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Despite the fact that the new drugs and targeted therapies have been approved

for cancer therapy during the past 30 years, the majority of cancer types are still

remain challenging to be treated. Due to the tumor heterogeneity, immune

system evasion and the complex interaction between the tumor

microenvironment and immune cells, the great majority of malignancies

need multimodal therapy. Unfortunately, tumors frequently develop

treatment resistance, so it is important to have a variety of therapeutic

choices available for the treatment of neoplastic diseases. Immunotherapy

has lately shown clinical responses inmalignancies with unfavorable outcomes.

Oncolytic virus (OV) immunotherapy is a cancer treatment strategy that

employs naturally occurring or genetically-modified viruses that multiply

preferentially within cancer cells. OVs have the ability to not only induce

oncolysis but also activate cells of the immune system, which in turn

activates innate and adaptive anticancer responses. Despite the fact that OVs

were translated into clinical trials, with T-VECs receiving FDA approval for

melanoma, their use in fighting cancer faced some challenges, including off-

target side effects, immune system clearance, non-specific uptake, and

intratumoral spread of OVs in solid tumors. Although various strategies have

been used to overcome the challenges, these strategies have not provided

promising outcomes in monotherapy with OVs. In this situation, it is

increasingly common to use rational combinations of immunotherapies to

improve patient benefit. With the development of other aspects of cancer

immunotherapy strategies, combinational therapy has been proposed to

improve the anti-tumor activities of OVs. In this regard, OVs were combined

with other biotherapeutic platforms, including various forms of antibodies,

nanobodies, chimeric antigen receptor (CAR) T cells, and dendritic cells, to

reduce the side effects of OVs and enhance their efficacy. This article reviews
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the promising outcomes of OVs in cancer therapy, the challenges OVs face and

solutions, and their combination with other biotherapeutic agents.
KEYWORDS
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1 Introduction

Cancer is rapidly becoming the leading cause of mortality

worldwide. Every year, nineteen million new malignancies are

diagnosed, resulting in about ten million deaths (1, 2). Because

cancer is a complicated and heterogeneous disease with

numerous genetic mutations, current cancer therapies

frequently do not achieve the desired outcomes for the

majority of malignancies, despite many promises of progress

in treatment. Consequently, cancer treatment has become a

challenge, so more efficient treatment procedures are required

(3, 4). Traditional treatments, such as surgery, chemotherapy,

hormone therapy, and radiation therapy, have not only

unfavorable adverse effects on individuals in the majority of

patients but also yield minimal long-term benefits (5).

Immunotherapy has been a promising approach to cancer

treatment over the last two decades. It is target-specific, can be

adjusted to the needs of each patient, and has fewer side effects

than earlier cancer therapies. Immunotherapy drugs can be

more effective against cancer when combined with other

therapies, such as radiation therapy, chemotherapy and

targeted drugs. As an example, several studies have shown

promising results of using a mix of chemotherapy and

immunotherapy as a first strike against non-small cell lung

cancer (2, 5, 6). To date, various immunotherapeutic

approaches have been introduced in cancer treatment, such as

pro-inflammatory cytokines, cancer vaccines, adoptive T-cell

therapy, antibody-based immunotherapies, and oncolytic

viruses (OVs) (7, 8).

Currently, oncolytic virotherapy (OVT) is one of the most

popular cancer immunotherapy approaches owing to the

flexibility of viral production platforms and providing a

multimodal strategy to selectively and efficiently target and

destroy tumor cells (9, 10). Furthermore, OV platforms could

be applied without depth knowledge of tumor antigens in

various malignancies (11). OVs provide multi-mechanistic

therapeutic effects against the majority of cancer types, but like

with many other current cancer therapies, oncolytic virotherapy

still faces challenges and hurdles before becoming an effective

anticancer therapy (3). Despite some encouraging outcomes,

OVT still is not completely effective in most cases because of
02
some issues such as tumor bulk penetration, anti-viral immune

responses, and unfavorable tumor microenvironment (TME)

(12, 13). On the other hand, due to off-target infection and

sequestrations by non-specific tissues, especially in systemic

administration, there are some safety concerns about using

OVs as therapeutic agents (14).

Despite this, in clinical trials of monotherapy, OVs with

older generations of armings (such as GM-CSF) have elicited a

potent and robust response. Newer methods, like combining

OVs with immunotherapies to turn “immune-cold” tumors into

“immune-hot” ones, can almost certainly make OVs more

effective (3, 15, 16). The use of rational combination therapies

and targeting have been raised to improve the efficacy of OVs,

and these combinations may integrate multiple methodologies

and technologies that can increase patient benefit from the

treatment (9, 17).

Oncolytic viruses have been used in combination with other

cancer treatment modalities of immunotherapy or cell therapy,

such as antibodies, nanobodies, bispecific (antibody-based

immunotherapies), checkpoint inhibitors, adoptive T-cell

therapy, natural killer (NK) cells, and T-cell engagers (BiTE),

to improve cancer treatment (10). In this review, the challenges

of OVT are discussed in detail, including its low efficiency, safety

issues, and delivery methods, and finally, we focus on combining

OVs with other biotherapeutic strategies to overcome

the challenges.
2 Intro to virotherapy: From concept
to bedside

2.1 An overview of virotherapy

The concept of employing viruses to treat cancer cells has

existed almost as long as viruses have been discovered (18, 19).

For more than a century, viruses have been considered potential

cancer-fighting agents (20–22). Since the middle of the 1800s,

case reports indicated that spontaneous microbial infections in

cancer patients might sometimes temporarily reduce tumor

burden and, thus, many therapeutic trials have been conducted

employing wild-type non-attenuated viruses in cancer therapy
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(22–25). In the late 1890s, a finding that a “flu-like” condition

accompanied by generalized inflammation corresponded with a

reduction in tumor cells in a leukemic patient further confirmed

the potential therapeutic significance of viruses, in particular (22,

26). In another case, the measles virus has been shown to be an

effective natural anticancer agent in the treatment of Burkitt’s

lymphoblastic lymphoma (27).

For a long time, the development of selective and harmless

viruses was impeded by a lack of tools for viral genome

modification (16, 28, 29). It took a few decades for OVT to

reach its full potential when recombinant DNA technology

became widely used to increase safety (6, 22, 29). The use of a

thymidine kinase (TK)-negative mutant of Herpes Simplex

Virus (HSV-1) as a possible treatment for gliomas was the first

report of a virus modification to reproduce only in dividing cells.

TK-mutated HSV-1 has been demonstrated to reproduce

preferentially in cancer cells (30–32). A mutated adenovirus

(Ad), dl1520 (also known as ONYX-015), was discovered in

1996 that had the E1B55K gene deleted (33, 34). Since the E1B-

55kD gene product can bind to and inactivate p53, it was

assumed that the deletion of E1B-55kDa renders the mutant

adenovirus unable to inactivate p53 in normal cells and,

therefore, the viral replication cycle would not be completed.

Moreover, the replication of ONYX-015 might be related to the

indirect inactivation of the p53 pathway in tumor cells due to the

loss of upstream regulators such as p14ARF (35). Nevertheless, it

was shown that the p53 status can not impose a restriction on

ONYX-015 replication. Actually, the loss of E1B-55K-mediated

late viral RNA export results in inability of ONYX-015 to

replicate in normal cells. Since, the tumor cells have a special

capacity to efficiently export late viral RNA in the absence of

E1B-55K, ONYX-015 would selectively replicate in cancer cells

(36). As a result, clinical uses for OVs are increasingly prominent

due to technological advances (37, 38).

OVs can selectively reproduce in cancer cells and propagate

throughout a tumor without affecting the healthy tissues (39,

40). Despite some viruses’ natural tropism for tumors, the wide

range of tumor forms and histologic origins makes it challenging

to link OVs to a specific malignancy (41, 42). Additionally, it is

crucial to consider the tumor-specificity, possible pathogenicity,

immunogenicity, druggability, and the viral stability while

choosing a virus.

