16106 cells/dish for LS174T and 26105 cells/

dish for all others) at 37uC in conventional media. After 24 h, the

cells were treated with or without stresses, and the ROS level was

examined at the indicated times. Briefly, the cells were incubated

with 5 mM MitoSOX-Red or 10 mM DHR123 for 10 min at

37uC in serum-free media, washed twice with serum-free media,

and then incubated with 5 mM CellMask (Invitrogen) for 15 min

to visualize the walls of living cells. After washing twice with

serum free-media, the stained cells were immediately observed

under the confocal laser-scanning microscope, and the images

were captured using an excitation filter of 510 nm and an

emission filter of 580 nm for MitoSOX-Red, and an excitation

filter of 543 nm and an emission filter of 579 nm for DHR123.

The intensity of MitoSOX-Red or DHR123 in each captured

image was analyzed by LuminaVision image analysis software as

described above.

Assay of mitochondrial ATP synthesis
The experiment was carried out according to the procedure

reported previously (8). The Control and Mieap-KD cells of

LS174T (36106 cells/6 cm dish) or Ad-Mieap and Ad-LacZ

infected cells of HCT116 (16106 cells/6 cm dish) were irradiated

by c ray at 30 Gy, and harvested day 7 after IR. The cells with or

without the treatment were subjected to ATP synthesis assay as

following. The cells (56105 cells) were collected by centrifugation

at 9006 g at room temperature (RT), and the cell pellet was

resuspended in 160 ml of buffer A (150 mM KCl, 25 mM Tris-

HCl, 2 mM EDTA, 10 mM KH2PO4, 0.1 mM MgCl2, 0.1%

BSA, pH 7.4). 5 ml of digitonin (825 mg/ml) (Sigma) was added to

the suspension (to 25 mg/ml), and incubated for 1 min at RT with

gentle agitation. Digitonin was removed by washing the cells with

1 ml buffer A, and then centrifuged at 9006 g at RT. The cell

pellet was resuspended in 175 ml of buffer A. 5 ml of 6 mM P1, P5 -

di (adenosine) pentaphosphate (to 0.15 mM), 5 ml of 4 mM ADP

(to 0.1 mM), 2.5 ml of 80 mM malate (to 1 mM) and 2.5 ml of

80 mM pyruvate (to 1 mM), and then 10 ml of buffer B (0.8 mM

luciferin (Wako) and 20 mg/ml luciferase (Wako) in 0.5 M Tris-

acetate, pH 7.75) were added to the cell suspension. Cell

suspension was transferred to a luminometer cuvette. After a

gentle mixing with a vortex for 2 s, the cuvette was placed in

luminometer Rumat LB 9507 (Berthold technologies) and light

emission was continuously recorded for 5 min (17 readings). To

obtain the baseline luminescence activity corresponding to non-

mitochondrial ATP production, light emission was recorded in the

presence of oligomycin (to 4 mg/ml). The change in RLU

(Relative light units) was then converted to ATP concentration

based on an ATP standard curve. The activity was shown as ATP

production per min in a cell (nmol/min/cell). The value was

divided by the mean intensity of mitochondria (MitoTracker-

Green) per cell in order to reflect the ATP synthesis activity of the

same amount of mitochondria in a cell (nmol/min/mito/cell).

Quantitative analysis of mitochondrial intensity
The intensity of mitochondria was monitored by DsRed-Mito.

