
marine drugs 

Review

Cyanobacteria—From the Oceans to the Potential
Biotechnological and Biomedical Applications

Shaden A. M. Khalifa 1,*, Eslam S. Shedid 2, Essa M. Saied 3,4 , Amir Reza Jassbi 5 , Fatemeh H. Jamebozorgi 5,
Mostafa E. Rateb 6 , Ming Du 7 , Mohamed M. Abdel-Daim 8 , Guo-Yin Kai 9, Montaser A. M. Al-Hammady 10,
Jianbo Xiao 11, Zhiming Guo 12 and Hesham R. El-Seedi 2,13,14,*

����������
�������

Citation: Khalifa, S.A.M.; Shedid,

E.S.; Saied, E.M.; Jassbi, A.R.;

Jamebozorgi, F.H.; Rateb, M.E.; Du,

M.; Abdel-Daim, M.M.; Kai, G.-Y.;

Al-Hammady, M.A.M.; et al.

Cyanobacteria—From the Oceans to

the Potential Biotechnological and

Biomedical Applications. Mar. Drugs

2021, 19, 241. https://doi.org/

10.3390/md19050241

Academic Editor:

Noureddine Bouaïcha

Received: 23 February 2021

Accepted: 15 April 2021

Published: 24 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University,
SE-106 91 Stockholm, Sweden

2 Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt;
eslamshaker566@yahoo.com

3 Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
saiedess@hu-berlin.de

4 Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
5 Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences,

Shiraz 71348-53734, Iran; jassbiar@sums.ac.ir (A.R.J.); fh_esfand@yahoo.com (F.H.J.)
6 School of Computing, Engineering & Physical Sciences, University of the West of Scotland, High Street,

Paisley PA1 2BE, UK; mostafa.rateb@uws.ac.uk
7 School of Food Science and Technology, National Engineering Research Center of Seafood,

Dalian Polytechnic University, Dalian 116034, China; duming@dlpu.edu.cn
8 Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;

abdeldaim.m@vet.suez.edu.eg
9 Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University,

Hangzhou 311402, China; kaiguoyin@zcmu.edu.cn
10 National Institute of Oceanography & Fisheries, NIOF, Cairo 11516, Egypt; Coralreef_niof1@yahoo.com
11 Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; jianboxiao@jnu.edu.cn
12 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;

guozhiming@ujs.edu.cn
13 International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
14 Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre,

P.O. Box 574, SE-751 23 Uppsala, Sweden
* Correspondence: shaden.khalifa@su.se (S.A.M.K.); hesham.el-seedi@farmbio.uu.se (H.R.E.-S.);

Tel.: +46-700-101113 (S.A.M.K); +46-700-434343 (H.R.E.-S.)

Abstract: Cyanobacteria are photosynthetic prokaryotic organisms which represent a significant
source of novel, bioactive, secondary metabolites, and they are also considered an abundant source of
bioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin,
cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results in
successful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied to
medical research have demonstrated an exciting future with great potential to be developed into new
medicines. Most of these compounds have exhibited strong pharmacological activities, including
neurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so these
metabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-
scale production of natural marine products through synthesis is important for resolving the existing
issues associated with chemical isolation, including small yields, and may be necessary to better
investigate their biological activities. Herein, we highlight the total synthesized and stereochemical
determinations of the cyanobacterial bioactive compounds. Furthermore, this review primarily
focuses on the biotechnological applications of cyanobacteria, including applications as cosmetics,
food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compounds
in potential medicinal applications for various human diseases are discussed.

Keywords: cyanobacteria; clinical trials; antioxidant; antiviral; COVID-19; dietary supplements;
biotechnological applications; total synthesis
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1. Introduction

Cyanobacteria, whose metabolism has played a unique role in ecosystems since an-
cient times, have probably been in existence for more the 3.5 billion years [1]. Cyanobacteria,
previously known as blue-green algae, are the most primitive organism present on the
earth. They play a vital role as the primary sources of oxygen and as nitrogen fixing agents
in aquatic environments [2]. Indeed, the oxygen fixing properties of these organisms made
life on Earth possible billions of years ago. Cyanobacteria are found in different habitats,
from fresh water lakes, ponds to maritime coasts and the open ocean, occupying the largest
ecosystem in the planet. The aquatic cyanobacteria are divided into two large ecological
groups: planktonic cyanobacteria, which float freely in the water column, and benthic
cyanobacteria, which adhere to submerged solid surfaces (i.e., sediments, rocks, stones,
algae, and aquatic plants) [3]. For example, the planktonic cyanobacteria species Prochloro-
coccus and Synechococcus are prevalent in many oceans [4]; additionally, C theyanobium
and Synechocystis genera are vastly distributed in marine planktonic collections [5]. Some
researchers believe that the “Red Sea” has its name because of the dense population of
Trichodesmium erythraeum (sea sawdust), which is mostly present there. In tropical seas
with surface temperatures above 25 ◦C and saltiness up to 35%, Trichodesmium sp. oc-
curs. Trichosdesmium is a filamentous nonheterocystous cyanobacterium, that fixes air
N2 [6]. Microcystis, Cylindrospermopsis, Anabaena and Aphanizomenon are the common gen-
era that flourish. Their environmental vulnerability and short life cycles leading to the
rapid turnover of organisms promote their use as biological indicators for environmental
studies [7]. For example, N2 cyanobacterial fixing was used to understand the quality
of water with extremely high turbidity, the low N: P ratio, the toxicity of metals and the
environmental limits of nitrogen. Some of these organisms and symbiotic systems like
Azolla, particularly for rice production, are used as biofertilizer [8]. They are also used in
oxidation ponds and in treating plants for waste and sludge [9]. Recently, a few species
were investigated for the development of biofuel after they were found to be the most ef-
fective of all living organisms in converting solar energy. In addition, their simple genomic
structure has allowed genetic engineering to produce biofuel strains [10]. Cyanobacteria
also interact with limestone; one of the more intriguing aspects is the capacity of some
strains (euendoliths) to penetrate directly into the carbonate substrate. Inhibition and
gene expression analysis using the Mastigocoleus BC008 have shown that the uptake and
transport of Ca2+ is guided by a sophisticated mechanism unrivaled between the bacteria,
P-style Ca2+ ATPases [11]. There is much evidence to be found that endolithic stigma
products such as Brachytrichia and Mastigocoleus derive nutrients from the surrounding
rock or from the outside [12]. Symbioses occur between cyanobacteria and other marine
organisms such as sponges, ascidians, lichens, dinoflagellates, euchiuroid worms and
macroalgae. They act as nitrogen fixing agents and releasers of dissolved organic carbon
that benefit their hosts, also producing defensive specialized metabolites that save their
hosts from being attacked by predators. One of the major host organisms for cyanobacteria
are sponges. The most abundant bacterial phylum found in the different sponges of the
Persian Gulf were cyanobacteria, constituting more than 44% of their total phylum diver-
sity [13]. This indicates an important ecological interaction between the cyanobacteria and
sponges [14,15]. Lichens are symbiotic associations between fungi and photosynthetic algae
or cyanobacteria. Microcystins are potent toxins associated with aquatic cyanobacterial
blooms that are responsible for the poisoning of both humans and animals [16].

