
Vol.:(0123456789)1 3

Cellular and Molecular Life Sciences (2022) 79:82 
https://doi.org/10.1007/s00018-021-04035-x

ORIGINAL ARTICLE

WNT/beta‑catenin signalling interrupts a senescence‑induction 
cascade in human mesenchymal stem cells that restricts their 
expansion

Johannes Lehmann1,2,8  · Roberto Narcisi3  · Natasja Franceschini1 · Danai Chatzivasileiou1 · Cindy G. Boer4 · 
Wendy J. L. M. Koevoet1 · Diana Putavet5,6 · Dubravka Drabek2,7 · Rien van Haperen2,7 · Peter L. J. de Keizer5,6 · 
Gerjo J. V. M. van Osch1,3  · Derk ten Berge2 

Received: 23 April 2021 / Revised: 18 October 2021 / Accepted: 9 November 2021 / Published online: 20 January 2022 
© The Author(s) 2022

Abstract
Senescence, the irreversible cell cycle arrest of damaged cells, is accompanied by a deleterious pro-inflammatory senescence-
associated secretory phenotype (SASP). Senescence and the SASP are major factors in aging, cancer, and degenerative dis-
eases, and interfere with the expansion of adult cells in vitro, yet little is known about how to counteract their induction and 
deleterious effects. Paracrine signals are increasingly recognized as important senescence triggers and understanding their 
regulation and mode of action may provide novel opportunities to reduce senescence-induced inflammation and improve 
cell-based therapies. Here, we show that the signalling protein WNT3A counteracts the induction of paracrine senescence 
in cultured human adult mesenchymal stem cells (MSCs). We find that entry into senescence in a small subpopulation of 
MSCs triggers a secretome that causes a feed-forward signalling cascade that with increasing speed induces healthy cells 
into senescence. WNT signals interrupt this cascade by repressing cytokines that mediate this induction of senescence. Inhi-
bition of those mediators by interference with NF-κB or interleukin 6 signalling reduced paracrine senescence in absence 
of WNT3A and promoted the expansion of MSCs. Our work reveals how WNT signals can antagonize senescence and has 
relevance not only for expansion of adult cells but can also provide new insights into senescence-associated inflammatory 
and degenerative diseases.
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Introduction

Following irreparable damage, healthy cells can enter a state 
of stable cell cycle arrest termed senescence [1]. Senescence 
regulates tissue growth during development and can repress 
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expansion of transformed cells [2–4] but also limits somatic 
cell expansion, contributing to ageing and hampering cell-
based therapies [5–8]. Several stressors can induce senescence, 
including shortening telomeres, DNA damage, mitochondrial 
deterioration, and oncogene expression [1]. Over the last dec-
ade, evidence accumulated that senescent cells affect their 
environment via their secretome, often termed the senescence-
associated secretory phenotype (SASP) (reviewed in [9]), con-
sisting mostly of pro-inflammatory cytokines, proteases and 
insulin-growth factor-binding proteins [10, 11]. A subset of 
SASP factors induces proliferation during wound healing and 
development [3, 4, 12–14]. However, in other circumstances, 
SASP factors mediate the spread of senescence to surrounding 
cells [15–21].

Recently, it has been shown that senescent mesenchymal 
cells can systemically induce senescence via paracrine signal-
ling, leading to increased frailty and reduced life span [8] and 
reduced regenerative capacity [22], although it remains unclear 
how this process is regulated. Mesenchymal stem cells (MSCs, 
also known as multipotent stromal cells) have been intensely 
studied for tissue engineering due to their ability to form fat, 
cartilage and bone-like tissues [23], and for the anti-inflam-
matory, repair-inducing properties of their secretome [24–27]. 
However, MSCs rapidly undergo senescence in vitro, not only 
limiting the numbers that can be obtained for clinical applica-
tions [5, 28–32], but creating a source of SASP factors that 
can drive frailty and neoplastic progression [8, 33], obliterate 
the anti-inflammatory capacities of MSCs [34] and aggravate 
inflammation-associated diseases, such as atherosclerosis and 
osteoarthritis [35, 36]. Understanding the mechanisms that 
induce senescence in MSCs and cause the production of SASP 
factors will not only facilitate MSC-based clinical applications 
but may provide insight into the role of paracrine senescence 
in tissue homeostasis, regeneration, cancer and degenerative 
diseases.

We previously showed that WNT signals support the expan-
sion and developmental potential of embryonic chondrogenic 
progenitors [37, 38] and of MSCs during prolonged culture 
[32, 39]. The WNT/β-catenin signalling pathway supports the 
self-renewal of many types of stem cells, including embryonic 
stem cells [40], intestinal stem cells [41], and hair follicle and 
epidermal stem cells [42], by inhibiting their differentiation 
and promoting their proliferation (reviewed in [43]). In con-
trast to these earlier examples, we demonstrate here that WNT 
signals support MSC proliferation and developmental poten-
tial not by regulating proliferation and differentiation but by 
protecting the cells from the deleterious effects of senescence.

Results

WNT3A counteracts entry of MSCs into senescence

The proliferation of human bone marrow-derived MSCs 
rapidly declines over time, and this can be counteracted 
by supplementation with WNT3A (Fig. 1a, Supplementary 
Fig. 1a) confirming our previous findings [32]. To under-
stand how WNT signalling prevented the decline of MSC 
proliferation, we performed whole transcriptome analy-
sis of early passage (P1) MSCs and of MSCs maintained 
until passage four (P4) with WNT3A or vehicle control 
(Fig. 1b). Pathway analysis identified pathways associated 
with DNA repair and cell cycle regulation as down-regu-
lated with passage in vehicle and up-regulated by WNT3A 
(Fig. 1c), whereas pathways associated with senescence 
were up-regulated with passage in vehicle and down-reg-
ulated by WNT3A (Fig. 1d). To quantify these changes, 
we constructed gene sets for cell cycle associated genes 
(set based on [44]), for DNA repair regulating genes (set 
based on [45]) and for SASP genes (based on [10]). Gene 
set enrichment analysis then revealed that the DNA repair 
and cell cycle gene sets were significantly enriched among 
genes up-regulated with WNT3A, whereas the SASP 
gene set was significantly enriched among genes down-
regulated with WNT3A (Fig. 1e). Inspection of individual 
gene expression levels showed that WNT3A maintained 
the expression levels of DNA repair and cell cycle gene 
sets over time in culture while they mostly declined in the 
absence of WNT3A (Fig. 1f, g). The majority of SASP 
factors (37/60), on the other hand, increased over time in 
the absence of WNT3A but was repressed in its presence 
(Fig. 1h). Impaired cell cycle progression, decline in DNA 
repair gene expression and the SASP are key aspects of 
senescence [46, 47]. Accordingly, the expression of posi-
tive and negative senescence markers (including panels 
from [48, 49]) was consistent with MSCs entering senes-
cence over time, while this was counteracted by the pres-
ence of WNT3A (Fig. 1i, Supplementary Fig. 1b, c). Of 
note, expression of WNT family ligands and WNT/beta-
catenin signalling target genes did not decrease over time 
in vehicle cultured MSCs (Supplementary Fig. 1d-f). This 
suggests that the increase in senescence is not caused by a 
decline in endogenous WNT ligands and is consistent with 
our previous findings that inhibition of endogenous WNT 
ligands does not affect MSC proliferation [32]. Together, 
these observations suggest that WNT3A counteracts the 
entry of MSCs into senescence.

