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Abstract

A popular objective criterion for partitioning a set of actors into core and periphery subsets is

the maximization of the correlation between an ideal and observed structure associated with

intra-core and intra-periphery ties. The resulting optimization problem has commonly been

tackled using heuristic procedures such as relocation algorithms, genetic algorithms, and

simulated annealing. In this paper, we present a computationally efficient simulated anneal-

ing algorithm for maximum correlation core/periphery partitioning of binary networks. The

algorithm is evaluated using simulated networks consisting of up to 2000 actors and span-

ning a variety of densities for the intra-core, intra-periphery, and inter-core-periphery compo-

nents of the network. Core/periphery analyses of problem solving, trust, and information

sharing networks for the frontline employees and managers of a consumer packaged goods

manufacturer are provided to illustrate the use of the model.

Introduction

The problem of partitioning a set of actors into two clusters, core and periphery, is a well-stud-

ied problem in the social network literature [1–8]. Excellent recent reviews of core/periphery

analysis are available in [9, 10]. Conceptually, the goal is to partition the actors so as to maxi-

mize the intra-core density, while minimizing the intra-periphery density. This goal can be

operationalized in different ways. One approach employs a continuous model for developing a

core-to-periphery continuum whereby a degree “coreness” is established for each actor [3, 5].

However, the continuous approach does not explicitly assign actors to core and periphery sub-

sets. Contrastingly, the discrete core/periphery approaches explicitly allocate the actors into

mutually exclusive and exhaustive subsets. Throughout the remainder of this paper, attention

is restricted to discrete core/periphery methods.

There are a variety of criterion functions that can be used for discrete core/periphery parti-

tioning. Examples include Hamming distances [2, 11] and counts of inconsistencies relative to
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the ideal structure [4, 12, 13]. One criterion that has considerable appeal is the maximization

of the correlation between an ideal and observed structure associated with intra-core and

intra-periphery ties. This criterion, which is the focus of our paper, was originally proposed in

[1] and is incorporated in the Ucinet software system [11]. The heuristic procedure designed

in [1] for obtaining solutions to the maximum correlation core/periphery partitioning prob-

lem is a variation of the genetic algorithm [14].

The study [2] compared four approaches for the maximum correlation core/periphery par-

titioning problem: (i) the Ucinet genetic algorithm [1, 9], (ii) a genetic algorithm implementa-

tion available as a built-in function inMathematica, (iii) a simulated annealing algorithm [15]

available as a built-in function inMathematica, and (iv) aMathematica coding of a relocation/

exchange algorithm [16]. The principal conclusions in [2] were that theMathematica imple-

mentations of the genetic algorithm and Kernigan-Lin heuristic were more robust than the

Ucinet genetic algorithm and simulated annealing; however, these comparisons were limited

to small networks with n = 20 or fewer actors.

It is important to establish from the outset that our goal is not to tout maximum correlation

core/periphery partitioning as the best approach for analyzing core/periphery structure.

Indeed, there are many other approaches available in the literature that are better-suited for

certain applications. Nevertheless, maximum correlation core/periphery partitioning does

have a history in the literature and is available in a popular software program. Accordingly,

the purpose of our paper is to show that, contrary to earlier findings [2], an efficient imple-

mentation of simulated annealing can be a viable approach to this problem. The process for

accomplishing this purpose is twofold. First we present a formal statement of the maximum

correlation core/periphery partitioning problem originally proposed in [1] and also studied in

[2]. An important aspect of this presentation is the efficient computation of the correlation

between two binary vectors [17] and the process for capitalizing on this efficiency in a heuristic

implementation. Although the precise computational details of prior implementations is not

entirely clear, there is some evidence that previous approaches to calculating the correlation

measure have been somewhat inefficient. For example, in the study reported in ([2], p. 176),

it was noted that trial solutions were evaluated by “. . .recomputing the fitness from scratch

and subtracting it from the old fitness.” The method for computing correlation between bi-

nary vectors that is described herein is appreciably more efficient, and this is a profound

advantage when tackling large instances of the maximum correlation core/periphery partition-

ing problem.

Second, a simulated annealing heuristic using a reciprocal cooling scheme is proposed,

which requires the selection of only one parameter: the number of iterations. Although the

results in [2] indicated that theMathematica implementation of simulated annealing per-

formed poorly, we believe that our simulated annealing approach using reciprocal cooling is

much more effective. To demonstrate this effectiveness, we ensure that, for modestly-sized

empirical networks from the literature, the proposed algorithm consistently produces the

same criterion function value across multiple restarts. Moreover, the simulated annealing algo-

rithm is evaluated across a broad range of synthetic networks that are much larger than those

considered in previous studies [2–5]. Specifically, the synthetic networks range in size from

500 to 2000 actors and have different levels of intra-core, intra-periphery, and inter-core-

periphery densities. The proposed algorithm is used to conduct core/periphery analyses for

problem solving, trust, and information sharing networks corresponding to frontline employ-

ees of a consumer packaged goods manufacturer. Finally, the simulated annealing algorithm is

applied to a larger real-world network and its performance is compared to results obtained

using Ucinet [11].