The administration of OVs, either systemically or locally, in

cancer-bearing hosts successfully induces antiviral immunity. As

a result, OV treatments activate two separate immune responses:

antiviral and anticancer. While antitumor immunity is

advantageous, antiviral immune responses, including innate

and adaptive, are thought to be harmful to the success of OV-

based therapy. Indeed, it is conceivable that antiviral immune

responses might impede strong viral replication and spread,

reducing direct oncolysis of cancer cells,and therefore the

efficiency of OV therapy (43). As a result, the most effective

“time window” for most OVs to activate anti-tumoral immunity
Frontiers in Immunology 03
is within the first 1-2 weeks of administration, before the virus is

eliminated. One of the major challenges of OV immunotherapy

is to strike a balance between the desirable induction of new anti-

tumoral immunity and the competing anti-viral immunity while

preventing undesired antiviral effector processes from becoming

the dominant response pathway, thereby obstructing the

acquisition of acquired anti-tumoral immunity. Because of

this, researchers are now looking into a number of ways to

treat anti-OV immune responses (44). Many studies are

developing strategies to enhance OVs construction, reduce

clinical toxicity, design efficient OV delivery systems, and

increase efficacy by utilizing contemporary genetic engineering

approaches (45). A large number of OVs are being investigated

in clinical studies, and an even greater number are being

evaluated in preclinical studies. The safety of virotherapy has

been shown by clinical researches utilizing various OVs to treat

different cancers (42, 46, 47).
2.2 Viruses that have already received
regulatory approval for the
treatment of cancer

Following 30 years of research and encouraging findings

from several clinical trials, the OV has attracted a lot of interest,

leading to an OV approved by FDA for cancer treatment (25,

38). Four OVs have been approved for use in the treatment of

various malignancies. Despite being licensed in Latvia, the first

OV, a picornavirus named Rigvir, was never widely used

worldwide (48, 49). In 2005, the Chinese SFDA approved the

use of a modified Ad, known as Oncorine (H101), in

combination with chemotherapy for the treatment of head and

neck cancer (50–52). Talimogene laherparepvec (T-VEC,

Imlygic), an attenuated HSV containing granulocyte-

macrophage colony-stimulating factor (GM-CSF), was

approved by the FDA in October 2015 for the treatment of

melanoma in the US (53–56). In Japan, a modified version of the

HSV, called Delytact, received time-limited and conditional

marketing approval for the treatment of malignant gliomas in

2021 (21, 26, 57–59). A summary of the aforementioned OVs

has been presented in Table 1.
2.3 Action mechanisms of oncolytic
viruses: From cytolysis to
microenvironment modulation and
antitumor immunostimulation

Tumor cells, due to their resistance against apoptosis, appear

to be a preferred breeding ground for a wide variety of viruses

(22, 60). Viral infection kills tumor cells by several mechanisms

including direct cytolytic activity which is thought to be its main
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oncolytic mechanism; this activity is due to the OVs’ capacity to

selectively infect, replicate, and kill cancer cells (Figure 1). It is

now generally accepted that virotherapy’s efficacy can be

attributed to a number of different processes, including

alterations in the tumor’s micro-and macroenvironment and

intricate immune control (40, 61, 62). OVs are cytolytic due to

viral propagation and host cell bursting (63), and the viral

infection may trigger apoptosis in the host cell (20)

Lysed tumor cells produce endogenous danger-associated

molecular patterns (DAMPs), tumor-associated antigens

(TAAs), virus-derived PAMPs, and immune-stimulatory

cytokines, triggering the anti-tumor immune responses (64, 65).

The key and distinguishing characteristic of OVs is their

selective amplification and replication in cancer cells, leading to

the death of tumor cells without affecting the normal ones. The

intensity of their anti-tumor action depends on the modalities of

OV-induced cancer cell death (66, 67). Immunovirotherapy, also

known as OV immunotherapy or viroimmunotherapy implies
Frontiers in Immunology 04
an OV infection that causes an inflammatory TME by eliciting

anti-tumor immune responses. Furthermore, there is evidence

that OVs have the capacity to transform an immunologically

“cold” TME into a “hot” one via the production of chemokines

and cytokines. It is worth noting that a balance between helpful

anti-tumor immunity and harmful anti-virus immune responses

is necessary for optimizing immunovirotherapy (68, 69). In

order to modify the TME, OVs may also target tumor-

associated stroma cells, such as endothelial cells. Immunogenic

cell death (ICD) can be caused by OVs, which promote

endoplasmic stress, resulting in the release of DAMPs, such as

ATP, HMGB1, ectocalreticulin, and pro-inflammatory cytokines

(64). STING, TLR1, and TLR3 on immune cells sense PAMPs

a nd DAMP s , e s t a b l i s h i n g a p r o - i nfl amma t o r y

microenvironment that stimulates the production of pro-

inflammatory cytokines such as type I IFNs, interleukin (IL)-1,

IL-6; TNF-a, GM-CSF, and chemokines such as CCL2, CCL3,

CCL5, and CXCL10 (70, 71), leading to transformation of
TABLE 1 Global-approved oncolytic viruses (OVs).

Product Country approved Approval year Virus type Modification Dosage

DELYTACT
(teserpaturev/G47D)

Japan 2021 HSV Type I G207’s 47 gene and US11 promoter deletion 1×109

PFU

Imlygic®

(talimogenelaherparepvec)
United States
and Europe

2015 HSV Type I HSV1 gamma 34.5 and ICP 47 deletion and
expressing GM-CSF

1×106- 1×108 PFU

Oncorine (H101) China 2005 Adenovirus serotype 5 E1B-55k and E3 deletion 5×1011-1.5×1012

VP

Rigvir (ECHO-7) Latvia 2004 Picornavirus _ TCID50
106/mL
VP, Virus Particle; TCID50, Median Tissue Culture Infectious Dose; PFU, Plaque Forming Unit.
FIGURE 1

Direct cytolytic activity. Oncolytic virus can selectively infect, replicate, lyse and kill cells. Upon infection with an oncolytic virus, the oncolytic
virus replicates in tumor cells and causes oncolysis but does not harm normal cells.
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immunologically “cold” T-cell into “hot” T-cells (72, 73).

Neutrophils and macrophages are attracted to the site of

infection by CCL3 and CXCL10 chemokines, which are

involved in anti-cancer responses. Aggregation of PAMPs with

NK cell virus-recognition receptors causes early NK cell influx

(74). Activated cytotoxic NK cells may produce cytolytic

components and activate FAS-FASL, killing virus-infected

cells. NK cells emit IFNs and TNF-a to excite macrophages,

DCs, and T-cells. This activation of NK cells and DCs induces

them to produce IFNs, TNF-a, IL-12, IL-6, and chemokines,

which work both autocrinely and paracrinely to increase the

initial innate response (21, 75, 76).

The tumor-specific T-cell response is the foundation of

adaptive immunity against tumor cells during OV infection.

Antigens presented in the context of an MHC molecule, co-

stimulatory molecules, and cytokines are required for antigen

presenting cells (APCs) to activate antigen-specific T-cell

responses successfully (77). The released TAAs and

neoantigens following tumor cell lysis by OVs are processed

by APCs and are presented on their surface with MHC

molecules to CD4+ and CD8+ T-cells (78). Also, OV-infected

cells or mature APCs release various cytokines and chemokines,
Frontiers in Immunology 05
which aid in the recruitment and reactivation of T-cells. Both

stimulated T-cells and B-cells could promote tumor regression

and are capable of eradicating distant or freshly transplanted

tumors without relying on an OV (79, 80).

In addition to tumor cells, the tumor’s extracellular matrix

(ECM) and vasculature are also affected by OVs. More than 60%

of a solid tumor’s mass comes from the ECM, which is a non-

cellular compartment made by activated cancer-associated

fibroblasts (CAFs). Collagenous matrix, proteoglycans, and

hyaluronan build up in the ECM, providing an impenetrable

and stiff barrier around cancerous cells. Because of these physical

impediments, OVs have a tough time reaching the entire tumor

mass (21). Ilkow et al. showed that interaction between CAFs

and cancer cells improves vesicular stomatitis virus (VSV)-based

therapies (61).

In contrast, tumor cells release transforming growth factor-

beta 1 (TGF-1), which promote OV infection in CAFs. Tumor

cells produce large quantities of fibroblast growth factor 2,

making them vulnerable to viral infection. It has been reported

that OAd not only could lyse glioblastoma cells, but also kills

glioblastoma-associated stromal cells (81). Figure 2 provides a

detailed anti-cacner mechanism of action of OVs.
B

CD

A

FIGURE 2

OVs have a direct or indirect toxic effect on tumor cells. (A) Direct oncolysis; The viruses can infect cancer cells and then replicate until the
cancer cells rupture. The newborn viruses are then released to infect more cancer cells. (B) Neoantigens and debries from lysed cancer cells
activate and recruit dendritic cells (DCs) into the tumor microenvironment and T cells migrate to the site of infection. (C) a number of processes
occur, including the alteration of the tumor’s micro-and macro-environment and the control of the immune response in a complex
modulation. (D) OVs stimulate innate immunity and turn “cold” tumors into “hot” tumors by stimulating immune cell recruitment and activating
systemic anticancer adaptive immunity to reduce tumor growth.
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3 Various types of OVs

There are two broad classes of OVs: 1) viruses that have a

natural tropism for cancer cells; the naturally cancer-selective

OVs utilize the abnormal signaling pathways that support their

growth in cancer cells; and 2) those engineered specifically to

replicate only in cancer cells (16). The activity of OVs reflects

their underlying biology and the host-virus interactions that

have evolved in the struggle between pathogenesis and immunity

(29). The lack of an anti-viral response in cancer cells is an

important mechanism of tumor selectivity for both categories.