To follow up on the findings regarding DNA damage 
repair in our sequencing data, we stained for phosphoryl-
ated Histone 2A Family member X (γH2AX), which is ele-
vated after ATM activation and required for double-strand 
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break repair [50]. Late passage MSCs showed significant 
accumulation of cells displaying large γH2AX foci, asso-
ciated with non-resolved DNA damage and the SASP 
[6, 51], and loss of cells displaying small foci, linked to 
DNA damage repair after proliferation-associated rep-
lication fork collapse (Fig. 2a, Supplementary Fig. 2a). 
This suggests that non-cycling cells accumulate during 
culture. Furthermore, we observed a rapid accumula-
tion of cells expressing senescence-associated lysosomal 
β-galactosidase, an endogenous marker of senescence [52, 
53] (Fig. 2b and Supplementary Fig. 2b,c). The percentage 
of β-galactosidase-positive cells correlated strongly with 
the simultaneous decline in proliferation rate over time 
(Supplementary Fig. 2d). WNT3A counteracted both the 
elevation in γH2AX-positive cells in late passage MSCs 
(Fig. 2c) and the accumulation of β-galactosidase-positive 
cells during culture (Fig. 2b and Supplementary Fig. 2b, 
c). Consistent with this, expression of cell cycle arrest 
marker CDKN1A (encoding the CDK inhibitor p21) was 
reduced in cells expanded with WNT3A (Supplemen-
tary Fig. 2e). Together, these data indicate that WNT3A 

counteracts cell cycle exit and entry into senescence of 
expanding MSCs.

To confirm these findings, we analysed the cell cycle 
dynamics of MSCs using thymidine analogue 5-Ethynyl-
2'-deoxyuridine (EdU), which cells incorporate during DNA 
synthesis. First, we observed that early passage, WNT3A 
treated MSC populations undergo approximately 0.92 dou-
blings/day (Supplementary Fig. 2f), which given losses from 
plating the cells suggests that the average cell cycle time 
is less than 24 h. This was corroborated by EdU labelling 
as the percentage of EdU-labelled cells rapidly increased 
during the first 24 h of labelling but then levelled off (Sup-
plementary Fig. 2 g), suggesting that cycling cells had incor-
porated EdU within 24 h. WNT3A drastically lowered the 
accumulation of EdU-negative, non-cycling cells over a six-
day culture period (Fig. 2d). In line with this result, WNT3A 
also counteracted the accumulation of cells lacking the pro-
liferation marker Ki67 [54] (Fig. 2e). The percentage of non-
cycling cells closely reflected the number of β-galactosidase-
positive cells (Fig. 2d–f), suggesting they were senescent 
rather than quiescent cells, which remain β-galactosidase-
negative [55]. The induction of senescence rather than 
quiescence was further supported by the upregulation of 
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senescence-associated but not quiescence-associated genes 
(set based on [56, 57]) (Supplementary Fig. 2 h). By label-
ling cycling cells for 24 h with 5-Chloro-2-deoxyuridine 
(CldU), another thymidine analogue, followed by a 24-h 
labelling with EdU, we identified how many of those cycling 
cells continued cycling for a second day (as illustrated in 
Fig. 2g). We found that 31% of MSCs expanded for three 
passages exited the cell cycle within these two days, while in 
the presence of WNT3A only 9% of MSCs did so (Fig. 2h). 
As a result, the absolute number of senescent cells after six 
days was lower in the presence of WNT3A (Fig. 2i, j), while 
the total cell number was significantly increased (Fig. 2k). 
Altogether, these data indicate that WNT3A significantly 
reduces the frequency at which cells exit the cell cycle and 
enter into senescence, thereby maintaining expansion of the 
population.

WNT/β‑catenin signalling represses 
the senescence‑inducing secretome of MSCs

Cells can be induced to senesce by replication-based tel-
omere shortening or other cell-intrinsic damage-associated 
aspects [58–61]. These driver events may be counteracted 
by WNT signals, e.g. through induction of telomerase to 
extend the telomeres, as observed in embryonic stem cells 
and umbilical cord MSCs [62, 63]. We did however not 
detect telomerase reverse transcriptase (TERT) expres-
sion in MSCs, by qPCR (Supplementary Fig. 3a, b) or by 
mRNA sequencing, regardless of the presence of WNT3A, 
which argues against a mechanism based on telomere 
shortening. To investigate whether WNT3A reduces senes-
cence by selectively repressing the expansion of clones 
with a high intrinsic tendency of entering senescence, we 
established fourteen MSC clones from a single biopsy 
and analysed in each the progressive appearance of senes-
cence. We found that WNT3A strongly suppressed the 
accumulation of β-galactosidase-positive cells in all clones 

Fig. 3  WNT represses senes-
cence in a cell non-autonomous 
manner. a–c MSC clones 
obtained from a single biopsy 
cultured in vehicle (blue) or 
WNT3A (red) for one passage 
and analysed for a percentage 
of β-galactosidase-positive 
cells (n = 3 wells, error bars is 
SD) b doubling rate (n = 1) or 
c forward scatter as a measure 
for cell size (n = 3 technical 
replicates, error bars is SD; 
nd: not determined due to 
insufficient cells in vehicle). d, 
e The expansion rate of MSC 
clones in WNT3A as fold of 
their expansion rate in vehicle, 
plotted against the d percentage 
of β-galactosidase-positive cells 
and e doubling rate in vehicle. 
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(Fig. 3a), increased their proliferation rate (Fig. 3b), and 
prevented the cell size increase (Fig. 3c) associated with 
senescence [64–69]. Crucially, clones containing more 
senescent cells or proliferating slower showed a more 
pronounced increase in expansion after treatment with 
WNT3A (Fig. 3d, e), suggesting that WNT3A does not 

blunt the expansion of senescence-prone sub-clones. In 
addition, we observed that all clones kept accumulating 
β-galactosidase-positive cells at different rates even after 
24–32 days of culture (Fig. 3a; Supplementary Fig. 3c), 
arguing against a cell-intrinsic model since senescence 
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induced solely by intrinsic factors should co-occur within 
a narrow timeframe.