Core/periphery partitioning
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The next section presents the formal statement of the maximum correlation core/periphery

partitioning problem that is studied in this paper. This is followed by a description of the pro-

posed simulated annealing heuristic. The new heuristic is then applied to several small empiri-

cal networks. Subsequently, a simulation study is offered to evaluate the computational

efficiency of the simulated annealing heuristic under various data conditions. The heuristic is

then applied to three networks associated with employees from a consumer packaged goods

manufacturer. The paper concludes with a brief summary, along with limitations and exten-

sions for future research.

Maximum correlation core/periphery partitioning

Model formulation

The simulated annealing algorithm for the maximum correlation core/periphery partitioning

of binary networks has sufficient flexibility to handle either symmetric or asymmetric network

matrices. The formulation of the underlying optimization problem assumes that n is the num-

ber of actors in the network and that T = {1, 2, . . ., n} is the set of indices for those actors. An n
× n binary matrix A = [aij], of network ties among the actors is assumed to be available, where

aij = 1 if there is a tie from actor i to actor j and aij = 0 otherwise, for 1� i 6¼ j� n. As is com-

mon in most network applications [18], the main diagonal of A is ignored in the analyses. The

term ∏ is used to denote the set of all partitions of the n actors into core and periphery subsets,

and π = {T1, T0} is a partition from ∏, where T1 is the set of actors assigned to the core and T0

is the set of actors assigned to the periphery.

The number of actors in core and periphery of partition π are denoted as nC = |T1| and nP =

|T0|, respectively. Likewise, the number of intra-core and intra-periphery dyads for partition π
are defined as dC(π) = n2

C � nC and dP(π) = n2
P � nP, respectively. The total number of intra-

core and intra-periphery dyads for partition π is d(π) = dC(π)+ dP(π). The total number of

intra-core violations for partition π (zeros in core submatrix) is:

vCðpÞ ¼
X

fi6¼jg2T1

ð1 � aijÞ: ð1Þ

The total number of intra-periphery violations (ones in periphery submatrix) for partition π is:

vPðpÞ ¼
X

fi6¼jg2T0

aij: ð2Þ

We also defined x(π) as a vector corresponding to an ideal core/periphery structure for partition

π, where the first n2
C � nC elements of the vector are ones (i.e., a perfectly connected core) and the

last n2
P � nP elements of the vector are zeros (i.e., a perfectly unconnected periphery). Similarly,

the vector y(π) corresponds to the observed core/periphery structure for partition π, where the

first n2
C � nC elements are the values of aij among all pairs of actors {i 6¼ j} � T1 and the last n2

P �

nP elements are the values of aij among all pairs of actors {i 6¼ j} � T0. The term rXY(π) represents

the bivariate correlation between the vectors x(∏) and y(π). The optimization problem for the

maximum correlation core/periphery partitioning of binary networks as proposed in [1] is:

Maximize : rXYðpÞ ð3Þ

Subject to : p 2 P: ð4Þ

Succinctly, Eq (4) ensures that a partition (π) is selected from the set of all partitions (∏) with the

goal of maximizing the correlation criterion function (3).

Core/periphery partitioning
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Efficient computation of rXY(π) and fast updating

Given the substantial length of the x and y vectors, it would be computationally demanding to

compute rXY(π) from scratch (e.g., using common formulas for the Pearson correlation co-

efficient) each time a new partition was constructed in a heuristic algorithm. Fortunately, the

correlation between the two binary vectors x and y can be computed efficiently using the con-

stants defined above. This is important because it allows for rapid recomputation of rXY(π)

using simple updates to these constants each time the partition is modified by moving an actor

from the core to the periphery or vice versa. The formulas for computing the correlation are as

follows:

The variance of x for partition π is computed as:

s2XðpÞ ¼
dCðpÞ
dðpÞ

� �
dPðpÞ
dðpÞ

� �

: ð5Þ

The variance of y for partition π is computed as:

s2YðpÞ ¼
ðdCðpÞ � vCðpÞ þ vPðpÞÞ

dðpÞ

� �
ðdPðpÞ � vPðpÞ þ vCðpÞ

dðpÞ

� �

: ð6Þ

The covariance between x and y for partition π is computed as:

s2XY ðpÞ ¼
ðdCðpÞ � vCðpÞÞ

dðpÞ

� �

�
dCðpÞ
dðpÞ

� �
ðdCðpÞ � vCðpÞ þ vPðpÞ

dðpÞ

� �

: ð7Þ

The correlation between x and y for partition π is computed as:

rXY ðpÞ ¼
s2XYffiffiffiffiffiffiffiffi
s2Xs2Y

p

 !