Interferons (IFNs) are secreted by normal cells in response to

viral infection after intracellular pathogen recognition receptors

identify viral RNA, DNA, or proteins (PRRs). Hundreds of

effector genes, called IFN-stimulated genes (ISGs), are

expressed as a result of this signaling cascade and aid in the

elimination of the viral infection (16). Myxoma virus (MYXV;

poxvirus), Newcastle disease virus (NDV; paramyxovirus),

reovirus, Seneca Valley virus (SVV; picornavirus), measles

virus (MV; paramyxovirus), poliovirus (PV; picornavirus),

vaccinia virus (VV), Ad, HSV, and VSV are some examples of

oncolytic viruses (Table 2) (63, 66, 82). Table 2 lists the different

types of viruses that have been used for oncolytic purposes.
3.1 Natural tumor-replicating viruses

3.1.1 Poxviruses
One of the most important OV platforms now showing

promising outcomes in clinical studies is the vaccinia virus (VV),

a member of the Poxviridae family that naturally attacks

malignancies (21). Tumors are a recognized target of VV

strains owing to the activation of the epidermal growth factor

receptor (EGFR) pathway in malignant cells (83). Researchers

showed that vascular endothelial growth factor A (VEGF-A)

enhances oncolytic VV cytotoxicity by studying the effect of

hypoxia on VV infection (84). Tumor-derived VEGF increases

VV internalization, leading to enhanced replication and

cytotoxicity in both tumor cells and normal respiratory

epithelial cells in an AKT-dependent manner (85). Moreover,

tumor cells lack the anti-viral cytokines that protect normal cells

from viral infection because of their poor interferon (IFN)

response. Multiple attenuated VV mutants have been

developed to improve tumor-specific targeting and safety in

normal tissues (86, 87). The Pexa-Vec (JX-594), an oncolytic VV

armed with GM-CSF and disruption of the TK gene, is under

investigation in phase I and II clinical trials for treating renal cell

carcinoma, advanced breast cancer, and advanced soft-tissue

sarcoma (NCT03294083 and NCT02630368). Furthermore, an

engineered vaccinia OV, RGV004, encoding a bispecific CD19/

CD3 antibody, is in phase I clinical trials for the treatment of

refractory/relapsed B-cell lymphoma (NCT04887025). A phase
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I/II clinical trial showed that Pexa-vec intratumoral injection

was safe and effective in treating surgically incurable metastatic

melanoma (NCT00429312).
3.1.2 Newcastle disease virus
The Newcastle disease virus (NDV), belonging to the family

Paramyxoviridae, is an enclosed virus and contains negative-

sense single-stranded RNA (88, 89). The HN protein interacts

with sialic acid receptors on the surface of host cells to bind

tumor cells, and when the activated F protein joins the viral and

host cell membrane, the HN protein fuses with the virus (90). As

a result, the virus’s genome penetrates the cytoplasm of the host.

NDV can also enter cells by endocytosis and clathrin-mediated

endocytosis (91). There is evidence that gene-editing

technologies make it simple to introduce foreign genes with

anti-tumor activities into the extensive genome of NDV (92).

Numerous clinical investigations have shown that NDV has a

very excellent safety profile for patients and has considerable

anti-cancer activity (93). For instance, because NDV only affects

the type I IFN-deficient glioblastoma cells, an inhibitor of IFN

signaling eliminates the NDV resistance in type I IFN-positive

cells (8, 94). In two clinical studies (NCT03889275 and

NCT04613492), the drugs Durvalumab (anti-PD-L1) and

attenuated NDV with the GM-CSF and IL-12 genes

(MEDI5395 and MEDI9253, respectively) are being used.

NDV with durvalumab, is in phase I clinical trial for treating

advanced solid tumors (95).

3.1.3 Reovirus
Reovirus (RV), an unenveloped virus containing a double-

stranded RNA belongs to the Reoviridae family (96). The

oncolytic properties of wild-type reovirus are due to the virus’s

preference for replicating in cancer cells (97). Reovirus has the

ability to kill cancer cells because of its preferential ability to

multiply in cancer cells. Ras overexpression impairs the PKR

(protein kinase RNA-activated) pathway, allowing reovirus to

infect tumor cells preferentially (98–100). Reolysin (also known

as Pelareorep) (101), serotype 3 RV, is the well-known oncolytic

RV that as a single agent or in combination with other

therapeutic strategies (29), is under investigation in clinical

trials (NCT04102618, NCT04445844, and NCT04215146).

3.1.4 Measles virus
The measles virus (MV), which belongs to the genus

Morbillivirus in the Paramyxoviridae family, is an enveloped

virus containing negative-sense single-stranded RNA (102).

Three receptors, CD46, SLAM/CD150, and poliovirus-

receptor-like-4, are used by MV to infect host cells (103, 104).

However, CD46 is not a tumor-selective receptor because of its

expression on normal cells. MV is a hopeful OV candidate due to

its good safety profile, which includes the absence of dose-

limiting toxicities and spontaneous oncotropism (21, 104, 105).
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Heinzerling et al. performed the first Phase I dose-escalation

test with a live MV, Edmonston-Zagreb vaccine strain against

cutaneous T-cell lymphoma (CTCL) (106). Clinical trials using a

measles virus that expresses the human sodium/iodide

symporter SLC5A5 are currently being conducted (107). The

Mayo Clinic (USA) has launched a number of Phase I/II clinical

studies (NCT00390299, NCT02364713, NCT02068794,

NCT02700230, NCT01503177, NCT01846091) to examine the

clinical safety and usefulness of MV-CEA and MV-NIS (95).
3.1.5 Picornaviruses
Picornaviruses have promising anti-cancer effects in patients

(108). Picornaviruses are tumor-specific due to the

overexpression of their entry receptors on cancerous cells,

including CD155, integrin a1b2, intercellular adhesion

molecule-1 and/or decay-accelerating factor (CVA21), anthrax

toxin receptor 1 and sialic acids and anthrax toxin receptor 1

(109). Clinical studies using oncolytic picornaviruses typically go

smoothly, and no off-target infections have yet been reported.

Intratumoral administration of the oncolytic poliovirus

PVSRIPO, the live attenuated, type I poliovirus (Sabin)

vaccine harboring an internal ribosome entry site (IRES) of

human rhinovirus type 2, has demonstrated initial promise in

pa t i en t s wi th recurr ent g l iob la s toma mul t i fo rme

(NCT03712358) (110). In contrast, PVSRIPO infects

macrophages and DCs in culture, causing the expression of

major histocompatibility complex class II (MHC II) and the

generation of IFN-b and IL-12 (9, 87).
3.2 Genetically engineered (modified)
oncolytic viruses

3.2.1 Herpes simplex virus
Talimogene laherparepvec (T-VEC; Imlygic), the first OV

presently licensed by the FDA, is a member of the Herpesviridae

family (56). In addition to T-VEC, other HSV-based OVs have

been developed, such as G47d, oHSV-IL12, G207, and rRp450

(111, 112). The majority of HSV-based vectors carry deletions in

ICP34.5, a neurovirulence gene that restricts virus replication to

tumor cells overexpressing the Ras gene (113). The inactivation

of the ICP6 gene, which encodes a viral homolog of the cellular

ribonucleotide reductase (RR), is another mechanism of HSV

specificity (114, 115). The mutant virus replication is limited to

actively proliferating cancer cells with high levels of RR because

this enzyme is necessary for creating deoxyribonucleotides (29).

The results of a Phase Ib study using T-VEC in combination

with the CTLA4 checkpoint inhibitor, Ipilimumab, in people

with advanced melanoma were published by Puzanov et al.

(116). Additionally, the combination of OV with nivolumab

has showed very promising results (12, 116–118).
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3.2.2 Adenoviruses
Adenoviruses (Ads), non-enveloped viruses with icosahedral

capsid and double-stranded linear DNA genomes, are members

of the Adenovir idae family , specifical ly the genus

Mastadenovirus. The capsid of Ads contains three major

proteins, including Hexon, penton-base, and fiber proteins,

which give them specific tropism characteristics (119). In

clinical research, adenovirus serotype 5 (Ad5) is the most

frequently utilized viral vector (120). Ad5 penetrates the

targeted cells via interacting its fiber knob protein with

coxsackievirus and adenovirus receptors (CARs) (118, 121).

DNX-2401 (Delta-24-RGD; tasadenoturev) is an oncolytic

adenovirus, replication -competent adenovirus. A 24-base pair

deletion in the E1A gene promotes tumor selectivity by

preventing viral replication in normal cells with a functioning

Rb pathway. An RGD-motif was added to the fiber H-loop to

boost potency, allowing the virus to enter cells through v3 or v5

integrin. On tumor cells, especially glioma stem cells, these

integrins are abundant (122). In preclinical models, DNX-2401

kills glioma cells through direct oncolysis and by inducing

immunological responses against tumor antigens, resulting in

long-term antitumor immunity and tumor regression. DNX-

2401 is now being tested in clinical studies for the treatment of

recurrent glioblastoma (NCT03896568) (123). Also, additional

studies are being conducted to examine its effectiveness against

recurrent gliomas when used in conjunction with other

treatments, such as checkpoint inhibitors. In one active phase

II study, DNX-2401 was injected directly into a recurrent

glioblastoma or gliosarcoma followed by pembrolizumab every

3 weeks for up to 2 years or until disease progression

(NCT02798406) (38).