Senescence can also be induced through extracellular sig-
nals from the SASP of neighbouring, senescent cells [18]. 
To explore how WNT3A affects cell-extrinsic induction 
of senescence, we created a paracrine senescence gene set 
based on publicly available microarray data of normal fibro-
blasts co-cultured with fibroblasts induced into senescence 
by the oncogene H-RASG12V [18]. Interestingly, expression 
of the majority of genes (32/62) in this paracrine senescence 
gene set increased with time in culture but was strongly 
reduced by the presence of WNT3A (Fig. 4a, b). This sug-
gests that WNT3A countered paracrine senescence through 
reducing signalling by external factors.

To test whether secreted factors induced senescence, 
we exposed expanding MSCs to conditioned media from 
high passage senescent MSCs. As expected, this suppressed 
expansion in a manner dependent on both dose and duration 
of exposure (Fig. 4c-e). Moreover, exposure to conditioned 
medium increased the number of β-galactosidase-positive 
cells (Fig. 4f). We reasoned there to be two possibilities 
through which WNT3A could interfere with paracrine 
senescence: (a) by modulating the secretome of the senes-
cent cells or (b) by altering the response of cells to the 
secretome. To distinguish between these possibilities, we 
first treated high passage senescent cells with WNT3A and 
then used those cells to prepare conditioned medium (pre-
treated conditioned medium, which therefore did not con-
tain added WNT3A). In addition, we prepared conditioned 
medium from untreated MSCs to which we added WNT3A 
afterwards (post-treated conditioned medium). Post-treated 
conditioned medium reduced, but failed to eliminate, the 
accumulation of β-galactosidase-positive cells (Fig. 4f). This 
suggests that the response to senescence-inducing factors 
is at least partly independent from WNT3A. Importantly, 
pre-treated conditioned medium did not suppress expansion 
and did not promote the accumulation of β-galactosidase-
positive cells (Fig. 4c, f). These observations suggest that 
WNT3A represses the production of senescence-inducing 
factors by senescent MSCs.

We next observed that the pre-treated medium was more 
effective in suppressing the accumulation of β-galactosidase-
positive cells if the WNT3A pre-treatment lasted longer 
(Fig. 4g). It could therefore simply be that WNT3A altered 
the secretome composition by eliminating the senescent cells 
from the conditioning population. To investigate this, we cre-
ated a fully senescent population by exposing MSCs to ion-
izing radiation (Supplementary Fig. 4a). WNT3A treatment 
affected neither the fraction of senescent cells in the irradiated 
population nor its total cell number (Supplementary Fig. 4a, 
b). However, WNT3A pre-treatment altered the secretome of 
the irradiated population in such a way that it was no longer 
able to induce senescence (Supplementary Fig. 4c). These 

data argue that WNT3A suppressed the paracrine senescence-
inducing secretome of senescent MSCs. If WNT3A enhanced 
the expansion of MSCs because it represses the paracrine 
signalling of senescent cells, then WNT3A should not affect 
expansion in absence of senescent cells. Addressing this posed 
a challenge because we observed some level of senescence and 
responsiveness to WNT3A in all adult MSCs that we tested 
(40 donors, data not shown). To overcome this problem, we 
used MSCs obtained from paediatric donors and from adult 
adipose tissue, both of which display little senescence at early 
passages as shown by us and others ([30, 70–72] and Sup-
plementary Fig. 4d). Conditioned medium from these low-
senescence MSCs had no effect on expansion of recipient 
MSCs (Fig. 4h). In contrast, medium conditioned by these 
MSCs after they were irradiated to induce senescence strongly 
reduced expansion of the recipient cells (Fig. 4h). In line with 
the earlier observations, this inhibitory effect was averted when 
the senescent donor cells were pre-treated with WNT3A prior 
to media collection (Fig. 4h). Furthermore, direct addition of 
irradiated cells to low-senescence cultures lowered the expan-
sion rate of the normal cells, but this too could be rescued by 
treatment with WNT3A (Fig. 4i).

Finally, to determine whether the effect of WNT3A on 
paracrine senescence was mediated by the WNT/β-catenin 
pathway, we used the GSK3 inhibitor CHIR99021 (CHIR), 
which activates the WNT/β-catenin pathway by preventing 
GSK3-mediated β-catenin degradation. Similar to WNT3A, 
conditioned medium from senescent MSCs treated with CHIR 
did not induce senescence in recipient cells (Fig. 4f and Sup-
plementary Fig. 4e). Together, these findings demonstrate that 
paracrine factors secreted by senescent MSCs induce entry of 
non-senescent MSCs into senescence, and that WNT/β-catenin 
signalling interferes with the production of these factors.

WNT/β‑catenin signalling represses 
inducers of paracrine senescence 
in the Senescence‑associated Secretome

Next, we explored whether SASP factors could be respon-
sible for the paracrine induction of senescence in MSCs. 
Corticosteroids as well as inhibitors of NF-κB signalling 
repress a broad spectrum of SASP genes [73–75]. We found 
that pre-treatment of senescent cells with the corticosteroid 
dexamethasone as well as with the NF-κB inhibitor BAY11-
7082 prior to conditioning reduced paracrine senescence in 
recipient MSCs, although less pronounced than pre-treat-
ment with WNT3A or CHIR (Fig. 5a). Senescent MSCs 
expressed several SASP factors associated with paracrine 
senescence at a higher level, including cytokine interleukin 
6 (IL6) and chemokine (C–C motif) ligand 2 (CCL2) as well 
as Insulin-like growth factor-binding protein (IGFBP) family 
members IGFBP4 and IGFBP7 [15, 76, 77] (Fig. 5b). Treat-
ment of senescent MSCs with WNT3A or CHIR repressed 
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this subset of SASP factors (Fig. 5c, Supplementary Fig. 5). 
Repression of SASP factors may therefore be a mechanism 
by which WNT3A prevents the paracrine induction of 
senescence.