Around 450 compounds from marine cyanobacteria were identified, particularly
from the genera Lyngbya, Oscillatoria, and Symploca. Around 58% of the cyanobacterial
metabolites were derived from Oscillatoria, while 35% of these natural products belonged to
Lyngbya [17]. They importantly produce a broad variety of bioactive compounds, including
toxin metabolites with potential anticancer properties, and produce promising results for
future research into the regulation of human carcinoma [18]. For example, apratoxin D,
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was isolated from Lyngbya sp., has strong cytotoxicity against human lung cancer cells [19].
Additionally, symplocamide A was isolated from the marine cyanobacterium Symploca sp.
and has shown powerful cytotoxicity to neuroblastoma cells and lung cancer cells [20]. For
instance, Kurisawa et al. [21] isolated three new linear peptides from Dapis sp. Furthermore,
cyanobacteria have long been known to produce the most efficient chemical defense
specialized metabolites from different classes of natural products such as lipopeptides,
alkaloids, depsipeptides, macrolides/lactones, peptides, terpenes, polysaccharides, lipids,
polyketides [22]. For doing so, they used plenty of enzymes, specialized for the biosynthesis
of their basic skeletons and also tailoring enzymes for their modification [23]. The majority
of cyanobacterial activity is essentially related to their lipopeptide content [24–26].

Marine cyanobacteria with various and adverse chemical products have attracted
the attention of many scientists from different fields, in particular medicinal chemistry
and pharmacology [27]. They possess significant biological properties including antibacte-
rial, antifungal, anticancer, antituberculosis, immunosuppressive, anti-inflammatory, and
antioxidant properties [28–30]. Cyanobacteria are rich in omega-3 fatty acids, such as eicos-
apentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are known to prevent
inflammatory cardiovascular diseases [31]. Many studies have shown that cyanobac-
teria produce compounds with increased pharmaceutical and biotechnological interest
and have applications in human health with numerous biological activities and as a di-
etary supplement [32]. Polyhydroxyalkanoates (PHAs) are polyesters produced by many
cyanobacterial strains, which can be used as a substitute for nonbiodegradable plastics.
Most studies have shown that oil-polluted sites are rich in cyanobacterial consortia capa-
ble of degrading oil components by providing the associated oil-degrading bacteria with
the necessary oxygen, organic matter and fixed nitrogen [33]. However, cyanobacterial
hydrogen was regarded as a promising alternative energy source which is now available
on the market [34]. In addition to these applications, cyanobacteria are also used as food,
fertilizers [35], wastewater treatment, aquaculture, a source of pharmacologically important
secondary metabolites [33]. Nanobiotechnological applications of marine cyanobacterial
metabolites that have biomedical applications may provide a novel method to overcome
the poor water solubility of hydrophobic marine natural drugs and use cyanobacteria for
industrial and medicinal purposes [36]. Nanomedicine has made significant advances in
the use of nanocarrier formulations to deliver therapeutic drugs and diagnostic agents
to tumor/cancer sites [37]. The use of marine cyanobacteria in cosmetics, cosmeceutical
formulations and thalassotherapy due to its bioactive components possesses many ad-
vantages, including the maintenance of skin structure and function, which have gained
interest as a concern for modern societies. It is also linked to its ability to regenerate and
protect itself against external environmental conditions [38,39]. Cyanobacteria could be
incorporated into the health and wellness treatments used in thalassotherapy centers due
to their high concentration of biologically active substances [40]. This review presents an
overview focusing on the biotechnological applications, therapeutic properties and clini-
cal uses of cyanobacteria and their metabolites in addition to introducing their synthetic
bioactive compounds.

2. Preclinical and Clinical Trials of Metabolites from Marine Cyanobacteria

The vital role of different metabolites from marine cyanobacteria as therapeutic agents
is described and classified in two groups; preclinical and clinical entities. Those compounds
(1–41, 43 and 44) that are involved in preclinical trials are illustrated in Figures 1–6. These
bioactive compounds have well-known anti-inflammatory and anticancer properties and
are used as external enzymes and antibiotics [41–44]. Those that are clinically validated,
i.e., from compound 42, 45–59, are also mentioned in Figure 7. The different cyanobacteria
species from which these metabolites have been reported and the related biological activities
are discussed briefly.
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2.1. Bioactive Constituents of Marine Cyanobacteria
2.1.1. Antioxidant and Antiobesity Supplements from Cyanobacteria

Photosynthetic organisms such as cyanobacteria have developed many strategies to
prevent the harmful effects of reactive oxygen species. Increased catalase and superoxide
dismutase activity was necessary to regulate metal oxidative stress [45]. Scytonemin (SCY,
1), a dimeric indole alkaloid which is therapeutic to the disorders of proliferation and
inflammation, was isolated from Lyngbya arboricola, Nostoc commune, Scytonema geitleri [46].
Rivularia [47], and Calothrix sp. [48] showed strong antioxidant activity and averts up to
90% of solar UV radiation from entering the cell [49–52]. Cell safety can be provided by the
enhancement of the antioxidant status and the elimination of superoxide anions and other
oxygen derivatives [53,54]. In addition, antioxidant activity was reported from the methano-
lic extracts of Synechocystis sp., Leptolyngbya sp. and Oscillatoria sp. [55], and ethanolic
extracts of Nostoc sp., Anabaena sp., Calothrix sp., Oscillatoria sp. and Phormidium sp. [56].

Phycocyanobilin (2) is tetraspyrole chromophore of blue green algae (Spirulina) which
responsible for the blue color of Spirulina—in spite of that fact that it has almost the same
structure as bilirubin, the pigment is more soluble than bilirubin, and 2 was reported
to have proven health-promoting activities as an efficient quencher of different oxygen
derivatives, and so possessed high antioxidant potential, protecting the live cell from
extreme oxidative stress [57]. Spirulina is a cyanobacterium that can be used up orally, i.e.,
without any processing and is very useful to human health including enhancement of the
immune system activity, antioxidant, anticancer, and antiviral effect. Thus, Spirulina is able
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to regulate hyperlipidemia and cholesterol levels and provide cell defense against a range
of conditions including allergies, asthma, diabetes, hepatotoxicity, immunomodulation,
inflammation and obesity [58,59].
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Several clinical and preclinical trials have been conducted to test the benefits of
Spirulina sp. on weight loss with promising results. Polyphenols are powerful antioxidants
and natural products that may help reduce body weight. Miranda et al. [60] claimed that
the main phenolic compounds—namely, chlorogenic acid, synaptic acid, salicylic acid,
transcinnamic acid, and caffeic acid—were commonly present in Spirulina. The DPPH
assay and hydroxyl scavenging assay done by Al-Dhabi and Valan Arasu [61], revealed
that all the Spirulina extracts showed the activity in a concentration-dependent manner.
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Figure 6. The structures of the cyanobacterial metabolites as drug leads against SARS-CoV-2, (a) the
sequence of amino acids in 40, (b) Antillatoxin (41), (c) Curacin A (42), (d) Cryptophycin 52 (43).

Yousefi et al. [62] studied 52 obese participants with a body mass index (BMI) > 25–40 kg/m2.
They divided the candidates randomly into two different groups, namely, treated and
placebo groups; the first group took Spirulina tablets (SP), 500 mg along with restricted
calorie diet (RCD) 4 times a day, while the second group were given placebo tablets and
RCD with the same daily regime for the 12 weeks of the intervention. Medical measure-
ments, appetite scores and biochemical assessments were performed at the beginning, 6
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and 12 weeks. Body weight, fat and BMI, together with waist dimension and appetite
scores, were significantly reduced in the SP treated candidates compared to those measured
in the placebo group.
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Many pigments, such as carotenes, xanthophylls and chlorophylls, were identified
using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS), which
was used to elucidate the qualitative profile of Spirulina (Arthrospira platensis). β-carotene,
two xanthophylls (diatoxanthin (3) and diadinoxanthin (4)) showed the highest scavenging
activity using precolumn reaction with DPPH radical followed by rapid UHPLC-PDA
separation (Figure 1) [63].