: ð8Þ

As an illustration of the formulae for computing the correlation measure, we consider an

asymmetric core/periphery solution originally reported in [1], and later confirmed in [2]. The

binary asymmetric network matrix corresponds to co-citation ties among n = 20 social work

journals [19]. The core/periphery partition, π, reported in ([1], p. 385) consists of nC(π) = 6

core journals and nP(π) = 14 periphery journals. Applying the formulas in the previous subsec-

tion yields dC(π) = 62−6 = 30, dP(π) = 142−14 = 182, and d(π) = 30 + 182 = 212. From the table

published in ([1], p. 385), it is straightforward to count vC(π) = 2 intra-core violations (zeros in

the intra-core submatrix) and vP(π) = 8 intra-periphery violations (ones in the intra-periphery

submatrix–ignoring the main diagonal). From Eq (5), the variance for the ideal structure is

s2XðpÞ ¼
30

212

� �
182

212

� �
¼ :121485. Likewise, from Eq (6), the variance for the observed structure

is s2YðpÞ ¼
ð30� 2þ8Þ

212

� �
ð182� 8þ2

212

� �
¼ :140975. The covariance is computed as s2XY ðpÞ ¼

ð30� 2Þ

212

� �
�

30

212

� �
ð30� 2þ8Þ

212

� �
¼ :108046 using Eq (7). Finally, the correlation is computed using Eq (8) as

rXY ðpÞ ¼ :108046ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:121485Þð:140975Þ
p

� �

¼ :82561. When rounded to three decimal places, this correlation

value comports to the one reported in ([1], p. 385) and is identical to the five-decimal place

value reported in ([2], p. 171).

The proposed computational approach is particularly valuable for rapidly assessing the

impact of neighborhood search operations applied to a given partition. To describe the process

for updating the correlation measure, assume that a new partition π0 is constructed by moving

actor h from the core (T1) to the periphery (T0). This move results in nC(π0) = nC(π)– 1 and

nP(π0) = nP(π) + 1. The formulas in the previous subsection can then be directly applied to

Core/periphery partitioning
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obtain dC(π0) and dP(π0), respectively. An update of the intra-core violations is provided as fol-

lows:

vCðp
0Þ ¼ vCðpÞ �

X

fj6¼hg2T1

ð1 � ahjÞ þ ð1 � ajhÞÞ: ð9Þ

Essentially, Eq (9) removes the contribution to intra-core violations that stem from actor h’s

relationship to all other actors in the core, which is appropriate given h’s removal from the

core. Likewise, because h is moved into the periphery, it is necessary to increase the intra-

periphery violations (ones in the periphery submatrix) that might arise from h’s inclusion in

the periphery. This is accomplished as follows:

vPðp
0Þ ¼ vPðpÞ þ

X

fj6¼hg2T0

ðahj þ ajhÞ: ð10Þ

After making these rapid updates, the correlation for the trial partition π0 is readily computed.

In the case where the new partition π0 is realized by moving actor h from the periphery (T0) to the

core (T1), the result is nC(π0) = nC(π) + 1 and nP(π0) = nP(π)– 1. The values of dC(π0) and dP(π0)
would be updated accordingly. An update of the intra-core violations is provided as follows:

vCðp
0Þ ¼ vCðpÞ þ

X

fj6¼hg2T1

ðð1 � ahjÞ þ ð1 � ajhÞÞ: ð11Þ

Eq (11) augments the contribution to intra-core violations that stem from actor h’s inclusion in

the core via examination of its ties to all other actors in the core. In a similar manner, because

h is removed from the periphery, it is necessary to decrease the intra-periphery violations (ones

in the periphery submatrix) in accordance with h’s ties to other actors in the periphery. This is

accomplished as follows:

vPðp
0Þ ¼ vPðpÞ �

X

fj6¼hg2T0

ðahj þ ajhÞ: ð12Þ

Methods

Existing procedures

Solution procedures for the maximum correlation core/periphery partitioning problem can be

divided into two categories: (i) exact and (ii) heuristic. Exact methods are assured to produce a

globally optimal solution to the problem posed by Eqs 6 and 7, whereas heuristic methods do

not provide assurance. One exact solution approach is to explicitly generate all partitions in ∏
and select the one that provides the largest value for rXY(π). The feasibility of this approach is

likely restricted to networks with 30 or fewer actors, as the number of partitions in ∏ exceeds

one billion when n = 30. An alternative exact approach is to employ branch-and-bound meth-

ods [4]. Unfortunately, the efficient design of strong bounds for the maximum correlation

criterion function is not trivial and, even if good bounds could be established, the size of net-

works that could be tackled would remain modest.