H101 is an adenovirus with an E1B deletion that has been

approved in China for the treatment of nasopharyngeal

carcinoma. H101 was tested in a randomized Phase III clinical

study with 160 people who had advanced squamous cell

carcinomas of the head and neck or esophagus (124). The

patients were randomly assigned to chemotherapy (cisplatin

and 5-FU for chemotherapy-naive patients, or adriamycin and

5-FU for patients who had previously received platinum

chemotherapy) with or without H101 (5× 1011 to 1.5 ×1012

viral particles per day by intra-tumoral injection) for five

consecutive days every three weeks. A total of 123 patients

completed treatment, and were able to be evaluated for

response. Patients who received cisplatin/5-FU + H101

exhibited a response rate of 78.8%, compared to 39.6% in the

cisplatin/5-FU-only cohort. Patients who got the adriamycin/5-

FU and H101 virus, as well as the adriamycin/5-FU -only group,

both achieved a 50% response rate; however, these groups had a

limited number of participants (n = 18). There was a substantial

difference in response rate between all patients who got H101

and individuals who only received chemotherapy. The most

common adverse events were fever, injection site reactions, and

flu-like symptoms. Based on these findings, the Chinese
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regulatory agencies approved H101 in combination with

chemotherapy for the treatment of nasopharyngeal cancer

(10). In addition to the aformentioned viruses, several

additional viruses, including parvovirus, poliovirus, vesicular

stomatitis virus, Seneca valley virus, have been engineered to

be used as OVs in combating cancer (21). Table 3 summarizes

the types of viruses that are in different phases of clinical trials.

As a result of genetic engineering, a wide variety of

potentially pathogenic viruses have been manipulated for

safety and tumor-targeting applications in the past two

decades. Genetic modifications including the deletion of viral

genes, the use of transcription regulatory elements such as

promoters and enhancers, and the alterations of viral surface

proteins have been widely used to increase the effectiveness of

targeted OVT (82, 125).
4 Tumor targeting strategies of
oncolytic viruses

Despite the remarkable preclinical success of OVT, clinical

applications remain limited. One of the most significant

challenges that must be overcome is viral targeting. Various

strategies have been established to achieve targeting OVs toward

tumor cells. As previously described, some viruses, such as

reovirus and NDV have an intrinsic tropism for tumor cells,

whereas the other ones, such as Ad and HSV, should be adapted

or engineered to be cancer-specific (126). Virus adaptation to

cancer cells is frequently accomplished based on cancer cell

modifications, including self-sufficiency in growth signals,

resistance to apoptosis, neoantigen expression, and an

unlimited replication potential that can be used for OVs

selective infection and killing of cancer cells (127). In this

regard, different approaches have been used to direct OVs into

cancer cells, including modifying the virus ’s surface

(transductional targeting), introducing specific genes

downstream of specific tumor promoters or inserting genetic

elements into virus genomes such as miRNA and siRNA to boost

OV specificity (transcriptional targeting), and deleting virus

genes that are required for replication in normal cells but have

little effect on reproduction in cancer cells (33, 128, 129).
4.1 Transductional targeting

Detargeting viruses from their normal cells and retargeting

them to a specific cell is a critical step in designing OVs,

especially for adenovirus-based oncolytic viruses. As previously

stated, Ads as one of the most utilized viruses in cancer

treatment, have no innate tropism for cancer cells, whereas

they exhibited a broad range of tropism for normal cells due

to CAR expression in the majority of normal cells. As a result, an
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unaltered virus can infiltrate and harm normal cells by systemic

injection. Hence, the vector’s inherent tropism should be

eliminated to reduce possibly detrimental side effects.

Scientists usually use two methods to solve the problem:

adding ligands like peptides, antibody fragments, and

nanobodies to the structure of the virus, and using bispecific

adaptors. Van Erp et al. coupled transcriptional targeting by
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utilizing a tumor-specific promoter with transductional

targeting by using an anti-CEA nanobody incorporated into

Ad. CXCR4E1.B2 virus capsids. They showed that using a single

specific domain for CEA which was inserted genetically into the

Ad fiber could improve the specificity of infection and the ability

of Ads to reproduce in cancer cells (130) Another method for

modifying the surfaces and tropism of OVs is pseudotyping.
TABLE 3 Summary of clinical trials of monotherapy and combination therapy of oncolytic viruses.

Oncolytic
virus

Combination
therapy

Cancer Dosage Clinical
phase

Clinical
trial No

Adenovirus Ad-p53 Nivolumab or
Pembrolizumab

Head and Neck Squamous Cell Carcinomas; Colorectal
Cancer; Hepatocellular Carcinoma

5 x 1011

VP
single dose

I/II NCT02842125
NCT03004183

Ad-CEA Avelumab Colorectal Cancer 1 x1011

VP
6 doses

II NCT03050814

Ad-
MAGEA3

Pembrolizumab Non-Small Cell Lung 2 x1011

VP
single dose

II NCT02879760

ONCOS-102 Pembrolizumab Melanoma 3 x1011

VP
3 doses

I NCT03003676

LOAd703 Atezolizumab Malignant Melanoma 1 x109

VP
12 doses

I/II NCT04123470

Ad-TK Pembrolizumab/
valacyclovir33/
SBRT

Non-small Cell Llung Cancer; Triple-negative Breast
Cancer

5 x 1011

VP
single dose

II NCT03004183

H101 Camrelizumab Recurrent Cervical Cancer 1.5 x1012

VP
2-6 doses

II NCT05234905

CG0070 Bladder Cancer 1 x1012

VP
3-9 doses

II NCT02365818

Herpes simplex
virus

T-VEC Pembrolizumab Melanoma 1×108

PFU
III NCT02263508

OH2 Pancreatic Cancer 1×107

CCID50
6 dose

I/II NCT04637698

T-VEC Nivolumab/
Trabectedin

Sarcoma 1×107

PFU
II NCT03886311

HF10 Ipilimumab Metastatic Melanoma 1×107

TCID50
6 doses

II NCT03153085

OrienX010 Pembrolizumab Melanoma 3 × 1011

VP
3 doses

I NCT03003676

OH2 Advanced Bladder Cancer 1×107

CCID50
single dose

II NCT05248789

Newcastle
disease virus

MEDI5395 Durvaluma Advanced solid tumor dose-expansion study to
assess the safety

I NCT03889275

Vaccinia virus MVA-p53 Pembrolizumab Solid tumor 5.6 × 108

PFU
3 doses

I NCT02432963

(Continued)
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This strategy is often done by replacing coat proteins with

similar proteins from related serotypes, leading to a new

tropism without changing the balance of the genome. In this

regard, adenoviral fiber protein pseudotype switching is a

reasonable strategy for transductional retargeting. Owing to

the upregulation of CD46 on many malignant tumors,

researchers replaced Ad5 fiber with the fiber of serotypes 11/

35 to target tumor cells (131, 132). Another strategy that has

been developed to target viruses toward tumor cells, as

previously mentioned, is the use of bispecific adapters.

Adaptors are molecules with two ends that bind to the viral

proteins and the receptors on the cancer cells. This strategy’s

main advantage is the ability to use multiple adaptors to attach

to the same vector without affecting the vector`s structure. Due

to the overexpression of the high molecular weight melanoma-

associated antigen (HMWMAA) on melanoma cells, Curiel et al.

designed a bispecific adaptor, scDb MelAd, to target Ad to

melanoma cells selectively. They demonstrated significantly
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reduced infectivity (> 50-fold) of capsid mutant Ads, restored

(up to 367-fold increase), CAR-independent and HMWMAA-

mediated infectivity of these mutant viruses by scDb MelAd

specifically in melanoma cells, compared to a vector with wild-

type fibers (133). Additionally, a universal platform for Ad5

detargeting and retargeting using the SpyTag and SpyCatcher

system was developed and demonstrated that Ad5 efficiently

wasredirected into VEGFR2-expressing cells using an adoptor

incorporating SpyCatcher and an anti-VEGFR2 nanobody

(under publication data).
4.2 Transcriptional targeting

The effectiveness of transductional techniques has been

inadequate for realizing the full promise of virotherapy in the

clinic. For instance, early gene therapy experiments used
TABLE 3 Continued

Oncolytic
virus

Combination
therapy

Cancer Dosage Clinical
phase

Clinical
trial No

JX-594 Metastatic Hepatic Carcinoma 1×108-3×108

PFU
single dose

I NCT00629759

TG4010 Nivolumab Non-small cell lung cancer 1×108

PFU
single dose

II NCT02823990

Pexa-Vec
(JX-594)

Tremelimumab/
durvalumab

Refractory Colorectal cancer 3 × 108

PFU
4 doses

I/II NCT03206073

Ipilimumab Advanced solid tumor 1×109

PFU
5 doses

I NCT02977156

Sorafenib Hepatocellular Carcinoma 1 × 109

PFU
3 doses

III NCT02562755

Olvi-Vec Bevacizumab/
cisplatin

Ovarian Cancer 1×109

PFU
single dose

III NCT05281471

TBio-6517
(Rival-01)