2.1.2. Cytotoxic Agents from Cyanobacteria

The peptolide cryptophycin (5), which was isolated from Nostoc sp., showed cytotoxic
properties [64]. However, in other findings, the polyketide borophycin (6) from Nostoc
linckia and Nostoc spongiaeforme showed antitumor activity against LoVo (MIC 0.066 µg/mL)
and KB (MIC 3.3 µg/mL) [65,66]. Three new linear peptides (iheyamides A (7), B (8), and
C (9)) were isolated from Dapis sp. (Figure 2). The new compounds were evaluated for
cytotoxicity using normal human cells (WI-38), and antitrypanosomal activity against
(Trypanosoma brucei rhodesiense and Trypanosoma brucei brucei) as models, respectively. The
findings showed that compound 7 has potent antitrypanosomal and cytotoxic activity with



Mar. Drugs 2021, 19, 241 9 of 35

IC50 values of 1.5 and 18 µM, respectively, compared with pentamide as a positive control
with IC50 ranging between 0.001 to 0.005 µM. While compounds 8 and 9 had low activity
with IC50 > 20 µM, the acting mechanism of 7 involved its growth-inhibitory activity
against T. b. rhodesiense and T. b. brucei. Finally, the result indicates that compound 7 is a
promising lead compound for a new drug [21].

Furthermore, Yu et al. [25] isolated nine new linear lipopeptides, microcolins E–M
(10–18), from the marine cyanobacterium Moorea producens, which exhibited significant
cytotoxic activity against lung carcinoma using MTT assay (Figure 3). Malyngamides are
isolated amides of marine cyanobacteria. Lyngbya majuscula-producing malyngamide C
(19) and 8-O-acetyl-8-epi-malyngamide C (20) have exhibited cytotoxicity against colon
cancer cells HT29, with IC50 values 5.2 and 15.4 µM, respectively [67]. Additionally, they
have antiproliferating effects against a variety of cancer cell lines, for example, heLa cell
lines with EC50 (µM) 0.12 ± 0.01 and 0.24 ± 0.0, respectively [68]. Hierridin B (21) is
a polyketide produced by Cyanobium sp. and has a selective cytotoxicity against colon
cancer cell line HT-29 with an IC50 value of 0.1 µM [69]. Furthermore, apratoxins are cyclic
depsipeptides isolated from marine cyanobacteria that inhibit several cancer cells lines at
nanomolar concentration. Apratoxin A (22) produced by Lyngbya boulloni has been shown
to be cytotoxic against adenocarcinoma cells [70]. Coibamide A (23) was isolated from
Leptolyngbya sp. [71] and exhibited cytotoxicity against NCIH460 lung and mouse neuro-
2a cells [72]. Tasipeptins A–B (24) and (25) are depsipeptides isolated from Symploca sp.
that showed cytotoxic activity against KB cells with IC50 values of 0.93 and 0.82 µM,
respectively [73]. Desmethoxymajusculamide C (26), DMMC is a cyclic depsipeptide from
Lyngbya majuscule and showed potent cytotoxicity in both cyclic and ring-opened structural
forms. Both of them showed cytotoxic activity against HCT-116 human colon carcinoma,
H-460 human large cell lung carcinoma, MDA-MB-435 human carcinoma, neuro-2A murine
neuroblastoma (Figure 4) [74].

2.1.3. Antiparasite Agents

The bioactive linear alkynoic lipopeptides; carmabin A (27), dragomabin (28), drago-
namide A (29) and dragonamide B (30) have been isolated from a Panamanian strain of
the marine cyanobacterium Lyngbya majuscula. Good antimalarial activities of IC50 4.3,
6.0, and 7.7 µM, were reported for the first three compounds, respectively, while the later
30 was inactive. Unlike its antimalarial effect, compound 30 exhibited the best cytoxicity
against Vero cells (IC50 = 9.8 µM) among mammalian cells and parasites compared to that
for 28 or 29 with IC50s = 182.3 µM and 67.8 µM, respectively [75]. Dragonamides C (31)
and D (32), were isolated from Lyngbya polychroa [42], dragonamide E (33) from L. majuscula
that was found to be active against leishmaniasis. Compound 29 and 33 exhibited strong
antileishmanial activity with IC50 values of 6.5, 5.1, and 5.9 µM, respectively [76].

In 2010, Sanchez et al. [77] isolated and identified a series of cytotoxic lipopeptides
from L. majuscule, namely almiramids A–C (34, 35, and 36), that revealed strong in vitro
antiparasitic activity against genus leishmania, principally L. donovani, L. infantum, and
L. chagasi. The lipopeptide mabuniamide (37) was isolated from Okeania sp. The evaluation
of the antimalarial activity was conducted on Plasmodium falciparum 3D7 clone in in vitro.
The results reported that 37 exhibits a potent effect with IC50 of 1.4 ± 0.2 µM when
compared with positive control chloroquine (IC50 7.6 ± 0.5 nM). This study records a flaw
by not reporting the mode of action for the evaluated compound [26]. Calothrixins A
(38) and B (39), as natural quinone products developed by Calothrix cyanobacteria, have
also been shown to possess potent activity against malaria parasites; IC50 values were
58 ± 8 s.d. nM and 180 ± 44 s.d. nM, respectively, against Plasmodium falciparum [78]
(Figure 5).

2.1.4. Antiviral Natural Products with Anti-SARS-CoV-2 Potential from Cyanobacteria

Calcium spirulan (Ca-SP), a sulfated polysaccharide was isolated from Arthrospira platensis, is
a promising candidate for the development of broad-spectrum antiviral drugs with novel
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modes of action. Ca-SP was found to be composed of rhamnose, 3-O-methylrhamnose
(acofriose), 2,3-di-O-methylrhamnose, 3-O-methylxylose, sulfate, and uronic acids [79].
Ca-SP displays a broad-spectrum antiviral activity which was characterized by strong inhi-
bition of in vitro replication of human viruses such as HCMV, HSV-1, HHV-6 and HIV-1 [80].
Polysaccharides possess significant antifibrotic properties in the pulmonary tissues and are
considered beneficial against human coronavirus diseases. The polysaccharides derived
from different species of Spirulina and especially Spirulina platensis were found to exhibit
distinct antiviral activity against different enveloped viruses [81]. Hayashi et al. [80,81]
evaluated the antiviral potential of calcium-spirulan derived from Spirulina platensis against
HIV-1 and HSV-1 in comparison with the standard dextran sulfate. The serum samples
of the mouse models administrated with calcium-spirulan showed long-lasting antiviral
activity after 24 h of administration); however, their role in COVID-19 (SARS-CoV2 infec-
tions) remains limited [82]. The isolation of the antiviral polysaccharide nostoflan from a
Terrestrial Cyanobacterium and Nostoc flagelliforme was another promising discovery, as it
has potent antiherpes simplex virus type 1 (HSV-1) activity with a selectivity index (50%
cytotoxic concentration/50% inhibitory concentration against viral replication) [83]. Using
molecular docking and MD simulation studies, cyanovirin-N (40) was the highest among
other lectins and was characterized with glycan type of S glycoprotein of SARS-CoV-2.
Lokhande et al. [84] showed that BanLec wild-type and its mutant form have more ther-
modynamically stable binding complexes with SARS-CoV-2 S glycoprotein. By using in
silico molecular docking and in vitro enzymatic assay screenings, it was found that 2 is a
potent phytochemical inhibitor to SARS-CoV-2 Mpro and PLpro proteases. Compound 2
demonstrated IC50 values of 71 and 62 µM for SARS-CoV-2 Mpro and PLpro, respectively.
Further docking studies on compound 2 with other CoVsMpro and PLpro proteases revealed
its broad-spectrum inhibition activity [85]. Naidoo et al. [86] examined 23 cyanobacterial
metabolites against the SARS-CoV-2 Mpro and PLpro proteases that were proved effective,
i.e., antillatoxin (41), 38, curacin A (42), 5, cryptophycin 52 (43) and 22. Compounds 22 and
43 showed superior inhibitory potential against SARS-CoV-2 Mpro based on the binding
energy scores of the interactions. Compounds 5 and 43 displayed significant inhibitory
prospects against the PLpro of SARS-CoV-2 (Figure 6).