The cells were seeded on 8-well chamber slides (16105 cells/well

for LS174T and 26104 cells/well for all other cells) at 37uC in

conventional media, and infected with Ad-DsRed-Mito at an MOI

of 30 after 12 h. At 24 h after infection, the cells were irradiated

by c ray. To examine the mitochondrial intensity at the indicated

times, the cells were fixed in 2% paraformaldehyde for 20 min at

room temperature (RT). The slides were then treated with 1 mM

TO-PRO-3 (Invitrogen) for 20 min to stain the nuclei, and

subsequently washed four times with PBS. The slides were

mounted with VECTASHIELD H-1000 (Vector Laboratories),

and observed under an Olympus IX70 inverted fluorescence

microscope coupled with a Radiance 2000 laser-scanning confocal

system (Bio-Rad). The DsRed-Mito images, each of which

contained 30–40 cells, were captured using an excitation filter of

563 nm and an emission filter of 582 nm. The intensity of DsRed-

Mito in each captured image was analyzed by LuminaVision

image analysis software (Version 2.4). The total areas of

mitochondrial intensity in 300–400 cells were extracted using

the optimal threshold parameters and calculated with LuminaVi-

sion image analysis software. The mitochondrial intensity was

presented as the average of the calculated values per cell with error

bars. Similar experiments were carried out using anti-mitochon-

drial antibody AE-1 (Leinco Technologies), MitoTracker-Red

(Invitrogen), and MitoTraker-Green (Invitrogen).

Supporting Information

Figure S1 Two deletion mutants (D273 and D103-260) of
Mieap fail to induce MALM. The adenovirus expression

vectors for two deletion mutants (D273 and D103-260) of Mieap

were prepared, as well as Ad-Mieap-ãfull. HCT116 cells were

infected with Ad-LacZ, Ad-Mieap-ãfull, Ad-MieapD273, or Ad-

MieapD103-260, and 48 h after infection, IF experiment was

carried out with anti-Mieap antibody (green or red), andi-LAMP1

antibody (green), and DsRed-mito (red). The representative

images were shown. Scale bar = 10 mm.

(TIF)

Figure S2 NIX colocalizes with Mieap at mitochondrial
outer membrane. HCT116 cells were infected with Ad-

Mieap and Ad-NIX at an MOI of 5, and 48 h after infection, IF

experiment was carried out with anti-FLAG antibody (NIX:

green), and anti-Mieap antibody (Mieap: red). The representative

images were shown. Scale bar = 10 mm.

(TIF)

Figure S3 The NIX expression is severely downregulat-
ed in the NIX-KD cells of A549 and LS174T. Western blot

analysis indicated that the NIX expression level is severely

impaired in the NIX-KD cells of A549 and LS174T, compared

with the parent, control and Mieap-KD cells of A549 and

LS174T. The cells were irradiated by c ray, and on day 3 after IR,

the cell lysates were subjected to western blot analysis. b-actin was

used as a loading control.

(TIF)

Figure S4 MIV eats mitochondria. Mitochondria indicat-

ed by AcGFP-mito were engulfed by MIV in A549 cells infected

with Ad-Mieap at an MOI of 60. Mitochondria in A549 cells

infected with Ad-LacZ at an MOI of 60 are shown as a negative

control. IF experiment was carried out with anti-Mieap antibody

(red), and AcGFP-mito (green). The representative images were

shown. The white and yellow arrows indicate the MIV and the

degraded mitochondria within the MIV, respectively. Scale bar

= 10 mm.

(TIF)
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Figure S5 MIV does not eat Golgi. Golgi indicated by

AcGFP-Gologi was not engulfed by MIV in A549 cells infected

with Ad-Mieap at an MOI of 60. ER in A549 infected with Ad-

LacZ at an MOI of 60 is shown as a negative control. IF

experiment was carried out with anti-Mieap antibody (red), and

AcGFP-Golgi (green). The representative images were shown.

Scale bar = 10 mm.

(TIF)

Figure S6 The LAMP1 signal are not detected within the
MIV. The magnified data on Figure 5E are shown. In contrast

to the Lysotracker and cathepsin D singals, we never found the

LAMP1 signal within the MIV. Scale bar = 20 mm.

(TIF)

Figure S7 MIV specifically eats and degrades mitochon-
dria. (A) (B) HCT116, LS174T, and A549 cells were infected

with Ad-Mieap or Ad-LacZ at an MOI of 60. After 24 h,

mitochondria or Golgi were stained by Rhodamine123 (A) or

NBD-C6-ceramide (B), respectively. The signals of mitochondria

or Golgi were analyzed by fluorescence activated cell sorting

(FACS).

(TIF)

Figure S8 Electron microscopic analysis on the
MIVs. (A) Consistent with the data in other experiments

(Figure 5A–E), the MIVs were detected by electron microscopic

analysis as various sizes of extremely-dense and round structures.