Pembrolizumab Solid tumor,
Colorectal cancer

multiple doses I/II NCT04301011

OVV-01 Advanced Solid Tumors 1 × 1012

VP
single dose

I NCT04787003

Vesicular
stomatitis virus

VSV-IFNb-
NIS

Pembrolizumab Non Small Cell Lung Cancer
Neuroendocrine Carcinoma

5×1010

TCID50
single dose

II NCT03647163

Reovirus Reolysin Pembrolizumab Advanced pancreatic 4.5 × 1010

TCID50
II NCT03723915

Atezolizumab Breast 4.5 × 1010 TCID50
4 doses

I NCT04102618

Sarcomas Metastatic to the Lung 3×1010

TCID50
5 doses

II NCT00503295
f

VP, Virus Particle; TCID50, Median Tissue Culture Infectious Dose; PFU, Plaque Forming Unit; CCID50: Cell Culture Infectious Dose 50%.
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therapeutic genes driven by viral promoters, such as the CMV

promoter, which caused non-specific damage in normal cells

and tissues as well as cancer cells. However, the use of tumor-

specific promoters, which are overexpressed in tumors,

stimulates the particular expression of therapeutic genes in a

certain tumor, boosting their localized action and reducing

mislocalization side effects (134). TTF-1 promoter, glypican-3

protein (GPC3), human secretory leukocyte protease inhibitor

(hSLPI), Mucin 1 (MUC1), cyclooxygenase 2 (COX2), epithelial

glycoprotein (EPG2), and human telomerase reverse

transcriptase (hTERT) are the most common tumor-specific

promoters used in transcriptional targeting (7). For instance,

combining transcriptional targeting using the tissue-specific

SLPI promoter and transductional targeting with the ovarian

cancer specific adaptor protein, sCARfC6.5, which contains the

coxsackie-adenovirus receptor ectodomain and a single-chain

antibody specific for c-erbB-2, increased transgene expression in

ovarian tumors while decreasing expression in normal tissues,

including the liver, in comparison to single-approach targeting

(135). As abovementioned, inserting micro-RNAs (miRNAs)

into the virus genome is a new way to improve their specificity

and reduce off-target effects. Many teams have used the

differential landscape of miRNA expression between normal

and malignant cells to hinder OVs proliferation in healthy

cells. In one study, it has been demonstrated that adding

several copies of a miR-124 recognition sequence into the 3′
UTR of the oncolytic HSV-1’s crucial ICP4 gene prevents the

virus from infecting normal cells. This phenomenon occurs

because of the high expression of miR-124 in healthy neurons

but not at all in glioblastoma cells (136, 137). In another study,

Luo et al . employed a triple-regulated OAd containing miR143,

survivin, and RGD to improve the effects of OAds. They showed

that when Ad-RGD-Survivin-ZD55-miR-143 was introduced

into cells, it could inhibit cell growth, migration, and invasion,

as well as halt cells in the G1 phase and induce cell death (138).

Despite the use of many techniques for targeting viral

vectors in cancer virotherapy and boosting the virus’s efficacy

in cancer treatment, when the virus must be injected

systemically for the treatment of metastatic malignancies, this

treatment strategy encounters a number of challenges (125) that

must be overcome before the systematic administration of OVs

to improve their anti-tumor activities (126). The most common

challenges of delivering the virus through the bloodstream are

viruses’ identification as foreign agents and elimination from the

body before they can reach the tumor site, known as immune-

mediated clearance (127), and virus sequesteration by non-

specific tissues such as the liver, lungs, and spleen (128). On

the other hand, tumors are high-pressure settings with a dense

and disorderly collection of cells due to thick stromal tissue and

limited lymphatic drainage (42). To address these issues,

scientists have designed a variety of approaches, which are

described in more detail below.
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4.3 Solutions to the challenges of OVs’
systemic delivery

Complement activation, pre-existing immunity, or the

release of inflammatory cytokines (IL-6, IL-12, and TNF) in

response to vectors all contribute to OV clearance by the

immune system. Some OVs, including vaccinia and HSV-1,

produce anti-complement components to evade the immune

system (139). HSV-1 secretes glycoprotein E, which functions as

an IgG Fc receptor and efficiently inhibits IgG Fc-mediated

complement activation as well as antibody-dependent cellular

cytotoxicity (ADCC) (140). Pre-existing immunity canoccur due

to the virus’s ubiquitous nature (Ad and Reovirus), previous

vaccination (vaccinia and MV), or earlier oncolytic viral

treatment (141). There are currently various solutions being

tested for these issues. Changing the surfaces of viral vectors by

shielding with polymers such as (poly ethylene glycol (PEG),

poly L-lysine, and N-[2-hydroxypropyl] methacrylamide

(HPMA)) and l ipidic ves ic les of ten reduces their

immunogenicity and increases vector persistence in the

bloodstream (142). Cellular carriers, in which cells are taken

from a model organism that has been infected and put back in,

are another way to deliver OVs. Immune cells, stem cells, and

tumor cells have been used to generate experimental OV cell

carriers. Among cell carries, stem cells, according to in vitro and

in vivo studies, are the most outstanding candidates for systemic

delivery of OVs since they allow viruses to infect the target cells

and replicate in, conceal them from the immune system, and

target tumors (143, 144). In this regard, Mader et al. used

mesenchymal stem cells (MSCs) to efficiently deliver oncolytic

MV to ovarian cancer and protect the virus from neutralizing

anti-viral antibodies. They found that using MSCs as carriers

increased their localization and infiltration into tumors and

transferred oncolytic MV infection to tumors, leading to

enhancing mice survival (143). Immune cells, especially DCs

and T-cells, have been used successfully in pre-clinical research

to transfer several OVs to tumors. For instance, DCs infected

with reovirus have been shown to efficiently transport and

deliver their oncolytic payload into melanoma cells, even in

the presence of neutralizing antibodies (145). On the other hand,

OVs are removed from the bloodstream by mononuclear

phagocytic cells, splenic macrophages, and hepatic Kupffer

cel ls in the spleen and l iver fol lowing systematic

administration. This clearance frequently occurs following the

decorating of viral particles with antibodies and complement

proteins or their interaction with coagulation factors (126).

However, some viruses, such as Ads, may bind directly to

scavenger receptors on Kupffer cells, resulting in the release of

pro-inflammatory cytokines, which may cause severe toxicities

(146). The answers to these challenges are fairly similar to the

methods outlined for immune response escape. In case of Ads,

the hexon protein, as the most frequently structural protein, has
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a critical role in liver sequestration through interaction with

coagulation factor IX and scavenger receptors (147, 148).

Different strategies have been developed to avoid this

sequestration, such as genetic alteration in the hypervariable

region (HVR) of hexon (149), pseudotyping (complete change of

HVR) (150), and pharmacological agents (such as warfarin and

protein obtained from snake toxin and factor X-binding protein)

(151, 152). Surface PEGylation is a popular strategy for reducing

non-specific tissue absorption. Kwon et al. detected a substantial

105 increase in tumor to liver ratio when Ad was treated with a

PEGylated chitosan specific to the folate receptor compared to

naked Ad (153).
4.4 Intratumoral spread of OVs in
solid tumors

Tumor physiology is a major issue in cancer treatment since

tumors come in a variety of forms and sizes, making it difficult to

predict how and wheremedications, such as OVs, will be absorbed

(154). Therefore, viruses transferred within the tumor can only

infect and spread cells near blood vessels, leaving the rest of the

tumor untreated. Therefore, researchers have focused on

establishing mechanically activated transport mechanisms to

promote OVs penetration and increase virus anti-cancer activity

(155). Most solutions for this barrier rely on virus-encoded

matrix-degrading enzymes and anti-fibrotic agents. Diop-

Frimpong et al. showed that the penetration and effectiveness of

intratumorally injected oncolytic HSV were improved by using

Losartan, which is a clinically approved angiotensin II receptor

antagonist with anti-fibrotic effects (156). In another experiment,

Guedan et al. created a replicating Ad capable of producing

soluble sperm hyaluronidase (PH20) (AdwtRGD-PH20).

Intratumoral AdwtRGD-PH20 treatment caused hyaluronan

(HA) degradation, enhanced viral dispersion, and tumor

regression occurred in all of the treated tumors (157). In

addition, expressing matrix metalloproteinases-1 and -8 in

oncolytic HSV increased viral dispersion and treatment

efficiency by breaking down tumor-associated sulfated

glycosaminoglycans (158).
5 Oncolytic virotherapy in
combination with cancer
immunotherapeutics

Although various studies demonstrated viruses potential in

eliminating tumor cells, there is currently no report that

virotherapy can lead to a complete cure of cancer alone due to

the previously mentioned challenges. However, there is ample

evidence that OVs can be considered as the basis of combination
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therapy in different cancers due to their multiple mechanisms of

action and their simultaneous effects on tumor cells, immune

cells, and the TME (45, 159). Here, we have discussed possible

combinations of OVs with different biological products that can

overcome monotherapy challenges and limitations in

cancer treatment.

These combinations can be classified as 1) Armed

recombinant oncolytic viruses that carry the coding sequence

of other therapeutic agents which are excellently discussed

elsewhere by Kontermann (69), and 2) Combining OVs with

other biologic therapeutics separately.