2.2. Clinical Trials of Metabolites from Marine Cyanobacteria

Focusing on marine biotechnology, more than 300 nitrogen-containing secondary
compounds have been reported from the prokaryotic marine cyanobacteria [22]. Most of
these metabolites are biologically active and are either nonribosomal (NRP) or derived
from mixed polyketide-NRP biosynthetic pathways. NRP biomolecules and structural
types of hybrid polyketides-NRPs are important components of natural products used as
therapeutic agents. These include vancomycin, cyclosporine and bleomycin as antibiotics,
immunosuppressive and anticancer agents [87]. Crude cyanobacterial extract screening
has reported the effectiveness of identifying profitable compounds and been applied to
clinical trials phases [88]. For example, the methanolic extracts of Oscillatoria acuminata,
Oscillatoria amphigranulata and Spirulina platensis showed strong activity such as cytotoxicity,
antioxidant and antimicrobial activity [89]. A remarkable drug discovery effort is made
by the diversity of unique classes of marine cyanobacteria natural products [90]. Some
of the marine cyanobacterial compounds and their analogs have shown exciting results
and were successfully used in the clinical trials as shown in Table 1 (Preclinical, Phase
I, Phase II, Phase III and IV), such as dolastatin 10 (44), dolastatin 15 (45), 43, soblidotin
(46), cemadotin (47), tasidotin (48), synthadotin (49), curacin (50) [91], anatoxin-a (51),
bacteriocins, toyocamycin (52), phytoalexin (53), 40 and phycocyanin (54), and as various
potential drug candidates for drug discovery. Their structures were exhibited in Figure 7,
while their occurrences and bioactivities were reported in Table 1.
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Table 1. Cyanobacterial derived natural products used in clinical tests.

Compound Name (No.)/Chemical Class Cyanobacteria Species/Source Type of Activity Clinical Status/Study Type References

Dolastatin 10 (44)/Depsipeptides Symploca sp.

Sarcoma, Leukemia, Lymphoma,
Liver Cancer, and Kidney Cancer,

among others.

Drug
Investigational [92–100]

Leukemia
Lymphoma

Drug Intervention
Phase II

Prostate Cancer Drug Intervention
Phase II

Kidney Cancer Drug Intervention
Phase II

Extrahepatic Bile Duct Cancer
Gallbladder Cancer

Liver Cancer

Drug Intervention
Phase II

Ovarian Cancer
Sarcoma

Drug Intervention
Phase I

Leukemia
Myelodysplastic Syndromes

Drug Intervention
Phase I

Pancreatic Cancer Drug
Phase II Intervention

Cemadotin (47), Tasidotin (48) and Synthadotin
(49) (Derived from dolastatin 15 (45)/Depsipeptide

Dolabella auricularia and cyanobacteria
Symploca (later)

Melanoma Drug: ILX651
Intervention

Phase II
Hormone-refractory Prostate Cancer [101–104]

Non-Small-Cell Lung Carcinoma

Cryptophycin 52 (43)/(Synthetic analog of
cryptophycin 1 (5) Depsipeptides

Nostoc sp., terrestrial cyanobacteria Schizophrenia
Cognitive remediation therapy,

Intervention
Not Applicable Phase

[101,105,106]

Hypertension
Metabolic Disorder

Drug: losartan potassium (+)
hydrochlorothiazide, Intervention

Phase III

Toyocamycin (52)/Pyrrolopyrimidine nucleoside Streptomyces toyocaensis
Cyanobacteria Non-Small-Cell Lung Carcinoma Drug

Experimental [101,107]

Phytoalexin (53)/Polysaccharides Scytonema ocellatum Type 2 Diabetes (RED) Drug
Phase I Intervention [108,109]

Soblidotin (46)/(Synthetic analog of
dolastatin 10) Depsipeptides

Sarcoma
Drug

Intervention
Phase II

[101,110]
Lung Cancer
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Table 1. Cont.

Compound Name (No.)/Chemical Class Cyanobacteria Species/Source Type of Activity Clinical Status/Study Type References

Phycocyanin (54)/A pigment-protein complex Spirulina Chronic Periodontitis Drug: Spirulina capsules, Intervention
Phase IV [111–113]

Metabolic Syndrome

Dietary Supplement: Spirulysat®

Dietary Supplement: Placebo
Intervention

Not Applicable Phase

Anatoxins-a (51)/ Peptides Anabeana circinalis Amyotrophic Lateral Sclerosis
Recruiting

Patient Registry
Intervention

[114,115]

Bacteriocins/Peptides

43 different cyanobacteria viz.,
Prochlorcoccus marinus,

Synechococcus sp., Cyanothece sp.,
Microcystis aeruginosa, Synechocystis,

Arthospira, Nostoc, Anabaena, Nodularia

Ventilator Associated Pneumonia Lactobacillus bacteria
Intervention [116–120]

Colic, Infantile
Probiotic

Gut Microbiome
Bifidobacterium Breve

Drug
Intervention

Phase IV

Healthy

Plantaricin A—rejuvenating cream,
antioxidant serum,
rejuvenating serum

Intervention
Phase III

White Spot Lesion of Tooth
Long Term Adverse Effects

Caries, Dental
Orthodontic Appliance

Complication

Drug: Probiotic Toothpaste
Drug: Dr. Reddy’s Clohex

Other: Control Group
Intervention

Phase I and II

Curacin (50)/Lipopeptides Lyngbya majuscule

In vivo animal trails.
Preclinical

Phase (but it served as a lead
compound)

[91]

Cyanovirin-N (40) (CVN)/A protein Nostoc ellipsosporum Inhibiting HIV cell entry in a highly
specific manner.

Preclinical
Phase [121]
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Compounds 44 and 45 have exhibited promising results in phase II clinical trials for
cancer treatments, while compounds 47, 48 and 49, as synthetic analogs of compound 45,
showed promising results in phase II clinical trials, as described in Table 1. Additionally,
the synthetic analog 43, which was applied to Phase III clinical trials to treat hypertension
metabolic disorder, was derived from 5. Compound 46, a synthetic analog of compound,
exhibited promising results in phase II clinical trials for sarcoma, melanoma and lung cancer
treatment [92,101]. Compound 51 is a toxin isolated from blooms of the cyanobacterium
Anabaena circinalis that is known for its worldwide production of a range of toxins [122].
The water samples were collected from east to west side of Zemborzycki reservoir, the
samples were fixed with NaN3 and extracted by ultrasonication on ice in 75% methanol
acidified with 2 M HCl. The tested scum extract was highly toxic when tested against
the ciliate Tetrahymena thermophile. A complete growth inhibition was observed after 24 h
of incubation with undiluted extract and the diluted ones that contain ≥ 258.90 µg/L of
anatoxin-a [123].

Compound 40 is a 11-kDa virucidal protein isolated from the cultures of
Nostoc ellipsosporum [124]. Filtration, freeze drying and extraction by MeOH-CH2Cl2 (1:1)
followed by H2O were carried out to harvest the unialgal strain of the N. ellipsosporum cellu-
lar mass [125]. Buffa et al. [126] reported that compound 40 as a potent HIV type 1 inhibitor.
The virus causes infection in cervical explant models with an IC90 of 1 mM. Dendritic cells
were seen migrated out of the tissue explant and the secondary virus dissemination was
inhibited by 70% when using the above described concentration.