Of these SASP factors, IL6 is thought to play a key role 
in maintaining SASP and paracrine senescence [75, 77–79]. 
WNT3A-expanded MSCs showed lower expression of IL6 
compared to vehicle expanded MSCs (Fig. 1h, Supplemen-
tary Fig. 3b). In addition, WNT3A and CHIR each repressed 
IL6 expression within 24 h both on RNA (Fig. 5c) and pro-
tein level (Fig. 5d). We therefore investigated if interference 
with IL6 using an IL6-neutralizing antibody (αIL6) would 
reduce paracrine senescence. Indeed, addition of αIL6 to 
conditioned medium from senescent MSCs reduced the 
induction of senescence in low passage MSCs (Fig. 4f). 
When both the conditioning senescent cells and the recipi-
ent cells were treated with αIL6, paracrine senescence was 
significantly reduced—albeit not completely abolished as 
when both donor and recipient were treated with WNT3A 
(Fig. 4f). The observation that WNT3A treatment reduced 
senescence in cells exposed to the secretome of senescent 
cells (Fig. 4f) might be due to WNT3A repressing secondary 
paracrine senescence, whereby factors inducing paracrine 
senescence also induce their own expression in recipient 
cells (see IL6 in gene set upregulated in response to SASP 
exposure in Fig. 4a), leading to an exponential spread of 

senescence. Altogether these data indicate that WNT3A 
represses SASP factors, including IL6, which mediate the 
paracrine induction of senescence.

Discussion

The expansion and differentiation potential of MSCs 
decays rapidly in culture, representing a major hurdle in 
both research and clinical application. Here we showed that 
senescence spreads in MSC cultures via paracrine signalling 
by senescent cells displaying the SASP, leading to a self-
amplifying loss of cycling cells (Fig. 6). We further dem-
onstrated that WNT/β-catenin signals repress SASP factors 
and prevent paracrine senescence induction, elucidating a 
hitherto unknown antagonism of senescence by the WNT 
pathway.

MSCs are explored for their promise for tissue engineer-
ing and the potential use of their secretome to treat inflam-
matory and auto-immune disorders, with 50.000 patients 
enrolled and 10.000 treated in clinical trials employing 
MSCs from 2011 to 2018 [80]. However, their limited 
expansion potential and rapid conversion into senescence 
in vitro poses major hurdles for their scale-up and successful 
application. The pro-inflammatory secretome of senescent 
MSCs interferes with applications in anti-inflammatory and 
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autoimmune disorders [34]. Moreover, the transplantation 
of even a small number causes adverse systemic effects and 
a severe reduction in health [8]. By suppressing paracrine 
senescence, WNT3A might not only improve clinical appli-
cability of MSCs by facilitating their expansion but also by 
lowering the proportion of senescent cells and repressing 
the pro-inflammatory SASP. We have previously shown 
that WNT/β-catenin signalling agonists in combination 
with FGF2 maintain the differentiation potential of MSCs 
[32, 39]. In light of our current findings, it is plausible that 
senescence drives the loss in differentiation potential over 
time. Indeed, differentiation is tightly linked to the cell cycle 
[81] and SASP growth factors and interleukins have been 
suggested to rewire the signalling cascades guiding differ-
entiation [13, 82, 83]. Senescence affects other adult cells 
in culture including hepatocytes [84], endothelial cells [85] 
and T cells (reviewed in [86]). Counteracting senescence-
inducing factors may thus be a general strategy to support 
cell expansion. Combinations of WNT3A with additional 
SASP-inhibiting factors can be explored to maximize the 
expansion of MSCs and other adult cells in culture. FGF2 
has been reported to delay senescence in MSCs populations 
[29, 87, 88] and might enhance the suppression of paracrine 

senescence by WNT3A (in this study all cultures were per-
formed in the presence of exogenous FGF2). Furthermore, 
since WNT signals support self-renewal of many types of 
stem cells, counteracting senescence may have wider impli-
cations in stem cell biology.

Several studies show opposite effects of paracrine senes-
cence and WNT signalling in neoplastic progression. While 
paracrine senescence limits neoplastic progression in ses-
sile serrated adenoma and nevi [17, 18], WNT activation is 
associated with dysplasia in sessile serrated adenoma [89, 
90] and delays senescence and undermines tumour suppres-
sion in nevi [91, 92]. In a murine colorectal cancer model, 
suppression of WNT signals induced a pro-inflammatory 
phenotype in cancer-associated fibroblasts and reduced 
tumour growth in a non-cell autonomous manner [93]. WNT 
signalling may therefore impact neoplastic progression by 
modulating the secretome of senescent cells, and the balance 
of paracrine senescence and WNT signalling could provide 
important diagnostic information, or even represent a treat-
ment target.

Understanding the downstream mechanisms by which 
WNT signals repress SASP will be vital in understand-
ing its role in stem cells and maximizing the potential of 

Fig. 6  Model of the Abroga-
tion of Paracrine Senescence 
by WNT/b-catenin Signalling. 
A cell undergoes senescence 
(blue) due to an endogenous 
trigger (red), e.g. DNA damage. 
Upon senescence, the cell devel-
ops the senescence-associated 
secretory phenotype (SASP), 
including factors mediating 
paracrine senescence, which 
induce senescence in surround-
ing cycling cells (yellow). The 
paracrine spread of senescence 
eventually renders the entire 
population senescent. However, 
activation of WNT/b-catenin 
signalling represses expression 
of the paracrine senescence 
mediating factors, thereby limit-
ing the spread of senescence

senescent cell

cycling cell

endogenous senescence trigger

paracrine signalling (SASP)

WNT

WNT/β-catenin
signalling off
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MSC-based therapies. Multiple studies suggest that tran-
scription factor NF-κB regulates the majority of the pro-
inflammatory SASP genes [18, 79, 94, 95]. Our findings 
that NF-κB signalling modulators suppressed paracrine 
senescence in MSCs suggest that WNT may repress NF-κB 
targets within the SASP set. Consistent with this, β-catenin 
modulates NF-κB signalling in a range of human cell lines 
by preventing NF-κB recruitment to the chromatin [96]. 
Upon induction of senescence in a cancer line of mesen-
chymal origin (osteosarcoma, U2-OS), phosphorylation of 
NF-κB subunit p65 by GSK3β paves the way to a persis-
tent SASP because it represses transcription of IκBα, which 
otherwise acts as the negative feedback loop restricting 
NF-κB activity [97]. WNT3A and CHIR activate β-catenin 
signalling by inhibiting GSK3 activity [98] and WNT2 is 
repressed upon entry into oncogene-induced senescence, 
leading to increased GSK3β activity [99]. Although there is 
uncertainty on how GSK3β substrates other than β-catenin 
are affected by WNT ligands [98], this highlights the pos-
sibility that the repression of SASP genes we observe in 
response to WNT/β-catenin agonists is mediated by reduced 
GSK3β–NF-κB interaction. Supporting this, GSK3β inhibi-
tor lithium chloride rescues IκBα expression ([97]) and we 
have previously shown that lithium chloride activates WNT/
β-catenin signalling in MSCs and maintains their expansion 
[39]. Further analysis of the interaction between the WNT 
and NF-κB pathways may lead to novel options for repress-
ing senescence and promoting expansion of adult cells.