Combining viruses with either the coding sequence or the

final protein form of antigen binding biologics)such as

antibodies, nanobodies and CAR-T cells(can help viruses

overcome some limitations, such as possible off-target side

effects and non-specific uptake (Figure 3). Antibodies (Abs)

are widely used in targeted therapies and mostly recognize

TAAs on tumor cells. Abs are also combined with OVs to

improve possibility of attachment of the virus to its target

cells. As a proof to this claim, combining OVs with immune

checkpoint inhibitor (ICI) antibodies is leading to promising

anti-cancer results. Despite this issue, one of the main

limitations of antibodies, especially for the treatment of solid

tumors, is their poor tumor penetration due to physical barriers.

This can be improved by using smaller antibody fragments, such

as single-domain antibodies, scFv, and Fab. There are also other

functional antigen-binding therapeutic formats with some

notable advantages that are used in some other studies in the

viro-antibody therapy field that can be translated into the clinical

trial. These promising structures can be combined effectively

with OVs for better therapeutic efficacy. For improving the

combinational therapy outcome, nanobodies can also be used

to not only assist OVs in specific targeting, but also helping

viruses for more efficient penetration into solid tumors. Table 4

summarizes the various strategies of combination therapy with

oncolytic viruses.
5.1 Arming oncolytic virus with antibody
and its derivatives

5.1.1 OVs plus antibodies
Antibodies with different frameworks have been approved as

cancer therapeutics; each has a different mode of action, such as

blocking, neutralizing, and activating functions (159, 175, 176).

These antibodies have been also coupled to various viruses such

as Ad, MV, HSV, NDV, Reovirus, Vaccinia, and VSV in cancer

combinational therapy (177–179), and some with promising

results have been discussed below.

5.1.1.1 OVs plus immune checkpoint inhibitors

It has been shown that the expression of inhibitory receptors

on T-cells, including programmed cell death protein 1 (PD-1)
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and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), and

their binding to their ligands on the target cells (PDL-1 and B7,

respectively) leads to aberrant activation of T-cells. In this

regard, blockade of these negative regulators by ICIs can

prevent T-cells suppression and improve their optimal activity

in combating tumor cells (179). Nevertheless, the clinical

response of ICIs correlates with pre-existing anti-tumor

immune responses, such as an elevated number of tumor-

infiltrating lymphocytes (TILs) and enough expression of

immune checkpoints (ligands) on the tumor cells (45, 180). It

has been shown that after viral infection, the expression of

immune checkpoints upregulates on the surface of tumor cells,

and accordingly, one of the most compelling combinational

therapies for cancer would be OVs + ICIs (45, 181). In

addition, another reason that makes the combination of OVs

and ICIs attractive in the treatment of cancer is their different

mechanism of action, which is an important parameter from the

pharmacological point of view (45).

Zamarin et al. showed that localized OVT by NDV

overcomes systemic tumor resistance to ICIs by inflaming the
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TME. They showed that I.T. administration of NDV not only

increased infiltration of the lymphocytes into the injected tumor

in the B16 melanoma mice models, but also the anti-tumor effect

was observed in a distant tumor without any virus injection.

Also, the localized administration of NDV in combinational

with systematic administration of CTLA-4 blockade exhibited

more efficient anti-cancer outcomes (182). In most studies for

assessment of combinational OV-ICI therapy, fully humanized

IgG antibody format has been used as ICIs; FDA-approved ICIs,

especially those in clinical trials and has been discussed in detail

elsewhere (178, 180). For example, although immune checkpoint

inhibition is a logical therapeutic candidate against glioblastoma

cells due to the increased expression of PD-1 on these cells

(along with IL-10 and TGF-b), anti-PD-1 alone could not

sufficiently eliminate tumor cells and there was a need for

synergistic interactions with OVs. So, Saha et al. showed that a

triple combination using anti-CTLA-4, anti-PD-1, and G47D-

mIL12 (recombinant HSV virus) cured most mice in two glioma

models. This approach not only treated mice, but also protected

them against tumor re-challenge. The synergistic activity was
FIGURE 3

Characteristics of oncolytic virus combination therapy. OVs attack and destroy tumor cells preferentially. Lysis of tumor cells releases
neoantigen, PAMPs which trigger PRRs, which then produce inflammatory cytokines and antiviral type I IFNs. Viruses can activate cell death
pathways, resulting in immunogenic cell death phenotypes such as necroptosis, pyroptosis, immunogenic apoptosis, and autophagic cell death.
Antibodies that target cell surface indicators of immune cells (checkpoint inhibition), cancer cells (targeted therapy), or both (bispecific
antibodies) are wellestablished in cancer therapy. combination of oncolytic viruses with antibody and CAR-T cells; CAR-T cells bind to the
antigen on the surface of tumor cells and kill them, but they cannot migrate deeper into the dense tumor mass to remove antigennegative
tumor cells. also, CAR-NK cells show more anticancer activity than CAR-T cells because they attach to stress ligands on the surface of tumor
cells. The oncolytic virus attacks and destroys tumor cells, eliminating the tumor's dense structure.
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TABLE 4 Summary of combination therapies with oncolytic viruses and other immunotherapeutic agents.

Virus Strategies for
Antibody Gene
Expression

Format Target Result

Combination
oncolytic
virus with
antibody
(ICI, mAb,
nanobody)

Ad (Ad5/
3-

E1AD24)

Replacement of early
genes (E3) with Ig

chains

IgG2 Human
CTLA-4

Subcutaneous xenograft mouse tumor model/intratumoral virus injection: OV-
encoded antibody was detected in xenografts; 43-fold higher antibody concentration
in tumor versus plasma; 81-fold higher antibody concentration detected in tumors

after injection of antibody-encoding OV compared with antibody-encoding
replication-deficient control virus (160).

Influenza
A virus
(IAV)

Heavy chain in PB1
segment downstream
of PB1 gene via 2A;
light chain in PA

segment downstream
of PA gene via 2A

IgG and
scFv

IgG and
murine
CTLA-4

Antibody insertion reduced titer, replication and in vivo morbidity and mortality of
IAV

Functions of OV-produced IgG was similar to hybridoma-produced Ab.
Subcutaneous syngeneic bilateral mouse tumor model/intratumoral OV application:
scFv-encoding OV showed superior tumor growth inhibition (both flanks) and

prolonged survival compared with parental virus (161).

HSV-1 Separate transcription
unit, MMLV LTR

promoter

scFv fused
to mouse
IgG1

Murine
CTLA-4

Bilateral subcutaneous syngeneic mouse tumor model/low dose intratumoral OV
injection of right flank tumor: antibody-encoding OV increasesd tumor growth

inhibition of injected (117).

NDV Additional
transcription unit

downstream of P gene

scFv Murine
CTLA-4

Intradermal syngeneic mouse tumormodel/irradiation/intratumoral OV injection:
antibody-encoding OV + X-ray showed similarly increased survival and tumor growth
inhibition than parental virus + X-ray + systemic a-CTLA-4 when compared with a-

CTLA-4 alone (162, 163).

MV Separate transcription
unit downstream of H

gene

scFv-IgG1
Fc fusion

Murine
CTLA-4,

murine PD-
L1

Subcutaneous syngeneic mouse tumor model/intratumoral OV injection: a-CTLA-4-
encoding OV reduced tumor progression, whereas a-PD-L1- encoding OV prolonged
survival both compared with control virus. Both antibody-encoding OVs increased T
cell infiltration, decreased Treg infiltration and resulted in splenocyte activation (164).

VSV Additional
transcription unit

between G and L genes

scFv Human PD-
L1

Subcutaneous syngeneic mouse tumor model with hPD-L1-expressing mouse tumor
cells/intratumoral OV injection: Antibody-encoding-OV or combination of parental

OV + intraperitoneal scFv reduced tumor growth and improved survival in
comparison to monotherapies, Increase of activated CD8+ T cells in spleen of mice
cured after treatment with antibody-encoding-OV compared with normal mice (165).

Vaccinia
virus

Additional
transcription unit with
viral H5 promoter

scFv Human PD-
L1

cell lines and activated T cells were infected: parental OV resulted in translocation of
PD-L1 to cell surface in cancer cells; antibody-encoding OV delivered sufficient a-PD-
L1 scFv to block cell surface detection of PD-L1 on cancer cells; OV-encoded scFv
increaseed granzyme B production and prevented OV-induced decrease in perforin

release by T cells (166).

Ad
(EnAd,
chimeric
type B
Ad)

Replacement of early
genes (E3) by Ig chains

linked via IRES

IgG1 Human
HER2

(Trastuzu-
mab)

OV-encoded antibody showed direct antitumor activity and triggers ADCC in vitro.
Subcutaneous xenograft mouse tumor model/intratumoral virus injection enhanced

antitumor efficacy of antibody-encoding OV compared with parental virus or
trastuzumab for Her2-positive xenografts.

Higher tumor-to-blood antibody concentrations by antibody-encoding OV compared
with conventional antibody application (167).