Compound 52 and its derivatives are majorly responsible for the cytotoxicity and
antifungal activity of the blue-green algae belonging to the scytonemataceae. Compound
52 was first isolated from streptomyces tubercidicus and streptomyces toyocaensis, respec-
tively [127]. Compound 52 also was prescribed to induce a growth inhibition in pancreatic
cancer cell lines by inhibiting the unfolded protein response, and also by the inhibition of
both P-TEFb and PKC [128,129].

Bacteriocin is a genome mining study which proved the widespread of gene clus-
ters encoding bacteriocins in cyanobacteria viz., Prochlorcoccus marinus, Synechococcus sp.,
Cyanothece sp., Microcystis aeruginosa, Synechocystis sp., Arthospira sp., Nostoc sp., Anabaena sp.,
Nodularia sp. [116,130]. Bacteriocins are defined as ribosomally synthesized proteinaceous
compounds that are lethal to bacteria [131], in vivo activity following an intravenous reg-
imen against pathogens, i.e., nisin has been shown to be 8–16 times more active than
vancomycin in targeting Streptococcus pneumoniae. Equally important, nisin F, the naturally
known nisin variant, was proved effective in stopping the pathogen growth in the respira-
tory system and the peritoneal cavity of the rat model, similarly suppressing the growth of
Staphylococcus aureus in vivo when applied within bone cement [132].

Compound 54 extraction was evaluated using different solvents, including 10 mM
sodium acetate buffer (pH 5.0), NaCl 0.15 M, 10 mM sodium phosphate buffer (pH 7.0),
distilled water, and CaCl2 10 g L−1. We mixed 2 g of dried biomass with 50 mL of the
solvent and it then was subjected to shaking at 30 ◦C and extraction.

Spirulina is a blue-green alga that was used by NASA as a dietary supplement in space
for astronauts. It has been reported that Spirulina exhibits anti-inflammatory properties
by inhibiting the release of histamine from mast cells [133]. Ishii et al. [133] also studied
the influence of Spirulina on IgA levels in human saliva and suggested a pivotal role of
microalga in mucosal immunity.

Phytoalexin, resveratrol (53 is a stilbene compound; transresveratrol is synthesized in
Synechocystis sp. PCC 6803 [134]. Resveratrol intake enhanced the release of the insulin-
dependent glucose transporter, GLUT4, in rats with streptozotocin-induced diabetes and
stimulated the insulin sensitivity mediated by the increase of adiponectin levels.

Furthermore, resveratrol induces the secretion of the gut incretin hormone glucagon-
like peptide-1, as well as activating Sir2 (silent information regulatory 2) [135]. Further-
more, a phase II study of glembatumumab vedotin (GV) showed peptide for its active
efficacy in the treatment of breast cancer and melanoma at a maximum tolerable dose of
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1.0–1.88 mg/kg [136]. Brentuximab vedotin 63 (Adcetris™) (Adcetris as a trade name),
peptide drug isolated from Symploca hydnoides and Lyngbya majuscule was approved by
U.S. Food and Drug Administration (FDA) and European Medicines Evaluation Agency
(EMEA) for cancer treatment [137].

3. Applications of Cyanobacteria in Biotechnology

Cyanobacteria are arguably the most important group of microorganisms on the
Earth. They are one of the early settlers of the barren parts of many oceanic regions [138].
Cyanobacteria fulfill vital ecological functions in the world’s oceans, being important
contributors to global carbon and nitrogen budgets [139]. Recently significant attention has
been paid to the application of marine cyanobacteria in the biotechnology field [92,140].
Due to their large range of industrial applications, they have been the focal point of many
recent studies: biofuels, coloring dyes, food additives, and biofertilizers [141]. In addition,
they are used in production of bioplastics, water treatment [33], hydrogen production [142],
cosmetics [40], forestry, animal feed [143], and application in nanobiotechnology [36], as
illustrated in Figure 8. Bioethanol, biodiesel, biohydrogen, and biogas are the highly in
demand as energy sources [144]. Furthermore, the comparative yields of the biofuels
produced by cyanobacteria and microalgae and other natural sources were reported [145].
The productivity of cyanobacteria and microalgae was 60,548 compared to palm seed, castor,
sunflower, rape seed, soybean and the corn (the least productive source) with productivity
of 4747, 1156, 946, 862, 321 and 152 (kg/ha year), respectively. The abovementioned
information suggested the importance of the applications of cyanobacteria in biotechnology.
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3.1. NanoBiotechnological Use of Cyanobacterial Extracts and Metabolites

Nanoscience and nanotechnology have now become a modern discipline with a
wide variety of applications for fundamental science. Nanotechnology plays a major
role in multilayer trends, particularly in the health and life sciences, with a focus on
ecofriendly new techniques [146]. Nanotechnology can encourage a new way to prevent
hydrophobial, naturally occurring marine medicines with low water solubility [147] using
various microorganisms, including simple bacteria and highly complex eukaryotes [148].
Nanotechnology is one of the fastest medical and industrial platforms [36] which could
be implemented using desirable methods which improve stability, bioavailability and
solubility [149]. Metallurgies, polysaccharides, lipids, peptide-based nanoformulations
that play important role in medical diagnosis, drug delivery systems, antisense and gene
therapies and tissue engineering, are healthy and ecofriendly nanomaterials [150,151]. In
the fields of antimicrobial activity, wound care, medication transmission, the transmission
of genes, cancer therapy and tissue engineering, polysaccharide-dependent nanoparticles
are important components [152,153]. Marine cyanobacteria have many applications in
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nanobiotechnology, either through their direct use in the production of nanoparticles of
different metals or through the nanotechnological processing of their bioactive metabolites
in medicine as shown in Figure 9.
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Several cyanobacterial species such as Anabaena sp., Lyngbya sp., Synechococcus sp.,
Synechocystis sp., Cylindrospermopsis sp., Oscillatoria willei and Pectonema boryanum were in-
corporated in the production of silver nanoparticles (NPs) by adding AgNO3 into a cell-free
culture liquid prior to the cyanobacteria live and washed biomass suspension [154–156].
Cyanobacteria of the genera Anabaena, Calothrix and Leptolyngbya are also used to mod-
ify the shape of nanoparticles of gold, silver, palladium and platinum [157]. Such metal
nanoparticles possess antimicrobial effects against many bacteria, including Bacillus megatar-
ium, Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, and
Micrococcus luteus [155]. In many areas, silver nanoparticles are also important, particularly
in cosmetics and impregnating medical devices such as surgical masks and implantable
devices with considerable antimicrobial effectiveness [158]. Encapsulation is by several coat-
ings including external silicon layers of the cyanobacterial strain (Synechococcus sp.) [159].

Nanoformulated antiaging, antioxidants and anti-inflammatory creams or medicines
have been developed with cyanobacterial secondary metabolites [32,40]. Nanoformulations
of anticancer agents were also provided owing to simplifying delivery in a diversity of
cancer states [155,160].

There are a lot of bioactive substances that have been isolated from different cyanobac-
teria species such as Lyngbya arboricola, Nostoc commune, Scytonema geitleri [46]. Rivularia [47],
and Calothrix sp. [48] such as compounds 1 and nocuolin A (55), merocyclophane A (56)
and B (57) also have anti-inflammatory and anticancer activities, but there is no detailed
work on their nanoparticle applications in drug developments. This may be done in future
research works with the application of biotechnological or synthetic approaches to the mass
production of such compounds to be tested as nanoparticles in in vivo tests (Figure 10).