To optimize MSC expansion, it is important to identify 
which SASP factors are the dominant factors mediating the 
population-wide paracrine spread of senescence. While we 
identify IL6 as a WNT-responsive contributor to paracrine 
senescence, several other secreted mediators for paracrine 
senescence in MSCs have been described: IGFBP4 and 
IGFBP7 in adult bone marrow MSCs, CCL2 in umbili-
cal cord MSCs, and Pro-platelet basic protein (PPBP, also 
known as Neutrophil-Activating Peptide 2) and the hormone 
leptin in MSCs from lupus patients [15, 100, 101]. In other 
cell types, the most robust data suggest paracrine senes-
cence is mediated by the IGFBP family members [17, 75, 
102–104] including the IGFBP-domain containing CCN1 
(also known as IGFBP10) [105], cytokines CCL2 [18, 101], 
interleukin 1 beta (IL1β) [19], CXCL10 [106], transforming 
growth factor beta (TGFβ) [18, 19, 107, 108], the hormone 
prostaglandin E2 (PGE2) [109, 110], and extracellular vesi-
cles [111]. IGFBP4 in particular has recently been suggested 
to mediate systemic spread of senescence: serum levels of 
IGFBP4 increase in response to DNA damage in humans 
and mice and IGFBP4 injections in mice lead to senescent 
cells accumulating in multiple organs, including among 
bone marrow MSCs [112]. We indeed found induction of 

IGFBP7 and CCL2 in MSCs during culture, and their rapid 
repression upon treatment with WNT agonists. These factors 
may therefore contribute to the WNT-mediated repression 
of paracrine senescence in MSCs. In basal breast cancer 
cells, activation of WNT/β-catenin signalling by WNT3A 
represses IGFBP5 (Liu et al. 2012); however, the mechanism 
has not been identified. Expression of IGFBPs is driven by 
IL6-STAT3 signalling [78] and NF-κB [113], and might thus 
respond to WNT signalling via NF-κB or IL6 repression. 
Careful analysis of the complex SASP factor network may 
therefore be required to assess the suitability of MSCs for 
therapeutic applications.

An uncontrolled paracrine spread of senescence would 
lead to loss of stem cells and regenerative capacity. Our find-
ings can therefore have broader implications. The secretome 
of mesenchymal stromal cells in the bone marrow of aged 
mice induces senescence in other stromal cells, and inhibi-
tion of paracrine senescence using anti-inflammatory drugs 
reduces the number of senescent cells and improves bone 
formation [22]. Paracrine senescence is however not limited 
to mesenchymal cells: genetic induction of senescence in 
selected cells in the liver spreads to surrounding hepatocytes, 
resulting in liver fibrosis and impaired repair, and leading 
to pre-mature death in two murine liver injury models [107, 
114]. WNT signals may therefore support stem cells in their 
niches or during regeneration not only by directly promoting 
their self-renewal, but also by preventing the induction of 
senescence-inducing factors in their environment. Since pro-
inflammatory cytokines and TGFβ superfamily members are 
induced in response to tissue injury (reviewed in [115]), this 
mechanism might be particularly important during regen-
erative processes. Using WNT agonists to limit paracrine 
senescence after traumatic injury or genotoxic therapies may 
therefore provide an avenue to shield stem cell niches and 
encourage regeneration.

Methods

Detection of for senescence‑associated lysosomal 
β‑galactosidase

The percentage of senescent cells was determined by stain-
ing for senescence-associated lysosomal β-galactosidase 
using a modification of the protocol developed by [52]. 
Cells were washed twice in PBS, then fixed with a solu-
tion of 1% [v/v] formaldehyde (Sigma-Aldrich, Zwijndrecht, 
the Netherlands), and 0.5% glutaraldehyde [v/v] (Sigma-
Aldrich) in PBS for 15 min at 4 °C and afterwards rinsed 
twice in distilled water. Subsequently, cells were incubated 
for 24 h at 37 °C with ca. 250 μl of staining solution per 
 cm2 culture surface. The staining solution with a pH of 
6.0 was made by dissolving per ml of distilled water 1 mg 
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X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) 
(Roche Diagnostics, Rotkreuz, Switzerland), 1.64 mg potas-
sium hexacyanoferrate(III) (Sigma-Aldrich), 2.1 mg potas-
sium hexacyanoferrate(II) trihydrate (Sigma-Aldrich), 
2 μmol magnesium chloride hexahydrate (Sigma-Aldrich), 
150 μmol sodium chloride, 7.3 μmol monohydrous citric 
acid (Sigma-Aldrich) and 25.3 μmol disbasic dodium phos-
phate dihydrate (Sigma-Aldrich). After incubation, the cells 
were rinsed twice in distilled water and either stained with 
250 nM DAPI (4',6-diamidino-2-phenylindole) solution 
(Thermo-Fisher, Waltham, US) or counterstained using 1 g/l 
neutral red (Sigma-Aldrich) in a solution of 0.2% acetic acid 
in distilled water. Subsequently, the number of cells with 
cyan-coloured cytoplasm, indicating β-galactosidase activ-
ity, was counted, and plotted relatively to the total number 
of cells.

MSC cell sourcing and culture

Human adult bone marrow-derived MSCs were isolated 
from femoral bone marrow aspirates of adults undergoing 
total hip replacement (MEC-2004–142 & MEC-2015–644; 
age: 43–88, given informed consent). Human paediatric 
MSCs were derived from left-over iliac crest bone chips 
of children undergoing palate cleft reconstruction (MEC-
2014–16; 9–13 years, by implicit consent). The tissue uti-
lized human tissue was procured as leftover/waste surgical 
material and it was reviewed and deemed exempt from full 
ethical review by the Erasmus MC Medical Ethical Commit-
tee under code MEC-2014–16. The protocols are in accord-
ance with the ethical standards of our institution and with 
the 1964 Helsinki declaration and its later amendments or 
comparable ethical standards. Parents/guardians stated that 
they did not have any objection to the use of this tissue.