NDV (wt
velogenic
Italien
strain)

IgG heavy and light
chains as separate,
adjacent additional

transcription cassettes
with gene stop and
gene start signal for
viral transcription

IgG CD147
(metuximab)

Orthotopic xenograft mouse tumor model/intravenous OV application: antibody-
encoding OV resulted in antibody expression in tumors and tumor necrosis. Reduced
intrahepatic metastasis and prolonged survival compared with parental OV (168).

Vaccinia
virus
(GLV-
1h68:
Lister
vaccine
strain,
triple
mutant)

Separate transcription
unit, viral promoters
(SEL, SL [VEGF] or

SEL+SL)

nanobody VEGF (scFv)
+ EGFR

(nanobody);
VEGF (scFv)
+ cross-

species FAP
(scFv)

Subcutaneous xenograft mouse tumor model/intravenous OV injection:OVs encoding
single antibodies (targeting EGFR, VEGF, or FAP) inhibited tumor growth more

rapidly (one xenograft model) or stronger (other xenograft model) than control virus.
OVs encoding two antibodies resulted in strongest tumor growth inhibition,

significantly superior to control virus; significance not reached in comparison to single
antibody-encoding OVs (169).

OVs plus
bispecific
antibodies

HSV-1
(G207)

Inserted as separate
transcription unit with

CMV promoter

BiTE or
nanobody-
scFv fusion

Human PD-
L1 (scFv or
nanobody) ×

PD-L1-positivity of T cells did not prevent expansion or effector functions after
activation by purified BiTE: Co-cultures of infected tumor cell line, PBMC-derived T

(Continued)
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associated with increased M1-like macrophages, T effector cells

(CD4+ and CD8+), and decreased T regulatory (Treg) cells (183,

184). To emphasize the effect of combination therapy, it should

be noted that while none of these agents were effective alone

enough, they showed remarkable therapeutic effects in

combinational strategy (184). It is worth noting that although

Imlygic® has been approved for adult patients with melanoma,

there are clinical trials for the assessment of Imlygic® in

combination with ICIs for improving the treatment outcomes

in melanoma and other cancer types (e.g., Pembrolizumab with

Imlygic® or Placebo in Unresected Melanoma, NCT02263508)

(181, 185). Other combinations, including this OV and ICIs for

triple-negative breast cancer with metastatic liver cancer and

colorectal carcinoma are also being evaluated in clinical

trials (186).

5.1.1.2 OVs plus monoclonal antibodies other than ICIs

Apart from ICIs, some commercial mAbs with distinct

mechanism of actions, have also been combined with OVs to
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improve the therapy outcome. In one study, the antitumor

activity of cetuximab (an epidermal growth factor receptor

inhibitor mAb) was assessed in combination with HSV. The

result showed that combining cetuximab and HSV could

improve distribution of the virus and lead to a synergistic

antitumor effect in HT-29 tumor xenograft models (187). In

another study, Zhang et al. demonstrated that combination of

recombinant oncolytic HSV with Bevacizumab (BEV) (which is

an antiangiogenic mAb approved for glioblastoma) in mice-

bearing human GBM, was led to improvement of antiangiogenic

effect of BEV while decreasing the tumor invasive-like

phenotype induced by this drug (188).
5.1.2 OVs plus nanobodies
Nanobodies are the smallest natural antigen-binding

constructs with a single variable domain (VHH, ∼15kDa) as

the antigen-binding region (189). Nanobodies have unique

characteristics, such as easy selection by phage display, ease of
TABLE 4 Continued

Virus Strategies for
Antibody Gene
Expression

Format Target Result

human CD3
(scFv)

cells and immunosuppressive ascites fluid: BiTE-encoding OVs, not control virus,
induced depletion of tumor cells (170).

Ad
(EnAd,
chimeric
type B
Ad)

Inserted as separate
transcription unit with

CMV promoter

BiTE Human
folate

receptor-b ×
human CD3

Ex vivo ascites model with total ascites cells: BiTE-encoding OV induced T cell
activation and expansion, depletion of macrophages, and increase of M1 markers on
remaining macrophages (repolarization) superior to parental and control viruses (171)

MV Additional
transcription unit

downstream of H gene

BiTe Human CEA
× murine or
human CD3,

human
CD20 ×

murine CD3

Subcutaneous syngeneic mouse tumor models/intratumoral OV injection: BiTE-
encoding OV resulted in (i) prolonged survival, in one of two models superior to

control virus or direct BiTE injection; (ii) increased T cell infiltration and activation;
and (iii) protective immunity (to ental tumor cells not expressing the BiTE-target.
Thus indicative of antigen spread, i.e., activation of endogenous T cells specific for

tumor antigens) (172).

Vaccinia
virus

Separate transcription
unit, late viral
promoter

BiTe Human
EphA2 ×

human CD3

Co-cultures of infected tumor and unstimulated T cells or PBMCs: BiTE- encoding
OV, not control virus, induced T cell activation, which depended on presence of
EphA2-positive cells, and T cell-dependent bystander tumor cell killing. Lung

metastasis xenograft mouse tumor model/intravenous OV and/or PBMC injection:
BiTE-encoding OV showed significantly delayed tumor growth compared with

controls (173).

OVs plus
CAR-T Cell
and CAR-NK
Cells

Ad HER2 chimeric antigen
receptor specific
cytotoxic T
lymphocytes

scFv Metastatic
HER2
Positive
Solid

Tumors

HER2 chimeric antigen receptor specific cytotoxic T lymphocytes (HER2 specific
CAR-T cells), in combination with intra-tumor injection of CAdVEC, an oncolytic
adenovirus that was designed to help the immune system including HER2 specific

CAR-T cell reacted to the tumor.
https://clinicaltrials.gov/

Vaccinia
virus

CD19-expressing
oncolytic virus CF33-

CD19

scFv eradicate
solid tumors

The combination of CD-19-directed CAR-T with CD19-encoding OV resulted in
greatly improved survival of mice compared to antigen-mismatched combinations.

https://www.imugene.com/

HSV-1 IL15/IL15Ra sushi
domain fusion protein

scFv Glioblastoma OV-IL15C plus EGFR-CAR-NK cells synergistically suppressed tumor growth and
significantly improved survival compared with either monotherapy, correlating with
increased intracranial infiltration and activation of NK and CD8+ T cells and elevated
persistence of CAR-NK cells in an immunocompetent model. Collectively, OV-IL15C
and off-the-shelf EGFR-CAR-NK cells represented promising therapeutic strategies for
GBM treatment to improve the clinical management of this devastating disease (174).
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manipulation, high stability in harsh conditions, and reaching

and recognition of specific hard-to-access epitopes, making

them more attractive in combination with other agents in

cancer immunotherapy, including OVs (190, 191). For

instance, due to the high complexity of glioblastomas and the

low accessibility of therapeutic agents to their TME, the

combination of viruses and nanobodies is a promising

candidate for glioblastoma treatment. In a proof-of-concept

study, Gil et al. used an anti-CXCR4 nanobody for retargeting

oncolytic HSV toward CXCR4+ GBM cells. CXCR4 is

overexpressed in various cancers, including glioblastoma, and

usually correlates with a poor prognosis. The results of this study

indicated that OVs plus nanobodies were highly encouraging for

targeting GBM cells (192).

CD47 acts as a ”don’t eat me signal” to the immune system’s

macrophages, making it a potential therapeutic target in some

cancers. Different viruses have been engineered to express anti-

CD47 antibodies (193) or nanobodies (194) to have a multifaced

attack on the tumor cells. In a study, anti-CD47 nanobody-

expressing adenovirus reprogramed tumor immune

microenvironment and showed excellent anti-tumor immunity

(194). This anti-CD47 oncolytic adenovirus could induce

durable tumor suppression by changing the TME condition

and increasing activated TILs in the tumor site. Systemic anti-

tumor effects and memory immune cells were also observed after

treatment by this recombinant virus (194).
5.1.3 OVs plus bispecific or
trispecific antibodies

Bispecific antibodies (bsAb) are constructs with two different

antigen-binding sites with the aim of dual targeting (195). The

coding sequence of bsAbs can be inserted into the viral genome

to be expressed in the target tissue. Different viruses are

engineered to this end, including Ad, HSV, MV and vaccinia

(159, 196). Bi/trispecific antibodies can also be used in

combination with viruses in various timings and dosages.
5.1.3.1 OVs plus bispecific T-cell engagers

Viruses have been successfully combined with T-cell

retargeting bsAb, also called Bispecific T-cell Engager or BiTe

(197), to retarget T cells to the targeted tumor cells. In one study,

a recombinant adenovirus encoding bsCD3-EpCAM bispecific

antibody (bsAb) could effectively activate T-cells in malignant

peritoneal and pleural exudates despite the immunosuppressive

environment (198). Also, in another study, NDV-BiTe

constructs (e.g., antiHN scFv/antiCD3 scFv and antiHN scFv/

antiCD28 scFv) were successfully designed and expressed to be

evaluated for thier remarkable potentials in tumor

immunotherapy especially in breast and colorectal cancers

(199, 200).
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5.1.3.2 OVs plus natural killer cell engagers

Emerging role of NKs cells in cancer therapy becomes

clearer every day and its combination with virotherapy has

accelerated the progress of therapeutic processes in cancer.