3.2. Cyanobacteria: Foes or Friend of Skins, Their Use in Cosmetics

Cyanobacteria produce toxic metabolites and are allergens that have negative effects
on the health of human skin. Despite the fact that cytotoxicity and poisoning were seen with
some cyanobacterial genera, this adverse effect was potentially described for anticancer
applications, for instance some toxins that combat the progress of human adenocarcino-
mas [18]. Furthermore, recent studies showed that some compounds, like the carotenoids
phytoene, phytofluene and astaxanthin, can play healing roles and have antiaging effects
for skin’s health and appearance and are used in cosmetics [161]. Non Melanoma Skin
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Cancer (NMSCs) have increased since the past two decades. Sunscreen is recommended in
these cases by healthcare specialists [162]. The exploitation of cyanobacteria’s applications
in sunscreens and cosmetics is warranted owing to their abilities to protect skin and prevent
UV radiation damage. New formulations of large scale production in the cosmetics indus-
try contain mycosporine and mycosporinelike amino acids (MAAs) and their derivatives
due to their maximum absorption in UV range [163–165]. Skin bleaching, as a parameter
of beauty, has become common all over the world, mainly in Asia [166]. Tyrosine kinase
inhibitors perform the best for this purpose. This enzyme catalyzes the rate-limiting step
of pigmentation. We summarized the cyanobacterial bioactive compounds which are so far
used in cosmetics and skin protection.
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The synthetic chemicals in cosmetics can be very harmful and may be toxic to the skin
and cause aging, in addition to their high costs. Consumer tastes also affect the cosmetics
industry. Compared to traditional cosmetics, the natural cosmetics industry remains
a smaller fraction of the market [167]. Compared to synthetic cosmetics, herbal beauty
products are mild, biodegradable, safe and have few low side effects [168]. Beside cosmetics,
there is another terminology called “cosmeceuticals”, which are cosmetic products with
active ingredients that exert a pharmaceutical therapeutic benefit [39]. Cyanobacteria
contain a wide variety of bioactive health defense molecules [40], including flavonoids,
pigments (e.g., β-carotene, c-phycoerythrin, phycobiliproteins), phenols, saponins, steroids,
tannins, terpenes and vitamins [39]. These active metabolites lead researchers to check
their skin care function.

The testing of cosmetic products will continue to be carried out in compliance with
the current adopted guidelines and keys to health and effectiveness testing that can be
reproducibly and scientifically verified [169]. Herbal cosmetics can be used for a long
time to improve skin’s appearance and enhance skin gloss [170]. There are several causes
which decrease the brightness of the skin, such as damage to DNA [171] caused by free
radicals [172] which damages the skin and increases the risk of aging [173]. The antioxidants
of free radical scavenging and reactive oxygen species must also be tested [174]. Other
causes may be ageing, including chronic inflammation [175], which reduces skin brightness
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and may also contribute to skin cancer [176]. Therefore, the molecules must be investigated
as antiaging and tested for anti-inflammatory activity. The molecules should be tested
as sunscreen protective devices for sun blocking, causing DNA damage, skin aging and
tumorigenesis [177]. Desiccation is extremely hazardous to skin and thus hydrating agents
are very useful for skin care and treatment [178].

In cosmetic applications, there are only a few reports of cyanobacteria; some molecules
from different species of cyanobacteria show positive results in skin-care such as methanolic
extracts of exopolysaccharides from Arthrospira platensis used as antioxidant [40]. SCY
(1), an indol alkaloid pigment, synthesized by many strains of cyanobacteria, also used
as a defender sunscreen [47,51], isolated from the terrestrial cyanobacterium communal
of Nostoc and supported its free radical scavenging activities [50]. Numerous clinical
and preclinical trials found that Spirulina possesses antioxidants, immunomodulators
and anti-inflammatory activities which protect against oxidative stress by preventing
and inhibiting lipid peroxidation, scavenging free radicals or by increasing superoxide
dismutase (SOD) and catalase (CAT) activities [111]. The cell viability, wound healing
activity and genotoxicity of S. platensis were examined, and the results were reported
with 0.1% and 0.05% concentration showed a significant effect on L929 fibroblast cell line
proliferation. Fibroblast are responsible for inflammation and scar formation during wound
healing. Additionally, an incorporated skin cream with 1.125% S. platensis extract showed
the highest proliferative effect on skin cells [179].

Mycotoxins, including trichothecenes and fumonisins, can also be involved in in-
creasing oxidative stress. In addition, the main active compound phycocyanin is im-
munomodulatory and anti-inflammatory. It stimulates the production of antibodies and
up- or downregulates the genes encoding cytokines [111]. As a result, all these draw-
backs of using synthetic cosmetics have resulted in herbal cosmetics that have many
benefits to preserving the health of the skin and enhancing its appearance [180]. Phenolic
and flavonoid extracts from Oscillatoria sp., Chroococcidiopsis thermalis, Leptolyngbya sp.,
Calothrix sp. and Nostoc sp. have antioxidant activity [167]. Lycopene, which was found in
Anabaena vaginicola and Nostoc calcicola, also showed antioxidant effects [181]. Polysaccha-
rides from Nostac flagelliforme are used as free-radical scavengers [182]. A hot water extract
of Nostochopsis sp. caused the inhibition of the tyrosinase enzyme [183] and displayed a
major role in melanin synthesis [184] as it reduced α-melanocyte-stimulating hormone-
induced melanin synthesis in B16 mouse melanoma cells and by acid and alkaline treat-
ment [168]. Sacran, a novel sulfated polysaccharide, was extracted from Aphanothece sacrum
and its anti-inflammatory activity was assessed [185]. Morone et al. [39] reported the
bioactive potential of cyanobacteria that summarized the effects of aqueous and organic
extracts from different species, MAAs, carotenoids, EPS, SKY and C-phycocyanin on anti-
inflammatory, antioxidant, antiaging, moisture absorption and retention photoprotection
and the whitening of the skin for cosmetics and cosmeceuticals, which were examined
using different assays. Furthermore, the contents of the carotenoids and chlorophyll in
the ethanolic extracts from the cyanobacteria species were determined by HPLC-PDA and
employing the colorimetric tool of Folin–Ciocalteu to measure the total phenolic contents
showed a dry biomass in mg GAE g−1, where the highest phenolic content of S. salina LEGE
06099 was reported as (2.45 mg GAE g−1) (p < 0.05), then Phormidium sp. LEGE 05292 exhib-
ited (1.52 mg GAE g−1) and Cyanobium sp. LEGE 06113 displayed (1.41 mg GAE g−1) [38].
The carotenoid and chlorophyll utilized as antioxidant and free radical scavenging agents,
could be used as well as skin antiaging and skin protection candidate against UV-induced
photo-oxidation. Ultimately, with the increase in demand for natural products for body,
skin, health and welfare treatments in spa and thalassotherapy centers, cyanobacteria may
be seen as natural and ecofriendly sources from a significant bioactive constituent with
advantageous effects for skin health, for the development of cosmetics industry investment.
Therefore, there is a call for the promotion of research into cyanobacteria ingredients and
their implications.
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4. Total Synthesis and Stereochemical Determination of Marine Cyanobacteria
Bioactive Compounds

Owing to their remarkable variety of structures and fascinating biological behav-
ior, marine cyanobacteria have received exceptional interest from the scientific commu-
nity [186]. While all of these are marine cyanobacteria advantages, the difficulty in the
cultivation and processing of cyanobacteria and their resistance to laboratorial cultivation
make it difficult to extract large quantities of natural products due adolescent constituents
in species (i.e., 1 mg of 600 g cyanobacterium) [187]. Likewise, biological activities have
not yet been investigated for the same purposes, including animal studies [188]. These
issues can be addressed by successful large-scale processing by means of the synthesis
of natural marine products, demonstrating a variety of ways to examine their biological
activities [187]. Consequently, the overall synthesis of natural marine products has received
much interest. Depsipeptides and polyketides are the most popular classes known for
their synthesis and structure determination. Here, we are just highlighting one example
from each group and their total synthetic route, as shown in Table 2. The most synthesized
compounds and their structures were shown in Figures 11 and 12.
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Table 2. List of synthesized compounds isolated from marine cyanobacteria sources and their activities.