Heuristic procedures for the maximum correlation core/periphery problem include the

genetic algorithm available in Ucinet [1, 11], as well the exchange algorithm, simulated annealing,

and genetic algorithm approaches considered in [2]. Other metaheuristics such as tabu search

[20], variable neighborhood search [21] would also be viable. In light of the fact that the built-in

simulated annealing program inMathematica performed so poorly in the study completed in [2],

we sought to design an effective simulated annealing implementation for the maximum correla-

tion core/periphery partitioning problem. This method is described in the next subsection

Core/periphery partitioning
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Proposed simulated annealing heuristic

Simulated annealing was independently developed in [22] and [23] as a heuristic procedure for

combinatorial optimization problems. The method is based on an analogy to the metallurgical pro-

cess of annealing in statistical mechanics [24], whereby a better final energy state is often achieved

by periodically re-heating the metal during the cooling process. The adaptation of this concept for

optimization problems is that, during a local-search process, periodically accepting a trial solution

(π0) that has a criterion function value that is worse than that of the incumbent solution (π) will

ultimately lead to the achievement of a better final criterion function value. The probability of

accepting a solution that worsens the criterion function is controlled by the extent of the worsening,

which in our context is rXY(π0)–rXY(π)< 0, as well as the current temperature (τ) of the system. Du-

ring the execution of the algorithm, the value of τ is systematically reduced to lower the probability

that inferior solutions will be accepted. The process for reducing τ is known as the cooling scheme.

There are a variety of possible cooling schemes that can be used for simulated annealing,

including the linear, exponential (or geometric), reciprocal, and logarithmic approaches (see

[25–27]). In this paper, we use the reciprocal cooling scheme. Given an initial temperature, τ
(1), and an upper limit on the number of trial solutions generated, ξ, the temperature, τ(q), for

trial solution q is computed as τ(q) = τ(1)/q using the reciprocal cooling scheme.

A natural choice for the initial temperature is τ(1) = 1 because the maximum possible value

of the correlation measure is one. The relocation of an actor from the core to the periphery (or

vice versa) will typically produce a very small change (much less than one) in the criterion

function, particularly for larger networks. Therefore, in the early stages of the algorithm with a

larger cooling parameter, almost every trial solution will be accepted regardless of whether it

improves of worsens the criterion function value. However, by trial solution q = 10,000, the

value of τ(10,000) = 0.0001, and the probability of accepting a solution that worsens the crite-

rion function only slightly is quite small.

If the initial temperature is fixed at τ(1) = 1, then the only user-specified parameter for the

algorithm is ξ. If ξ is chosen too small, then the algorithm might not reach temperatures that

are low enough to ensure convergence to a good solution. On the other hand, choosing a value

of ξ that is too large can be computationally wasteful, as no inferior trial solutions will be

accepted once the temperature is too small. We have found that a range of 100,000� ξ�
1,000,000 trial solutions seems to generally perform well for a diverse range of network sizes.

Fig 1 provides a pseudo code for our implementation of simulated annealing with a recipro-

cal cooling scheme. An initial partition, π, is randomly generated by assigning each actor to

either the core or the periphery based on a uniform distribution with 50% probability for each

subset. This initial partition is then installed as the best-found partition, π�. The algorithm

then generates the selected number of trial solutions (ξ). For each trial solution, an actor is ran-

domly selected, and the cluster membership of that actor is changed from core to periphery or

periphery to core as appropriate. The computation of rXY(π0) for trial solution π0 is performed

using the Eqs 8–13. If rXY(π0)� rXY(π), then π0 replaces π as the incumbent solution and a

check is also made to see if this new incumbent has a greater correlation index and should

therefore replace the current best-found solution π�. If rXY(π0)< rXY(π), then π0 replaces π as

the incumbent solution with a probability of exp ðrXY ðp0Þ� rXY ðpÞÞ
tðqÞ

� �
.

Application to empirical matrices

Selected networks

Our principal focus in this section is to ensure that the simulated annealing algorithm will con-

sistently provide good solutions for modestly-sized networks. Four networks were selected

Core/periphery partitioning
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from the literature for analysis. The first two networks correspond to co-citation network data

for 20 social work journals during the period from 1985 to 1986 [19]. These network data have

been explored in several previous studies [1–5, 11]. The first network matrix corresponds to a

symmetric dichotomization ([1], p. 382) of the social work journal co-citation data, whereas

the second is the asymmetric dichotomized data ([1], p. 385).