Bone chips were swirled twice in 10  ml expansion 
medium and the medium than plated in 175  cm2 culture 
flasks, whereas bone marrow aspirates were diluted with 
expansion medium to 20 ml and plated in 175  cm2 culture 
flasks. MSCs expansion medium consisted of: MEM-α 
(Gibco brand, Thermo-Fisher), containing 10% heat-
inactivated FCS (Gibco brand, Thermo-Fisher), 50 μg/mL 
gentamicin (Invitrogen Life Technologies brand, Thermo-
Fisher), 1.5 μg/ml amphotericin B [Fungizone™] (Invit-
rogen Life Technologies brand, Thermo-Fisher),  10–4 M 
L-ascorbic acid 2-phosphate (Sigma-Aldrich) and 1 ng/
mL Fibroblast Growth Factor 2 [FGF2] (R&D Systems, 
Minneapolis, USA ems). After 24 h, the flasks were gently 
washed with PBS containing 1% FCS and adherent cells 
expanded in expansion medium, refreshed every three days, 
till ca. 80% confluence. Afterwards cells were passaged to 
2300 cells/cm2 into expansion medium. When indicated, 
250 ng/ml purified recombinant mouse WNT3A, made 
in house by genetically modified Schneider Drosophila 

melanogaster S2 cells or its vehicle 3-[(3-Cholamidopropyl)
dimethylammonio]-1-propanesulfonate hydrate (CHAPS) 
(Sigma-Aldrich) were added to the medium. Medium was 
now refreshed daily, and cells passaged when reaching ca. 
80% confluence. In all conditions, the expansion medium 
contained 1 ng/mL FGF2.

Adipose tissue-derived MSCs were isolated from human 
subcutaneous abdominal adipose obtained as waste mate-
rial from female donors (age 46–52 years) with approval 
by the Medical Ethical Committee of the Erasmus MC 
(MEC-2014–092, by implicit consent). The adipose tis-
sue was digested with collagenase type I (Gibco brand, 
Thermo-Fisher) for 1 h, then centrifuged and washed to 
remove adipocytes. Subsequently the pellet was suspended 
in Dulbecco’s Modified Eagle Medium with 1 g/l glucose 
(LG-DMEM; Gibco brand, Thermo-Fisher), filtered through 
a 100 μm strainer and plated in expansion medium. Upon 
80% confluence, the cells were passaged and cultured under 
the same conditions as bone marrow-derived MSCs.

EdU/CldU staining

To estimate cycling cells, cultures were treated with EdU 
for the indicated time points and then stained using the 
baseclick™ EdU-Click 488 kit (Sigma-Aldrich) according 
to manufacturer’s instructions. Cells were cultured on glass 
cover slips (18 mm ∅) for at least 24 h before beginning of 
the assay and seeded at a density so that at the end of the 
assay cells remained sub-confluent in the condition with the 
most rapid expansion. EdU was added to a final concen-
tration of 10 µM to the medium. For > 24-h EdU pulses in 
experiments with daily refreshment, EdU was added to the 
fresh medium to be added to the cells. If the EdU pulse was 
below 24 h or in experiments on conditioned medium effects, 
where refreshment was not daily, the EdU was added to the 
medium already on the cells so that the next refreshment 
would coincide with cell harvest. After the indicated time 
points, the medium was aspirated, and the cells washed in 
PBS. Cells were then fixed with 3.7% formaldehyde, washed 
with PBS containing 3% BSA (Sigma-Aldrich) [wash solu-
tion] and, permeabilized with 0.5% Triton X-100 in wash 
solution. The coverslips were then placed onto a paraffin 
film (Bemis, Neenah, USA) and exposed to 50 µl of reaction 
cocktail (consisting of deionized water, reaction buffer, cata-
lyst solution, fluorophore 6-FAM-azide and buffer additive 
as per manufacturer protocol) and incubated at room tem-
perature in a dark for 30 min. Subsequently, the coverslips 
were rinsed in wash solution and anti-body-based stainings 
were now performed as indicated below. The coverslips were 
rinsed in distilled water and stained with a 250 nM DAPI 
solution for 5 min. Coverslips were mounted onto slides in 
a mounting solution (90% glycerol (Sigma-Aldrich), 10% 
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PBS, 50 μg/ml gentamycin,1.5 μg/ml amphotericin B) and 
affixed using non-fluorescent nail polish.

To identify cells exiting cell cycle, cells were first labelled 
with 10 µM CldU for 24 h, then the medium aspirated and 
the wells washed thrice with PBS and subsequently cul-
tured with 10 µM EdU for further 24 h. The cells were then 
first stained using the baseclick™ EdU-Click 488 kit as 
described above, then stained using a rat-anti-BrDU anti-
body also recognizing CldU (BU1/75, Biotechne, Abingdon, 
UK), washed twice with PBS and stained with a goat-anti-
rat Alexa594-tagged antibody (Abcam, Cambridge, UK). 
To denature the DNA for CldU staining, a treatment with 
2 M HCl (Sigma-Aldrich) for 60 min at 37 °C was inserted 
into EdU staining protocol after fixation but before per-
meabilization. We verified that denaturation had no effect 
on EdU staining quality, that the EdU detection kit did not 
stain CldU-only labelled cells and that staining of EdU-only 
labelled cells with the CldU antibody was minimal.

Immunocytochemistry

Cells were cultured on coverslips, then fixed and permeabi-
lized as described for the EdU staining. Subsequently, cells 
were stained with either 2.5 µg/ml mouse-anti-Ki67 (Clone 
B56; BD Pharmingen, Franklin Lakes, USA) antibody or 
1ug/ml mouse-anti-γH2AX [phospho S139] antibody (clone 
JBW30; Millipore brand, Sigma-Aldrich) in PBS with 3% 
BSA for 2 h, rinsed twice in PBS with 0.5% Triton X-100, 
then stained with a goat-anti-mouse Alexa594-tagged anti-
body (Abcam) for 1 h and rinsed twice with twice in PBS 
with 0.5% Triton X-100. Coverslips were washed in deion-
ized water, stained DAPI and mounted as indicated above. 
The positive control for γH2AX staining were MSCs irradi-
ated with 15 Gy using a gamma source (Gammacell; Nor-
dion, Abingdon, UK) and fixed 15 min later.