Yellow arrows indicate MIVs. N: nucleus Scale bar = 5 mm (B)

MIV may engulf mitochondria in a manner that is similar to yeast

selective microautophagy of mitochondria. Yellow arrow indicates

MIV. m: mitochondria Scale bar = 1 mm or 500 nm.

(TIF)

Figure S9 A mitochondrial outer membrane protein
NIX is degraded by MIV. In order to examine the

relationship between NIX and MIV, the IF experiment was

carried out. A549 cells were transfected by the plasmid designed to

express the N-FLAG-tagged NIX, and 2 h after the transfection,

the cells were infected with adenovirus vector designed to express

Mieap at an MOI of 5. 36 h after the infection, the cells were

subjected to IF experiment with anti-FLAG antibody (NIX:

green), and anti-Mieap antibody (Mieap: red). The representative

images were shown. White arrows indicate MIVs. Yellow arrows

indicate the degradation of NIX within MIV. Scale bar = 10 mm.

(TIF)

Figure S10 Resveratrol and Ebselen inhibit MALM and
uptake of mitochondria by MIV. To examine the effect of

resveratrol and ebselen on MALM, A549 cells were infected with

Ad-Mieap at an MOI of 5 and Ad-DsRed-Mito at an MOI of 30.

24 h after the infection, the cells were irradiated by c ray, and 2 h

after IR, 25 mM resveratrol or 10 mM Ebselen was added to the

culture media. On day 3 after IR, the cells were subjected to IF

experiment. To examine the effect of resveratrol and ebselen on

MIV, A549 cells were infected with Ad-Mieap at an MOI of 60

and Ad-DsRed-Mito at an MOI of 30. 2 h after the infection,

25 mM resveratrol or 10 mM Ebselen was added to the culture

media. 24 h after the infection, the cells were subjected to IF

experiment. The IF experiment was carried out with rabbit

polyclonal anti-Mieap antibody (Mieap: green), mouse monoclo-

nal anti-LAMP1 antibody (LAMP1: green), and DsRed-Mito

(mitochondria: red). Scale bar = 20 mm.

(TIF)

Figure S11 MIV eliminates unhealthy mitochon-
dria. (A) (B) (C) Mitochondrial ROS level. The control, NIX-

KD, and Mieap-KD cells of LS174T were irradiated by c ray, and

the ROS generated by mitochondria in the cells were analyzed by

MitoSox-Red on day 3 after IR. (A) Quantitative analysis of ROS

was carried out in 300–400 cells (lower panel). Average intensities

of ROS per cell are shown with error bars indicating 1 SD.

p,0.01 (*) was considered statistically significant. (B) The

representative images are shown. Scale bar = 20 mm (C) The

ROS level was analyzed by FACS with dihydrorhodamine

(DHR). (D) ATP synthesis activity by the mitochondria. The

cells were subjected to ATP synthesis assay on day 3 after IR.

Oligomycin, an inihibitor of mitochondrial oxidative phosphory-

lation, was used in the assay in order to detect non-mitochondrial

ATP synthesis activity. The average activities of ATP synthesis are

shown with error bars indicating 1 SD. p,0.01 (*) was considered

statistically significant.

(TIF)

Figure S12 p53 controls mitochondrial quality. p53

regulates MALM. The cont and p53-KD cells of LS174T were

subjected to IF experiment on day 3 after IR. Mieap protein was

stained with polyclonal rabbit anti-Mieap antibody (Mieap: green

or red). Lysosomes were stained with mouse monoclonal anti-

LAMP1 antibody (LAMP1: green). Mitochondria were indicated

by the DsRed-mito protein signal (Mito: red). Scale bar = 10 mm.

(TIF)

Figure S13 The mitochondrial intensity increases in
p53-defective cells. The cells were irradiated by c ray, and

the mitochondrial intensity was analyzed by the signal of mouse

monoclonal anti-human mitochondria antibody (Leinco Technol-

ogy, MO, USA: clone AE1) at the indicated times. Quantitative

analysis of mitochondrial intensity was carried out in 300–400

cells. Average intensities of mitochondria per cell are shown with

error bars indicating 1 standard deviation (SD; left panel). p,0.01

(*) was considered statistically significant.

(TIF)
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