The third network matrix corresponds to the Kansas Search and Air Rescue Communica-

tion (Kansas SAR) study that was originally reported in [28]. The asymmetric dichotomized

matrix was adapted from the one published in ([13], p. 55) and reflects message sending and

receiving ties among the n = 20 network agencies. The fourth matrix is a 28 × 28 asymmetric

dichotomized co-citation matrix among statistical and quantitative psychology (and other

social science) journals. This matrix was taken from a study in [4], which adapted the network

from co-citation data published in ([29], p. 547).

Fig 1. Simulated annealing (reciprocal cooling) pseudo code.

https://doi.org/10.1371/journal.pone.0170448.g001

Core/periphery partitioning
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Analysis and results

The simulated annealing algorithm was programmed in Fortran 90 and implemented on a on

a desktop computer using an Intel 1 Core ™ i7-4790 CPU @ 3.6GHz with 8 GB of RAM. The

algorithm was applied to each of the four empirical network matrices using ξ = 100,000 as the

number of trial solutions. For each network matrix, implementation of the algorithm was

repeated 10 times using a different random initial partition for each repetition. The primary

performance measure was the attraction rate, which represents the number of repetitions for

which the best criterion function value was obtained. The secondary performance measure

was the maximum computation time across all 10 restarts. The results are reported in Table 1.

The results in Table 1 indicate that, for each of the four network matrices, the simulated

annealing algorithm produced the same criterion function value for all 10 repetitions. This

consistency is important because it shows that, for modestly-sized networks, the algorithm

is not highly sensitive to the initial starting partitions. The maximum computation times

reported in Table 1 are also modest. Across all matrices and repetitions, the maximum compu-

tation time across the 10 restarts was only .01 seconds.

For the two social work co-citation networks, the partitions obtained correspond to those

originally published in ([1], pp. 382, 385) and later confirmed in [2]. For the psychological/

statistical network, the core was very similar to the one obtained and displayed in ([4], p. 15,

Table 2) using a criterion function that summed the number of (non-diagonal) zeros in the

core and the number of (non-diagonal) ones in the periphery. The core from the partition

reported in [4] consisted of nine journals: {Psychometrika, British Journal of Mathematical and
Statistical Psychology, Multivariate Behavioral Research, Psychological Bulletin, Annals of Statis-
tics, Biometrics, Biometrika, Journal of the American Statistical Association, Journal of the Royal
Statistical Society B}. The first four members of the core are statistical psychology journals and

last five are elite statistical outlets. The partition we obtained using the maximum correlation

criterion function added the journal Applied Statistics to the core. The practical merit of the

inclusion of this journal in the core is debatable, as it is more applied in nature relative to the

other five statistical journals.

The core/periphery partition for the Kansas SAR network is displayed in Fig 2. The value

of the criterion function for this partition is rXY(π) = .71047. The naming convention for the

Table 1. Attraction rates and computation times for empirical network matrices.

Network Size rXY(π) Attraction rate Maximum computation time

Social work journal co-citations

Symmetric, dichotomized n = 20 .85959 10 out of 10 .01

Sources: [1, 17]

Social work journal co-citations

Asymmetric, dichotomized n = 20 .82561 10 out of 10 .01

Sources: [1, 17]

Statistics/Psychology co-citations

Asymmetric, dichotomized n = 28 .50694 10 out of 10 .01

Sources: [4, 27]

Kansas SAR Communications

Asymmetric, dichotomized n = 20 .71047 10 out of 10 .01

Sources: [11, 26]

Note–‘Attraction Rate’ is the number of repetitions (out of 10) for which the reported criterion value was achieved. The maximum computation times are in

seconds.

https://doi.org/10.1371/journal.pone.0170448.t001

Core/periphery partitioning
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agencies in the network was provided in ([11], p. 54). The core consists of nine agencies, most

of which exhibit a high degree of symmetry with respect to their sending and receiving of mes-

sages. The notable exceptions are ‘Shawney’ and ‘Burl Police’, which send messages to most of

the other core members, but do not receive messages from the other core members.

A Simulation study

Simulation design. Simulated annealing proved effective for the modestly-sized networks

in the previous section. However, our goal here is to provide a more robust simulation-based

evaluation of the method across a set of much larger networks with various core sizes and den-

sity characteristics. Five data features were manipulated in the experimental design. The first

feature, the number of actors, was tested at three levels: n = 500, 1000, and 2000. The second

feature controlled the relative sizes of the core and periphery subsets, and was tested at three

levels: (a) the core size is .05n (i.e., 5% of the actors in the core), (b) the core size is .10n, and

(c) the core size is .20n. We selected these levels because the core is typically smaller than the

periphery. The third, fourth, and fifth design features corresponded to the intra-core density,

intra-periphery density, and inter-core-periphery density, respectively. The levels of the third

design feature were 80% and 70%. The levels of the fourth design were 30% and 20%. The lev-

els of the fifth design feature were 40% and 60%.