Real‑time PCR

RNA was isolated using 0.1 ml phenol/guanidine thiocy-
anate solution (TriPure Isolation Reagent; Sigma-Aldrich) 
per  cm2 culture surface with 5 µg/ml glycogen (Roche Diag-
nostics) added to improve yield. The solution of lysed cells 
was then homogenized by pipetting, incubated for 15 min at 
RT, and RNA isolated using a chloroform–ethanol extrac-
tion according to the TriPure Isolation Reagent protocol. 
Subsequently, the concentration of RNA was estimated using 
a spectrophotometer (NanoDrop 8000; Isogen Life Science 
B.V, De Meern, the Netherlands) at 260 and 280 nm and 
the RNA treated with amplification grade deoxyribonucle-
ase I (Invitrogen brand, Thermo-Fisher) to remove DNA. 
The SuperScript™ II Reverse Transcriptase kit (Invitrogen 
brand, Thermo-Fisher) was used according to manufac-
turer’s instructions to synthetize cDNA, using Oligo(dT)s 

and a purified dNTP mix (Thermo-Fisher). Real-time PCR 
reactions were run using the platinum taq DNA polymerase 
kit (Invitrogen brand, Thermo-Fisher) according to manu-
facturer’s instructions on a combined thermal cycler/detec-
tion system (CFX96Touch, Biorad, Hercules, USA) using 
SYBR-Green (Thermo-Fisher) to quantify nucleic acid 
concentration. Primers were picked from the PrimerBank 
database (https:// pga. mgh. harva rd. edu/ prime rbank/) [116] 
and validated in house.

Table with Primers.

Gene PrimerBank ID Forward 
Primer

Reverse Primer

GAPDH 378404907c1 GGA GCG AGA 
TCC CTC 
CAA AAT 

GGC TGT TGT 
CAT ACT TCT 
CATGG 

ACTB 312176409c1 ACC GGG CAT 
AGT GGT 
TGG A

ATG GTA CAC 
GGT TCT CAA 
CATC 

HPRT1 164518913c1 CCT GGC GTC 
GTG ATT 
AGT GAT 

AGA CGT TCA 
GTC CTG TCC 
ATAA 

AXIN2 195927058c1 CAA CAC CAG 
GCG GAA 
CGA A

GCC CAA TAA 
GGA GTG TAA 
GGACT 

TERT 301129199c1 AAA TGC GGC 
CCC TGT 
TTC T

CAG TGC GTC 
TTG AGG 
AGC A

IL6 224831235c1 ACT CAC CTC 
TTC AGA 
ACG AATTG 

CCA TCT TTG 
GAA GGT TCA 
GGTTG 

IGFBP4 10835021a1 GGT GAC CAC 
CCC AAC 
AAC AG

GAA TTT TGG 
CGA AGT GCT 
TCTG 

IGFBP5 171460920c1 ACC TGA GAT 
GAG ACA 
GGA GTC 

GTA GAA TCC 
TTT GCG GTC 
ACAA 

IGFBP7 359465607c1 CGA GCA AGG 
TCC TTC 
CAT AGT 

GGT GTC GGG 
ATT CCG ATG 
AC

CDKN1A 310832423c1 TGT CCG TCA 
GAA CCC 
ATG C

AAA GTC GAA 
GTT CCA TCG 
CTC 

CCL2 4506841a1 CAG CCA GAT 
GCA ATC 
AAT GCC 

TGG AAT CCT 
GAA CCC ACT 
TCT 

IL6 detection by ELISA

IL6 protein concentration was measured in medium condi-
tioned by senescent cells for 24 h using a solid-phase sand-
wich ELISA for human IL6 (DY206-05, R&D brand, Bio-
techne) according to manufacturer’s instructions with three 
technical replicates per biological sample. Serial dilutions 
of human recombinant IL-6 standard were included in each 
assay to obtain a standard curve. Absorbance was measured 

https://pga.mgh.harvard.edu/primerbank/
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at a wavelength of 450 nm with wavelength correction set at 
650 nm using a microplate reader (Bio-Rad Laboratories).

Transcriptome analysis

Bone marrow aspirates from three post-menopausal women 
(ages 64, 64, 73) were plated as described above and cul-
tured for nine days in expansion medium. For transcriptome 
analysis (see scheme Fig. 1B), cells isolated from each 
donor were passaged into expansion medium without addi-
tional components (10,000 cells/cm2), with vehicle CHAPS 
(2300 cells/cm2) or with 250 ng/ml WNT3A (2300 cells/
cm2). After 24 h, the flasks without additional compo-
nents were switched to expansion medium with FGF2 and 
with CHAPS (+ vehicle) or with FGF2 and with WNT3A 
(+ WNT3A). After six hours, these cells (passage 1 samples) 
were harvested, lysed in TriPure Isolation Reagent, and RNA 
isolated as described above, but without addition of glyco-
gen. Cells in the remaining two flasks were expanded with 
daily refreshing of the expansion medium with CHAPS or 
WNT3A, respectively, until 80% confluence was reached 
and then passaged to 2300 cells/cm2. MSCs were expanded 
in this way until expansion ceased. At passage four, WNT3A 
and CHAPS expanded cells were plated (10,000 cells/cm2); 
after 24 h, the medium was refreshed and 6 h later, the cells 
(passage 4 samples) lysed in TriPure Isolation Reagent.

RNA sequencing library was prepared using the Trueseq 
kit (Illumina, Eindhoven, the Netherlands). Average amount 
of paired reads per sample were 30 million and sequenc-
ing was performed with an Illumina HiSeq 2000 (Illumina). 
Data were aligned (paired-end read, inner-mate distance 
50 bp) to refseq human genome hg19 using TopHat & Bow-
tie2. Cufflinks was used to generate gene expression levels, 
the UCSC refseq annotation for hg19 reference data was 
used as reference set and transcripts and genes were counted.

To filter transcripts with no or very low expression, only 
transcripts having at least 20 counts in total over all con-
ditions were considered for further analysis. Differentially 
expressed genes were then determined using the R pack-
age DESeq2 for the comparisons of passage one to passage 
four MSCs in vehicle (referred to as change over time in 
culture) as well as vehicle to WNT3A cultured MSCs both 
at passage one (six hours of treatment) and at passage four 
(continuous treatment passage one to four) [117]. A list of 
all transcripts with their fold change as well as the adjusted 
(Benjamini–Hochberg/false discovery rate (FDR)) p values 
for the aforementioned comparisons is given in supplemen-
tary file 1. The annotated R-script used to determine dif-
ferential gene expression, pathway enrichment and gene set 
enrichment as well as create the heatmaps shown in Figs. 1 
and 4 is provided as supplementary file 4.

