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DNA replication licensing and cell cycle kinetics of oligodendroglial
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The convergence point of growth-signalling pathways that control cell proliferation is the initiation of genome replication, the core of
which is the assembly of pre-replicative complexes (pre-RCs), resulting in chromatin being ‘licensed’ for DNA replication in the
subsequent S phase. The Mcm2—7 complex is a core constituent of the pre-RC, whose recruitment to replication origins is
dependent on the Cdtl loading factor. Geminin is a potent inhibitor of the initiation of DNA replication by preventing Mcm2—7
assembly at origins via its interaction with Cdtl, ensuring genomic integrity through suppression of re-initiation events in S phase.
Here we investigate the regulation of Ki67, Mcm2, p21, caspase 3 and Geminin in a series of 55 oligodendrogliomas to provide an
integrated picture of how cellular proliferation and programmed cell death are dysregulated in these tumours. Geminin does not
behave as an inhibitor of cell proliferation, its labelling index rising with increasing growth fraction as defined by Ki67 or Mcm2
expression. Geminin is expressed in a higher proportion of cells in higher grade tumours (P<0.001) and shows a strong correlation
to proliferation and replication licensing (P<0.01), but not apoptosis. Increasing tumour anaplasia is not associated with loss of
Geminin. Importantly, the G| phase of the proliferative cell cycle, as assessed by the Geminin/Ki6é7 ratio, shortens with increasing
anaplasia, providing new potential algorithms for prognostic assessment. Origin licensing proteins thus provide powerful novel tools
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The initiation of chromosomal replication is a critical decision
point in cell proliferation downstream of cell signalling and DNA
transcription. This final and critical step in growth control lies at
the convergence point of all oncogenic signalling and transduction
pathways that trigger cell proliferation (Williams and Stoeber, 1999;
Stoeber et al, 2001). Initiation of chromosomal replication is
dependent on sequential assembly of multi-protein complexes,
referred to as pre-replicative complexes (pre-RCs), at replication
origins along the chromosomes during late mitosis and early G1
phase of the cell cycle. Assembly of pre-RCs onto chromatin results
in origins being ‘licensed’ for replication during the subsequent S
phase (Blow and Hodgson, 2002). The initial step in origin licensing
is the binding of the origin recognition complex (ORC) to
chromatin. The origin recognition complex functions as a landing
platform for two loading factors, cell division cycle (Cdc)6 and
Cdtl, which in turn recruit the minichromosome maintenance
(MCM) complex comprised of subunits Mcm2 -7 to the origin (Lei
and Tye, 2001). At the Gl to S phase transition, bi-directional
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for assessment of tumour cell cycle kinetics in routinely processed surgical biopsy material.
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replication forks are established at licensed origins by the concerted
action of cyclin-dependent kinases (CDKs) (Nishitani and Lygerou,
2002) and the ASK-dependent Cdc7 kinase (Masai and Arai, 2002).
Firing of origins triggers a conformational change in the
macromolecular origin-licensing complex, and results in recruit-
ment of the single-strand binding protein RPA and additional
initiation/elongation factors to origins. During this process, the
DNA helix is unwound by the helicase activity of the MCM complex
(Labib and Diffley, 2001), and replication is initiated by the primase
activity of DNA polymerase-o (Bell and Dutta, 2002).

The initiation of chromosomal replication is tightly coupled to
removal of the license and thus prevention of re-licensing
following origin firing. This step is critical as replication must
occur once, and only once, per cell cycle to ensure genomic
stability. As such, human cells have adopted several strategies for
preventing origin re-licensing. These include elevated CDK activity
during the latter half of the proliferative cycle, resulting in
activation and/or removal of replication-licensing factors, changes
in gene expression and/or cell-cycle-regulated ubiquitin-mediated
proteolysis of replication-licensing factors, and expression of a
negative regulator of origin licensing known as Geminin during the
S, G2 and M phases (Blow and Hodgson, 2002; Nishitani and
Lygerou, 2002). Geminin acts as an inhibitor of DNA replication
initiation via its interaction with the loading factor Cdtl and
subsequent inhibition of MCM loading onto chromatin (Wohls-
chlegel et al, 2000; Tada et al, 2001).



We have previously shown that repression of origin licensing is
a ubiquitous route by which the proliferative capacity of cells is
lowered as cells exit from cycle. Withdrawal from cycle into
quiescent, differentiated or senescent states is coupled to down-
regulation of the MCM helicase proteins and the Cdcé loading
factor (Stoeber et al, 2001; Blow and Hodgson, 2002). Importantly,
we have demonstrated that dysregulation of these replicative
factors occurs in dysplastic states, indicating that it is an early
event in tumorigenesis (Williams et al, 1998; Freeman et al, 1999;
Stoeber et al, 1999, 2002; Going et al, 2002). Although Geminin is a
potential inhibitor of cell proliferation (McGarry and Kirschner,
1998; Wohlschlegel et al, 2000), a regulator of differentiation (Kroll
et al, 1998), and may be required for maintenance of genomic
integrity (Saxena and Dutta, 2003), its role in tumour progression
remains to be determined.

Here we investigate the regulation of DNA replication-licensing
factors Mcm2 and Geminin in a series of oligodendrogliomas to
examine the potential linkages between aberrant Geminin expres-
sion and tumour progression. These tumours are relatively
homogeneous, facilitating accurate assessment of proliferation
indices. Moreover, we have previously demonstrated that expres-
sion of the Mcm2 origin-licensing factor rises with increasing
tumour grade and other markers of proliferation in this tumour
type (Wharton et al, 2001). Our study includes a comparison of the
regulation of Geminin with the bona fide cell cycle inhibitor p21/
WAF and an analysis of potential linkages between these cell cycle
regulators and apoptosis.