A fully-crossed design was employed, resulting in 3 × 3 × 2 × 2 × 2 = 72 cells. Three problem

replications were generated in each cell, which yielded a total of 216 test problems in the exper-

iment. The simulated annealing heuristic was applied to each of the 216 test problems for three

different numbers of trial solutions: (i) ξ = 100,000, (ii) ξ = 500,000, and (iii) ξ = 1,000,000. The

criterion function values and computation times were collected for each of the three runs of

the simulated annealing heuristic for each test problem.

The results for ξ = 1,000,000 trial solutions provides a benchmark for evaluating the results

at the other two levels of ξ. Because the results for the simulated algorithm cannot worsen

as ξ is increased, the best-found correlation criterion function value for each test problem is

Table 2. Summary of simulation results.

MRCD Results MPCD Results MPBF Results

Feature Level 100,000 500,000 100,000 500,000 100,000 500,000

Number of actors n = 500 .00003 .00000 .02947 .00053 25.00 94.44

n = 1000 .00028 .00001 .25364 .00432 13.89 48.61

n = 2000 .00147 .00003 1.47529 .03155 11.11 20.83

Percentage of 5% .00101 .00002 1.24427 .02427 1.39 40.28

actors in core 10% .00067 .00002 .47884 .01090 1.39 44.44

20% .00009 .00000 .03529 .00123 47.22 79.17

Intra-core density 70% .00062 .00001 .60961 .01304 12.04 51.85

80% .00057 .00001 .56266 .01122 21.30 57.41

Intra-periphery 20% .00057 .00001 .45406 .00947 20.37 57.41

density 30% .00061 .00001 .71821 .01480 12.96 51.85

Inter core-periphery 40% .00054 .00001 .70895 .01239 25.93 62.96

density 60% .00065 .00002 .46332 .01188 7.41 46.30

Overall .00059 .00001 .58613 .01213 16.67 54.63

Note–the results in the table correspond to 100,000 and 500,000 temperature reductions relative to 1 million:

MRCD–mean raw correlation differences

MPCD–mean percentage correlation differences

MPBF–mean percentage of best-found correlation values

https://doi.org/10.1371/journal.pone.0170448.t002
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realized for ξ = 1,000,000. For the settings of ξ = 100,000 and ξ = 500,000, two performance

measures are computed for each test problem: (i) the raw deviation between the measured cor-

relation value and best-found correlation value for ξ = 1,000,000, and (ii) the raw deviation

measured expressed as a percentage of the best-found correlation value for ξ = 1,000,000.

From these performance measures, three summary measures are computed, both overall and

for different levels of the design features: (i) mean raw correlation deviation (MRCD), (ii)

mean percentage correlation deviation (MPCD), and (iii) mean percentage of best-found cor-

relation values (MPBF).

Simulation results

The computation times for the simulated annealing algorithm were affected by two conditions:

the number of actors (n) and the number of trial solutions (ξ). Computation times ranged

Fig 2. The core/periphery partition for the Kansas SAR network obtained using the simulated annealing algorithm. The

naming system for the agencies is from [11, p. 54), and the rows are the ‘sending’ agencies, whereas the columns are the ‘receiving’

agencies. The two boxes contain the intra-core and intra-periphery elements.

https://doi.org/10.1371/journal.pone.0170448.g002
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from roughly one-half second for the test problems with n = 500 and ξ = 100,000, to roughly

30 seconds for test problems with n = 2000 and ξ = 1,000,000. These times are modest and sug-

gest that the algorithm is computationally feasible for a sufficiently large number of trial solu-

tions (e.g. ξ� 1,000,000) for networks with several thousand vertices. Nevertheless, it should

be noted that computation time is not a linear function of n. For each value of ξ, the average

computation time for the n = 1000 test problems is slightly more than double the average of the

n = 500 test problems. However, the average computation time for the n = 2000 test problems

is slightly more than triple the average of the n = 1000 test problems.

Table 2 reports the MRCD, MPCD, and MPBF values for each level of each design feature

of the simulation experiment. The overall (across all test problems) averages are also reported at

the bottom of the table. The overall MRCD values for ξ = 100,000 and ξ = 500,000 were .00059

and .00001, respectively. Moreover, across all test problems, the maximum difference between

the correlation criterion function measured for ξ = 100,000 and ξ = 1,000,000 was only .00289

(.04981 vs. .05270). Likewise, across all problems, the maximum difference between the correla-

tion criterion function measured for ξ = 500,000 and ξ = 1,000,000 was only .00011 (.13111 vs.