Pathway analysis

Changes in pathway activity over passage in presence or 
absence of WNT3A were determined by selecting genes 
up- or down-regulated at least twofold and with a adjusted 
p values of < 0.05 and using the R packages clusterProfiler 
and ReactomePA [118, 119] with annotation derived from 
the Reactome pathway database to identify significantly 
changes pathways (cut-off: adjusted (Benjamini–Hoch-
berg/FDR) p < 0.001) [120]. Pathways and genes asso-
ciated with these pathways as well as the according 
statistical parameters of enrichment are provided in sup-
plementary file 2.

Gene set enrichment analysis

Gene set enrichment analysis according to [121] was 
performed for the indicated five gene sets on the 20.000 
genes with the highest average expression over all condi-
tions. The data were processed using the R package clus-
terProfiler [122], employing the FGSEA method [123] 
and using the Holm–Bonferroni method for multiple test 
correction. The paracrine senescence response gene set 
is based on microarray data from [18] comparing gene 
expression between IMR90 human fibroblasts exposed 
to the secretome of senescent IMR90s (treated) to that 
of IMR90s exposed to the secretome of non-senescent 
IMR90s (control). We generated the gene set by selecting 
all genes that were significantly (p < 0.0001) upregulated 
more than ten-fold in treated over control cells. The WNT/
beta-catenin signalling pathway gene sets were sourced via 
the Molecular Signatures Database (UC San Diego and 
Broad Institute) [121, 124] and are listed below. The other 
gene sets are based on literature (SASP [10], paracrine 
senescence [18], cell cycle [44], DNA repair [45], quies-
cence vs. senescence [56, 125], senescence up- and down-
regulated genes [48, 49]) and for convenience are provided 
as tables in supplementary file 3. Random gene sets were 
generated from a pool of all human genes (GRCh38.p13) 
as control matching the set size of the largest gene set 
analysed in an individual comparison.
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WNT/beta-catenin gene sets

ID in figure Full Name MSigDB ID Source

GOBP Gene Ontology 
biological pro-
cess: canonical 
WNT signal-
ling

M12752 GO: 0,060,070

HALLMARK Molecular 
Signatures 
Database 
Hallmark Gen-
esets: WNT/
beta-catenin 
signalling

M5895 MSigDB: M5895

KEGG Kyoto Encyclo-
pedia of Genes 
and Genomes: 
WNT signal-
ling pathway

M19428 KEGG: hsa04310

Paracrine senescence studies using conditioned 
medium

Cells were rendered senescent either by irradiation with 
80 Gray in a RS320 X-Ray machine (X-Strahl, Camberley, 
UK) or by culture until expansion had ceased (defined as the 
cell population not increasing over seven days). After irra-
diation, cells were cultured for at least seven days to allow 
senescence to occur. Senescent cells were then seeded at 
20,000 cells/cm2 with 0.2 ml/cm2 expansion medium and 
cultured at least for 24 h before treatment. When comparing 
non-senescent to senescent cells, seeding cell density was 
adjusted to ensure all conditions contained approximately 
equal cell densities at the end of treatment, which was con-
firmed by cell count after medium harvest.

The cells were treated with 250 ng/ml WNT3A, 12 µM 
BAY11-7082 (BAY) (Santa-Cruz, Heidelberg, Germany), 
1 µM dexamethasone (Sigma-Aldrich), 3 µM CHIR99021 
(CHIR) (Stem Cell Technologies, Cologne, Germany), 10 
ug/ml IL6-neutralizing antibody (2.11 B12) (kind gift by 
Frank Grosveld, Harbour Antibodies/Erasmus MC) or with 
the equivalent amounts of the according vehicle: CHAPS 
(for WNT3A), DMSO (BAY, CHIR), ethanol (dexametha-
sone) or PBS (IL6-neutralizing antibody). We optimized 
treatment duration for the different compounds—to ensure 
equal culture duration for cells, all conditions were cultured 
for 6 days, with conditions with shorter treatment duration 
cultured with expansion medium prior treatment so that all 
treatments ended on the sixth day. Treatment duration were: 
6 days for WNT3A and CHIR and 3 days for BAY and dex-
amethasone. Non-neutralizing IL6 antibodies of the same 
isotype were used as controls for the neutralizing IL6 anti-
body. In all conditions, including pre-culture in expansion 

medium, refreshment was daily. At the end of treatment, 
cells were washed twice gently with PBS and refreshed with 
0.2 ml/cm2 expansion medium and a control flask without 
cells refreshed with 0.2 ml/cm2 expansion medium prepared. 
After 24 h, the conditioned medium was harvested, centri-
fuged at 300 g for 8 min and the supernatant stored. We 
found no difference between fresh and frozen (− 80 °C) con-
ditioned and control medium regarding effects on prolifera-
tion and number of β-galactosidase-positive cells, therefore 
the supernatants were stored at  −  80 °C for no more than 
four weeks. As control, unconditioned medium was made by 
incubating expansion medium for 24 h in a cell-free culture 
plate at 37 °C, centrifuging at 300 g for 8 min and storing 
the supernatant at − 80 °C.

Recipient cells were plated at 2,300 cells/cm2 and cul-
tured for 24 h in expansion medium before being exposed 
to conditioned or control medium with refreshment every 
second day. Condition and control media were used undi-
luted, except in the dosage titration experiment where the 
two were mixed at the indicated ratios. The recipient cell 
cultures for all conditions were processed (analysed or pas-
saged) simultaneously, either after the indicated time spans 
or when the first condition reached ca. 80% confluence (this 
was usually the cells cultured in unconditioned medium after 
5–7 days). In the experiment where duration of exposure to 
conditioned medium was analysed, recipient cells were first 
treated for one, three or six days, with culture switching to 
control medium for the remaining time till 6 days. When 
expansion over multiple passages was analysed, recipient 
cell number was counted, and all conditions passaged again 
to 2300 cells/cm2 into the according media.

Statistical analysis and data processing

Counting of cells for assays (γH2AX, β-galactosidase, 
EdU, CldU, Ki67) was performed blinded by at least one 
experimenter (Johannes Lehmann, Natasja Franceschini, 
Danai Chatzivasileiou). For expansion assays, at least four 
samples were taken and counted per replicate to determine 
cell number. Statistical tests were run and data plotted 
using R, foremost using the ggplot2 package [126, 127]. 
Comparisons between groups were made using the Wil-
coxon–Mann–Whitney test (two-tailed, samples not paired 
unless otherwise indicated), correlation was assessed based 
on Spearman’s rank correlation coefficient. Number of rep-
licates are given in the figure legends, when wells are indi-
cated these are independent cultures derived from one donor, 
otherwise the number of donors is given.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00018- 021- 04035-x.
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