Marine Source Compound Name/Class Region/Year Biological Activity References

Marine cyanobacterium Hoshinolactam (58) The coast near
Hoshino, Okinawa/2017

Antitrypanosomal
activity, IC50 = 3.9 (Syn.), 6.1 (Nat.) nM. Cytotoxicity against

MRC-5 cells IC50 > 25 µM (Syn. and Nat.)
PC = pentamidinea NC = not

(in vitro)

[189]

Lyngbya sp. Koshikalide (59) Koshika, Shima City, Mie
prefecture/2010

Cytotoxicity against HeLa S3 cells, IC50 = 42 µg/mL.
PC = not
NC = not
(in vitro)

[190]

Lyngbya majuscule. Apratoxin A
(22)/Cyclodepsipeptide

Finger’s Reef, Apra Harbor,
Guam/2001

Cytotoxicity against KB (IC50 = 0.52 nM) and LoVo cancer cells
(IC50 = 0.36 nM).

(in vitro)
Against a colon tumor and ineffective against a mammary

tumor.
(in vivo)

[191,192]

Lyngbya sp. & Lyngbya
confervoides./

Lyngbyastatin 7 (60)/Lariat-type
cyclic depsipeptide

Mangrove channel, Kemp Channel,
at the northern end of Summerland

Key, Florida Keys/2005

Blocking elastase activity, IC50 = 70 nM, antiproliferation and
abrogating the elastase-triggered induction of

proinflammatory cytokine expression.
PC = sivelestat, or (DMSO)

NC = NR
(in vivo)

[193,194]

Lyngbya bouillonii (−)-Lyngbyaloside B (61)/Glycoside
macrolide Ulong Channel, Palau/2000 Cytotoxicity against KB cells, IC50 = 4.3 µM and LoVo cells,

IC50 = 15 µM. [195,196]

Lyngbya sp. Maedamide (62)/Acyclic peptide Kuraha, Okinawa/2014
Inhibitory

activity against chymotrypsin, IC50 = 45 µM, HeLa and HL60
cells, IC50 = 4.2 and 2.2 µM.

[197]

Lyngbya sp. Jahanyne (63)/Lipopeptides The coast near Jahana, Okinawa,
Japan/2015

Cytotoxicity against HeLa cells and HL60 cells, IC50 = 1.8 µM
and 0.63 µM (et al., 2015) natural jahanyne, IC50 = (22 ± 2,

4.6 ± 1.2 µM) and synthetic (21 ± 2, 8.3 ± 2.3 µM).
[198,199]

Leptolyngbya sp. Yoshinone A (64) Ishigaki island, Okinawa,
Japan/2014

Antiobesity activity (in vivo) in mice, (Inhibited
differentiation of 3T3-L1 cells into adipocytes, EC50 = 420 nM)
and toxicity against Saccharomyces cerevisiae ABC16-Monster,

(IC50 = 63.8 µM).

[200]

Leptolyngbyolide C (65)/Macrolide On the coast of Itoman City,
Okinawa, Japan/2007

Growth-inhibitory
activity against HeLa S3 cells, (IC50 = 0.64 µg mL−1) and

depolymerization of F-actin (EC50 = 26.9 µg mL−1).
(in vitro)

[201]
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Table 2. Cont.

Marine Source Compound Name/Class Region/Year Biological Activity References

Lyngbya majuscula Lagunamide A
(66)/Cyclodepsipeptide

Western lagoon of Pulau Hantu
Besar, Singapore/June 2007

Antimalarial activity against Plasmodium falciparum,
IC50 = 0.19 and cytotoxic activity against P388 murine

leukemia cell lines, IC50 = 6.4 nM, and moderate
antiswarming activities against
Pseudomonas aeruginosa PA01.

PC: MeOH-treated plate

[202,203]

Lyngbya majuscula (−)-kalkitoxin (67) Curaçao/2004
Cytotoxicity against the human colon cell line HCT-116,
IC50 = 1.0 × 10−3 µg mL−1, inhibited hypoxia-induced

activation of HIF-1 in T47D breast tumor cells (IC50 = 5.6 nM)
[204]

Lyngbya majuscula Antillatoxin (41)/Cyclic
lipodepsipeptide Curacüao/2005 Strong ichthyotoxicity and neurotoxicity

(EC50 = 20.1 ± 6.4 nM). [187,205]

Lyngbya majuscula & Schizothrix
sp.

Somamide A (68)/Macrocyclic
depsipeptide Fijian Island/2005 [187]

Lyngbya majuscula Barbamide (69)/Lipopeptide Curacüao/1996 Potent molluscicidal activity against Biomphalaria glabrata,
LC100 = 100 µg/mL [206,207]

Moorea bouillonii
(+)-Lyngbyabellin M

(70)/Lipopeptide
North lagoon at Strawn Island,

Palmyra Atoll, USA/August 2009 Not reported [208,209]

Kanamienamide (71) The shore of Kanami, Kagoshima,
Japan/2016

Growth-inhibitory activity.
As a necrosislike cell death inducer. [210]

Okeania sp.

Janadolide (72)/Cyclic polyketide-
peptide

Bise, Okinawa Prefecture,
Japan/2016

Antitrypanosomal activity without cytotoxicity against
human cells (IC50 47 nM) [211]

Kurahyne (73) (N-Me)
Kurahyne B (74) (N-H)

The coast near Jahana,
Okinawa/March 2013

Growth-inhibitory activity
(Inhibited the growth of both HeLa and HL60 cells, IC50 = 8.1

and 9.0 µM)
PC = Adriamycin

[186]

Odoamide (75)/Cyclodepsipeptide Odo, Okinawa Prefecture,
Japan/May 2009

(in vitro)
Cytotoxicity against

HeLa S3 cells, IC50 = 26.3 nM.
Toxicity against brine shrimp (Artemia), LD50 = 1.2 µM.

[212]

Symploca sp. Tasiamide B (76)/Acyclic peptide Micronesia by Moore et al., 2003 Cytotoxic against KB cells, IC50 = 0.8 µM [213]

Cocosolide (77)/Glycosylated
macrolide

Cocos Lagoon and Tanguisson reef
flat, Guam/2016

Inhibited IL-2 production in both T-cell receptors also
suppressed the proliferation of anti-CD3-stimulated T-cells in

a dose-dependent manner.
(IC50 > 50 mm).

[214]
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Table 2. Cont.

Marine Source Compound Name/Class Region/Year Biological Activity References

Oscillatoria Formosa Homoanatoxin-a (78)
Inniscarra

reservoir, County Cork,
Ireland/2004

Cytotoxic activity
LD50’s in mice of 200–250 µg/kg. [215]

Oscillatoria sp. Coibacin A (79)/Unsaturated
polyketide lactone Panamanian/2012

Antileishmanial activity against axenic amastigotes of
Leishmania donovani (IC50 = 2.4 µM). Cytotoxicity against

NCI-H460 cells (IC50 = 31.5 µM).
Antiinflammatory activity by cell-based nitric oxide (NO)

(IC50 = 20 µM).

[216,217]

Coibacin B (80)/Unsaturated
polyketide lactone

As a leishmanicidal drug (IC50 = 7.2 µM); cytotoxicity against
human cancer lung cell lines (NCI-H460), IC50 = 17.0 µM.

Active coibacin representative (IC50 = 5 µM).