.13122). The overall MPCD values for ξ = 100,000 and ξ = 500,000 were .58613% and .01213%,

respectively. Across, all test problems, the maximum percentage deviations were 5.48387% and

.11021% for ξ = 100,000 and ξ = 500,000, respectively. Finally, the overall MPBF values for ξ =

100,000 and ξ = 500,000 were 16.67% and 54.63%, respectively.

The intra-core density, intra-periphery density, and inter-core-periphery density design

features exhibited a relatively modest effect on the MRCD, MPCD, and MPBF measures. How-

ever, these measures were more strongly affected by the levels for the number of actors and the

percentage of actors in the core. Consider, for example, at n = 500, the implementations using

ξ = 100,000 and ξ = 500,000 matched the best-found correlation values for 25.00% and 94.44%

of the test problems, respectively. However, for n = 2000, the ξ = 100,000 and ξ = 500,000

implementations matched the best-found correlation values for ξ = 1,000,000 for only 11.11%

and 20.83% of the test problems, respectively.

The ξ = 100,000 and ξ = 500,000 implementations performed reasonably well when the per-

centage of actors in the core was 20%, matching the best-found correlation values for 47.22%

and 79.17% of the test problems, respectively. However, their attraction to the best-found solu-

tion was markedly less impressive for the smaller core size levels of 5% and 10%. For these

smaller percentages of actors in the core, the ξ = 100,000 implementation only matched the

best-found correlation value about 1% of the time, whereas the ξ = 500,000 implementation

matched the best-found correlation roughly 40% of the time.

Core/Periphery analyses of organizational networks

Network relations

Three networks were used to demonstrate the simulated annealing heuristic for the maximum

correlation core/periphery partitioning problem. The networks were obtained using the full

roster method [18] for n = 25 mangers and frontline employees of a consumer packaged goods

manufacturer. The 25-member bounded social group consisted of frontline truck drivers and

managers assigned to a specific regional cross-dock warehouse location. One-hundred percent

of the bounded social group responded to the survey, ranking each of the other members of

their social network for the most rigorous recall-based elicitation of social network relations

and ultimately, structure [30]. The research team administered the surveys directly to the

frontline employees and management team at a scheduled monthly meeting.

The three relations examined were: (i) problem solving–that is, identifying those from

whom assistance is sought when a problem arises, (ii) trust–identification of those persons
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from whom advice is trusted, and (iii) information sharing–identification of those persons

from whom information about upcoming store promotions was sought. The three resulting

network matrices were asymmetric and, for each network, the rows of the corresponding net-

work correspond to the tie-senders (the respondents) and the columns correspond to the tie-

receivers (the alters).

Analysis and results

Ten repetitions of the simulated annealing algorithm were applied to each of the three network

matrices. For each matrix, the simulated annealing algorithm obtained the same partition for

each of the 10 repetitions, which is consistent with the findings for the empirical network

matrices investigated above. Although these strong attraction rates are not unequivocal proof

that the global maximum for the correlation criterion function has been achieved, they do

tend to support the likelihood of this result. Figs 3, 4 and 5 display the core/periphery parti-

tions for problem solving, trust, and information sharing, respectively.

The trust network (see Fig 4) is far more dense (density of .60667) than the other two net-

works and, therefore, not surprisingly, has the largest of the cores (14 actors). The core/periph-

ery partition for the trust network also has a larger correlation criterion function value, rXY(π)

= .74630, than the other two networks. The information sharing network (see Fig 5) is the least

dense (density of .22167) of the three networks and has the smallest core (8 actors). However,

the core/periphery partition for the information sharing network also has a solid correlation

criterion function value of rXY(π) = .65933. The density of the problem solving network (den-

sity of .26000) is slightly greater than that of the information sharing network, and its core is

also larger at 11 actors. However, the problem solving network is the least well-structured, as it

core/periphery partition has a correlation criterion value of only rXY(π) = .52004.

Six of the actors, {1, 2, 3, 12, 14, 17}, are present in the cores of the partitions for the problem

solving, trust, and information sharing networks. Accordingly, these six actors occupy central

positions for all three relational roles within the organization. Three of the actors, {4, 7, 21}, are

in the cores for the partitions for the problem solving and trust networks, but not the informa-

tion sharing networks. Actor 10 is in the core for the problem solving and information sharing

networks, but not the trust network. Actor 8 is in the core for the trust and information sharing

networks, but not the problem solving network. Four actors, {9, 16, 22, 24} appear in the core

for the trust network only, and actor 15 is in the core for the problem solving network only.