Viruses can also be combined with bispecific NK engagers

(201) to retarget NK cells to their targeted tumor cells.

As an examples for this type of combination, Bahrololoumi

et al. constructed a bsAb (antiHN scFv/antiCD16 scFv) and a

trispecific antibody(antiHN scFv/IL-15/antiCD16 scFv) to bind

to the haemagglutinin neuraminidase (HN), a viral protein that

is expressed on the surface of the NDV infected tumor cell, and

the CD16 activating receptor on the surface of the NK cells for

redirecting NK cells toward the tumor cells (201, 202). NDV-

Ulster is a non-lytic strain of NDV that was used to inflame the

tumoral microenvironment in this study, and also in NDV-

based autologous tumor cell vaccines for stimulating the

immune response in the patient’s body (93, 178, 203, 204).

5.1.3.3 OVs plus trispecific antibodies

Trispecific antibody (Trike) is a single engineered antibody

platform that recognizes and binds to three different targets and

is expected to boost immune response significantly (205). There

are different studies that combine these trifunctional engagers

with OVs with the aim of cancer viro-immunotherpy. In one

study, researchers constructed a trispecific immunocytokine

(anti-NDV/IL2/anti-CD28) for efficiently targeting tumor cells.

This trike could bind to the HN of the NDV infected tumor cells

from one side and to the CD28 receptor on the T cells from the

other side, while IL-2 promoted T cells function (206, 207).

Ravirala et al, showed that combination of oncolytic HSV with

bi/tri specific antibodies which could bind to the NKG2D and

epidermal growth factor (EGF) from each side, while the

trispecific one also contained IL-2 sequence, could significantly

enhance infiltration and activation of NK and T cells in the

tumor site (208). Various bi/trispecific antibodies that were

combined with different viruses have been extensively

reviewed elsewhere (209).
5.2 OVs plus CAR-T and CAR-NK cells

Chimeric antigen receptor (CAR)-T cells are T cells that

have been genetically engineered to express an artificial

receptor to direct them toward a specific target in an MHC-

independent manner. The external domain of CAR-T cells

consists of an extracellular target antigen binding domain

which is usually a single-chain fragment variable (scFv) from a

specific monoclonal antibody, attached to the transmembrane

and signaling domains of this artificial receptor by a hinge (210).

Although some scFv-based CAR-T cell products are currently

approved by FDA for B-cell malignancies with encouraging

results, this approach still faces some limitations, such as
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trafficking and tumor infi l trat ion, ant igen escape,

immunosuppressive microenvironment, and CAR-T cell-

associated toxicities (211). As a consequence, CAR-T cells do

not exhibit profound anti-tumor effects in solid tumors. The use

of VHH-based CAR-T cells (Nanobody CAR-T cells) may could

resolve the abovementioned problems (212, 213). There are

different antigens that are targeted through Nanobody-based

CAR-T cells, such as vascular endothelial growth factor receptor

2 (VEGFR2) (214), human epidermal growth factor receptor 2

(HER2) (215), tumor-associated glycoprotein 72 (TAG‐;72)

(216), prostate-specific membrane antigen (PSMA) (217–219),

glypican 2 (GPC2), epidermal growth factor receptor (EGFR),

B‐;cell maturation antigen (BCMA), PD‐;L1, and EIIIB (212,

220). It has been shown that the combination of CAR-T cells

(scFv or VHH-based) with virotherapy can help CAR-T cells

overcome their challenges in combat against solid tumors (such

as immunosuppressive TME and heterogeneity of the antigens)

and increase the immune response dramatically. For instance,

Nishio et al. showed that armed oncolytic Ad (with RANTES

and IL-15) could increase the efficacy of GD2 targeting CAR-T

cell in a neuroblastoma solid tumor model (221). Furthermore,

there is evidence that pre-treatment of solid tumors with OVs

before the administration of CAR-T cells may lead to better ICD

(222, 223). For example, combining recombinant oncolytic Ads

containing a coding sequence of different cytokines, such as IL-2,

RANTES and TNF-a, could lead to better accumulation and

survival of CAR-T cells (223). Some of the combinations, such as

Ad/HER-2 targeting CAR-T cell (NCT03740256) and VZV/

GD2 targeting CAR-T cell (NCT01953900) therapy, are

examples of such combinations being evaluated in clinical trials.

In the case of CAR-NK cells, in combination with HSV and

to treat brain cancer metastases, EGFR CAR-NK cells were used

intracranially in mice. This combination resulted in significantly

longer survival of tumor-bearing mice when compared to

monotherapies (224).

OVs attack and destroy tumor cells preferentially. Lysis of

tumor cells releases neoantigen, PAMPs which trigger PRRs,

which then produce inflammatory cytokines and antiviral type I

IFNs. Viruses can activate cell death pathways, resulting in

immunogenic cell death phenotypes such as necroptosis,

pyroptosis, immunogenic apoptosis, and autophagic cell death.

Antibodies that target cell surface indicators of immune cells

(checkpoint inhibition), cancer cells (targeted therapy), or both

(bispecific antibodies) are well-established in cancer therapy.

combination of oncolytic viruses with antibody and CAR-T cells;

CAR-T cells bind to the antigen on the surface of tumor cells and

kill them, but they cannot migrate deeper into the dense tumor

mass to remove antigennegative tumor cells. also, CAR-NK cells

show more anticancer activity than CAR-T cells because they

attach to stress ligands on the surface of tumor cells. The

oncolytic virus attacks and destroys tumor cells, eliminating

the tumor’s dense structure.
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5.3 Other combinations with OVs

5.3.1 OVs plus autologous DC or T cells
OVs can also be combined with cell therapy to treat different

tumors, including solid tumors. For instance, the combination of

NDV and dendritic cells (DC (as an exciting platform is being

used in the IOZK clinic in Cologne Germany (Immun-

Onkologisches Zentrum Köln). Their studies and practices in

the IOZK indicated that DCs loaded with the lysate of NDV-

infected tumor cells (viral oncolysate, VOL) triggered potent

anti-tumor immunity by promoting the secretion of IFN-g and
IL-2 from T-cells. This combinational therapy is now available in

the IOZK clinic and patients can benefit from the advantages of

this kind of cancer combinational treatment (200, 225).

Activation of naïve human T-cells by co-incubating with

NDV-infected irradiated autologous tumor cells (ATV-NDV)

which can be further modified with bi-specific or tri-specific

antibodies can also offer a promising multimodal anti-cancer

approach (226).

Altogether, strong evidence confirm that different

therapeutic agents can have a measurable therapeutic effect in

cancer treatment, but due to the specific and complex biology of

cancer and its TME, the therapeutic outcome of these agents

lonely, do not contribute to the final treatment of cancer

patients. Thus, this is where rational combination therapy of

these factors with each other, especially with OVs is

much needed.

5.3.2 OVs plus tumor-infiltrating lymphocytes
It has been demonstrated that weak functionality of natural

TILs in the tumor site is strongly related to tumor progression

(227). OVs can set the scene by inflaming the tumor

microenvironment for better functionality of TILs. Feist et al,

showed that local injection of poxvirus into a solid tumor in

mice, could lead to activation and accumulation of TILs in the

tumor site which had a low immunogenicity before virus

infection (228). In another study, it was shown that

virotherapy with a type of oncolytic adenovirus, could increase

the TILs and significantly reduce the tumor size in the

immunocompetent mouse model (229). It has also been

shown that infecting the tumor with recombinant oncolytic

HSV, could unleash the full potential of TILs which led to

tumor regression and antitumor immunological memory (230).
6 Conclusions

OVT success, specifically FDA- and regional-approved OVs,

has made waves in (pre)clinical areas, attracting both society and

the scientific community’s attention. However, some of challenges

have limited OVs application as immunotherapy, and their

combination with other biotherapeutic platforms has been
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proposed in cancer therapy. To date, hundreds of combinations of

OVs with other biotherapeutic platforms, including antibodies,

nanobodies, ICIs, CAR-T cells, and DCs, have been investigated in

clinical trials to understand which and how best to provoke anti-

cancer immune responses. Some considerations could improve

the efficacy of OVs, either as monotherapy or combination

therapy. First, the dosage, targeted mechanisms, administration

schedule, delivery technologies, and types of OVs could be

considered because of their indispensable roles in the outcome

of cancer immunotherapy and priming TME in combinational

regimens. Second, understanding the interaction between

immune cells/system, tumor cells/TME, and OVs and the

combinational agents should help make new therapeutic

combinations possible. Third, defining reliable biomarkers to

distinguish “hot tumors” from “cold ones” can help scientists

determine subsequent therapies. Finally, providing beneficial

impacts of OVs and their combinational regimens on patients’

life quality requires the contribution of molecular biologists,

pharmacologists, immunologists, and clinicians. Indeed, current

clinical trials results can help scientists develop new systems of

combination therapy and deliver innovative treatments

to patients.
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