Paraliomixa miuraensis

Miuraenamide A (81) (R1 = Ph,
R2 = O Me)

Miuraenamide D (82) (R1 = O Me,
R2= Ph)/Cyclodepsipeptides

The seashore on Miura Peninsula in
Kanagawa, Japan by Ojika et al.,

2006

Cytotoxicity against HeLa cells, IC50 = A (0.031), D (0.021) µM.
Against HeLa-S3 cell line, IC50 = A (0.38), D (1.32) µM.

antiphytophthora activity 3, 30 ng/disk
[218]

Rivularia sp. “button” Marine
cyanobacterium

Viequeamide A (83)/Cyclic
depsipeptide

Near the island of Vieques, Puerto
Rico/2012

Highly toxic against H460 human lung cancer cell lines,
IC50 = 60 nm.

PC = paclitaxel (3.2 nM) and etoposide (63.1 nM)
[219,220]

PC (positive control) and NC (negative control).
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4.1. Depsipeptides

Depsipeptides are natural polypeptides in which one or more of their amides is
substituted with a hydroxy acid ester bond that is formed in the core ring structure. They
come mainly from marine organisms, especially cyanobacteria [221]. It is interesting to
note that various natural cyclic depsipeptides have both special structures and intriguing
biological properties, such as antitumor, antifungal, antiviral, antibacterial, anthelmintic
and antimicrobial properties. In particular, the strong effects of cyclic depsipeptides
on tumor cells have resulted in a variety of clinical trials testing their chemotherapy
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potential [222]. Depsipeptides have been isolated from some of the most common marine
animals, including Lyngbya majuscula, L. confervoides, L. bouillonii and Rivularia sp., as
shown in Table 2. The cyclic lipodepsipeptide called 41 was isolated from the marine
cyanobacterium L. majuscula was the subject of a complete synthesis of its isolated form
by Gerwick and his coworkers. The EC50 = 20.1 ± 6.4 nM showed high ichthyotoxicity
and neurotoxicity [187,205]. The full synthesis of jahanyne (63), a high-N-methylated
lipopeptide containing acetylene, isolated from the marine cyanobacterium Lyngbya sp.,
induced a significant growth inhibition of both HL60 cells and HeLa, with IC50 values
of 0.63 µM and 1.8 µM, respectively [198]. Scheme 1 displays the complete jahanyne
synthesis. In general, the highly N-methylated acetylene containing lipopeptides has a
wide range of antitumor, antibiotics and antifungal activities; thus, the chemical synthesis
of this subfamily of lipopeptides is very important and can lead to new pharmaceutical
discoveries [223]. The total synthesis of koshikalide (59) has also been completed, a 14-
piece macrolide containing three olefines. The entire stereochemistry was developed to
compare the different optical rotations of natural and synthesized koshikalides [224]. In
2010, compound 59 was isolated from a marine cyanobacterium Lyngbya sp., assembled
in Koshika Prefecture, Shima City, Mie based on spectroscopic analyses, and its relative
stereochemistry was created. It showed weak cytotoxicity with an IC50 value of 42 µg/mL
against HeLa cells [190]. However, its complete stereochemistry could not be elucidated
due to the scarcity of the sample (0.3 mg). So, the first total synthesis of koshikalides was
performed to clarify the complete stereochemistry of koshikalides, as seen in Scheme 1.

4.2. Polyketides Peptide

The polyketide natural products are class of compounds that display a magnificent
range of functional and structural diversity including antibiotic, anticancer, antifungal,
antiparasitic and immunosuppressive properties [225]. So, scientists became concerned
with these molecules and have done their best to assemble them [226]. Polyketides are
separated from some of the most common species of cyanobacteria, such as Okeania sp.,
Symploca sp., Oscillatoria sp. and Paraliomixa miuraensis, which possess different biological
activities, as shown in Table 2. For example, the total synthesis of janadolide (72), isolated
from an Okeania sp. Compound 72 showed potent antitrypanosomal activity with an IC50
value of 47 nM, without cytotoxicity against human cells [210]. The steps of the total
synthesis of 72 were due to the macrolactamization of the proline moiety and fatty acid
moiety manifested by the amide bond, as seen in Scheme 2 [227]. Kurahyne B (74), a
new kurahyne analog, has been separated from the marine cyanobacterium Okeania sp.
collected in March 2013 at a depth of 0–1 m close to Jahana, Okinawa Prefecture, Japan. Its
gross structure was elucidated using UV, IR, 1D and 2D NMR and HRESIMS spectroscopic
analyses. The survival and proliferation of the cell lines (namely, the Hela and HL60 cells)
was suppressed by compound 74, with IC50 values of 8.1 and 9.0 µM, respectively, whereas
kurahyne B and kurahyne generate the same growth inhibition effect. The primary total
synthesis of 73 was also accomplished [186]. Compound 73 is a novel acetylene-containing
lipopeptide that was isolated from a marine cyanophyta Lyngbya sp. gathered in 2014.
It has the same effect as 74, with IC50 values of 8.1 and 9.0 µM, respectively [228]. The
absolute configuration was established by the total synthesis of 74 (3.6% overall yield in
14 steps). Additionally, the first total synthesis of 74 was also achieved (3.3% overall yield
in 14 steps) [186].
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5. Conclusions

Herein we are studying 91 compounds; 63 naturally occurring metabolites and 28 com-
pounds synthesized from marine cyanobacteria. According to the best of our knowledge,
the 28 synthesized compounds in this article have demonstrated important activities,
including antibiotic, anticancer, antifungal, antiviral, anthelmintic, antimicrobial, antipara-
sitic, and immunosuppressive activities. These compounds have been isolated from the
Lyngbya, Oscillatoria, Moorea, Okeania, Symploca, Rivularia, and Paraliomixa genera, and
include molecules classified as depsipeptides and polyketides. However, the Lyngbya
genus is associated with a polyphylla group which has had its taxonomic role revised. The
potential for the discovery of new natural molecules and biosynthetic pathways associated
with new cyanobacteria remains important and requires systematic exploration.

The naturally occurring metabolites were found in various species of 14 genera;
Arthrospira, Lyngbya, Nostoc, Scytonema, Rivularia, Calothrix, Dapis, Okeania, Moorea, Cyanobium,
Leptolyngbya, Symploca, Anabaena, Aphanothece, Oscillatoria, Paraliomixa. These metabolites
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can be categorized into eight chemical groups (including lipopeptides, polyketides, pep-
tolide, depsipeptides, peptides, protein, polysaccharide and alkaloids) most of which are
peptide by-products (over 70% of the families). No strong relationships were observed
globally the between chemical groups and the specificity of the various types of bioactivity.

Clinically, we found prospective biomedical or behavioral research studies on 8 com-
pounds/drugs and 4 as synthetic analogs—47, 48 and 59 derived from 45, and 46 derived
from 44 isolated from marine cyanobacteria, which are designed to treat different dis-
eases including treatments of different kinds from cancer, among them sarcoma, leukemia,
lymphoma, liver, lung, kidney, prostate, and ovarian cancer.

Further in vivo studies remain necessary to precisely comprehend the mechanisms of
action associated with cyanobacterial metabolites. For example, nostoflan exhibited potent
antiviral activity against herpes simplex virus type 1 (HSV-1). Compound 40 displayed a
similar effect on the human immunodeficiency virus type 1 with an IC90 of 1 mM employing
cellular and cervical explant models. The inhibition of in vitro human viruses’ replication,
including HCMV, HSV-1, HHV-6 and HIV-1, was impacted by the supplement of the
broad-spectrum antiviral calcium spirulan. Taken together, these indicators resonate the
potential notion regarding the role of the marine products in fighting of coronavirus [229],
and thus warrant insight investigations to test the marine secondary against SARS-CoV-2
and particularly to face the COVID-19 pandemic.
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