Nine actors,{5, 6, 11, 13, 18, 19, 20, 23, 25}, were in the periphery for all three networks.

Efficiency and effectiveness for a larger network

To complete our analyses, we studied the efficiency and effectiveness of the simulated anneal-

ing algorithm by applying it to a larger binary network (n = 2114). The data correspond to a

protein interaction network of yeast [31] and are available from several sources including:

http://www3.nd.edu. We applied the 10 restarts of the simulated annealing algorithm to these

data using ξ = 100,000. For comparison purposes, we also conducted maximum-correlation

core/periphery partitioning using Ucinet [11].

Maximum-correlation core/periphery partitioning in Ucinet was accomplished using the

built-in genetic algorithm with the CORR option. The algorithm required 10 hours and 47

minutes on a an Intel 1 Core ™ i7-4720HQ CPU @ 2.6GHz laptop computer with 8 GB of

RAM to produce a solution with a correlation of .07486. By contrast, each of the 10 restarts of

the simulated annealing algorithm required less than 10 seconds to produce a solution, and the

correlation values ranged from .07649 to .07712. In summary, each of the 10 restarts produced

a better solution than the one found by Ucinet and did so in dramatically less time.
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Conclusions

We have presented a new simulated annealing algorithm for maximum correlation core/

periphery partitioning of binary networks. The algorithm is exceptionally fast and requires

minimal parameterization. A key component of the algorithm is that it uses an efficient pro-

cess for updating the Pearson correlation measure between two binary vectors as trial solutions

are generated. This is in contrast to some earlier implementations whereby trial solutions were

evaluated by recomputing the correlation measure from scratch [2].

Fig 3. The core/periphery partition for the problem solving network. The two boxes contain the intra-core and intra-periphery

elements.

https://doi.org/10.1371/journal.pone.0170448.g003
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The algorithm was initially applied to four small empirical networks to measure its consis-

tency across multiple repetitions. For each of the four networks, the algorithm identified the

same partition for each of its 10 repetitions. These findings suggest that the relatively poor per-

formance of simulated annealing in the comparative analyses in [2] was an artifact of the par-

ticular generic implementation inMathematica, not an indication of an inherent flaw in the

simulated annealing approach itself.

Next, a simulation study was completed, wherein the algorithm was applied to much larger

synthetic networks ranging in size from 500 to 2000 actors. The levels of core size, intra-core

Fig 4. The core/periphery partition for the trust network. The two boxes contain the intra-core and intra-periphery elements.

https://doi.org/10.1371/journal.pone.0170448.g004
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density, intra-periphery density, and inter-core-periphery density were controlled in the simu-

lation study, and criterion function performance was evaluated at three different levels for the

maximum number of iterations: 100,000, 500,000, and 1 million. The results of the simulation

study indicated that 500,000 was a reasonable iteration limit even for the largest networks.

The use of the algorithm was demonstrated via an application to three networks (problem

solving, trust, and information sharing) corresponding to 25 frontline employees and

Fig 5. The core/periphery partition for the information sharing network. The two boxes contain the intra-core and intra-periphery

elements.

https://doi.org/10.1371/journal.pone.0170448.g005
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managers for a consumer packaged goods manufacturer. As was the case for the four empirical

network matrices from the literature, the new simulated annealing algorithm consistently pro-

vided the same maximum correlation criterion function value across 10 repetitions.

The algorithm was also applied to a much larger (n = 2114) protein interaction network

from the literature. Ten restarts of the algorithm produced correlation values within a narrow

range (.07649 to .07712). The computation time for each restart was less than 10 seconds. For

comparative purposes, we tackled the same network using the maximum-correlation core/

periphery partitioning capabilities in Ucinet. The genetic algorithm used by Ucinet required

more than 10 hours to obtain a solution, and the correlation of .07486 for that solution was

worse than that of each of the 10 restarts of simulated annealing.

There are a variety of ways in which the method in this paper can be extended. First, the

analyses in this paper were restricted to the case of a single core; however, as noted in [6], there

is the potential for multiple cores. Although the consideration of multiple cores increases the

computational demand because of the presence of more clusters, the general computational

scheme for correlation between two binary vectors is unaffected. Second, we reiterate that the

computational scheme presently incorporated in the heuristic is limited to binary networks.

As noted previously, the proposed heuristic was explicitly designed to capitalize on rapid com-

putation of the correlation between binary vectors. For real-valued networks, sum-of-squares

information would need to be stored for dynamic updating of the correlation measure; how-

ever, the basic structure of the simulated annealing heuristic could remain the same.
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