MATERIALS AND METHODS

Clinical material

A total of 55 surgical specimens of oligodendroglioma were
retrieved from the files of the Histopathology Department of the
Royal Hallamshire Hospital for the period 1985-1997. Ethical
approval for the study was obtained from the local research ethics
committee. Eight of the cases showed focal areas of astrocytic
differentiation. In all, 47 of the cases were first diagnoses and eight
were recurrent tumours. All of the cases were reviewed by a
neuropathologist for confirmation of diagnosis and histological
grade according to the World Health Organisation (WHO) criteria
(Reifenberger et al, 2000a,b). In total, 25 cases were graded as
WHO grade II and 30 as anaplastic tumours, WHO grade III. The
biopsies were derived from 22 female and 33 male patients. World
Health Organisation grade II tumours were from patients with a
mean age of 37.4 years (s.d. 15.6), while WHO grade III tumours
tended to be from older patients, of mean age 44.6 years (s.d. 14.5).

Cell culture conditions

MOLT-4 human leukaemic lymphocytes (ATCC CRL-1582; Rock-
ville, MD, USA) were cultured in CO,-independent media
(Leibovitz (L-15)) supplemented with 50Uml ' penicillin G,
50 ugml ™' streptomycin sulphate and 10% foetal bovine serum
(all from Invitrogen, Paisley, UK) and maintained at 37°C. Using a
novel method for cell synchronisation (membrane elution),
minimally disturbed early Gl-phase cells were collected and
followed during synchronous growth as previously described
(Thornton et al, 2002; Helmstetter et al, 2003). Samples from these
synchronous batch cultures were removed at specific cell cycle
time points for determination of cell concentrations, cell sizes, and
analyses of DNA content and protein. Cell density and size were
determined using a Coulter Z2 Particle Count and Size Analyzer
(Beckman-Coulter, Hialeah, FL, USA). HL-60 cells were obtained
from the European Collection of Cell Cultures (ECACC).
Asynchronous HL-60 cells were maintained between 1 and
5x 10°cellsml™" at 37°C in a humidified 5% CO, atmosphere in
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RPMI 1640 medium supplemented with 2mm glutamine and
10% FCS.

Generation of rabbit polyclonal antisera against full-length
human Geminin

pET15b-human (hs)Geminin (a generous gift from Anindya Dutta;
Wohlschlegel et al, 2000) was expressed in Escherichia coli strain
BL21(De3) and purified by Ni-NTA metal affinity chromatography
following the manufacturers’ instructions (Qiagen, Crawley, UK).
Recombinant hsGeminin was further purified using an (HPLC) Hi-
load Q sepharose 16/10 column in NaPi buffer and eluted with
varying concentrations of 1 M NaCl. Four rabbits were injected with
125 pug of purified hsGeminin protein, and received three boost
injections over a period of 80 days following a standard protocol
(Eurogentech, Seraing, Belgium). The sera were collected and
affinity-purified on a CNBr column against 10 mg of recombinant
hsGeminin protein, eluted with 0.1 M glycine (pH 2.5) and dialysed
into PBS, 1% BSA and 0.1% sodium azide. An equal volume of
sterile glycerol was added and affinity-purified polyclonal anti-
bodies G92 and G95 were stored at —20°C. Antibody purification
was quality controlled by SDS-PAGE for purity and by ELISA.
Specificity of the affinity-purified antibodies was demonstrated by
immunoblotting of cell lysates and by quenching all immunohis-
tochemical staining after incubating antibodies diluted at working
concentrations with equal or less than molar amount of
recombinant hsGeminin protein for 1h prior to a standard
immunohistochemical staining protocol.

Flow cytometric analysis of DNA content, Ki67 and
Geminin

For cell cycle analysis of DNA content, cell samples were fixed in
80% ethanol and stained with propidium iodide as previously
described (Helmstetter et al, 2003) before flow cytometric analysis.
For determination of Ki67 and Geminin content, cells were fixed as
described above, and permeabilised with nonionic detergent using
a method modified from Gong et al (1995). After centrifugation,
cell pellets were resuspended in D-PBS, and either 10 ul of FITC-
conjugated Ki67 monoclonal antibody (clone B56) or the matched
nonspecific staining control (FITC-conjugated IgG; each from BD
PharMingen™, Oxford, UK), or 0.1 ug of affinity-purified rabbit
polyclonal anti-Geminin antibody G95, or G95 and recombinant
hsGeminin protein (1:10 ratio). After 2h incubation at 4°C, cells
were washed with D-PBS containing 1% BSA, concentrated via
centrifugation and stained with propidium iodide. Analyses of
light-scatter properties and DNA/protein content were performed
using a FACSCalibur flow cytometer (BD Biosciences, San Jose,
CA, USA). Cell doublets were excluded by gating on a dot plot of
the width vs the area of DNA fluorescence intensity (Erlanson and
Landberg, 1998). In most samples, 10* cells were examined and
data were stored and analysed using CellQuest™ software (BD
Biosciences), Cylchred (V.1.0.0.1) and WinMDI (V.2.7).

Preparation of protein extracts and immunoblotting

Whole-cell lysates (2 x 10° cells) were prepared for immunoblot-
ting from asynchronous or synchronous batch cultures using a
method modified from Harlow and Lane (1999). Cell pellets were
resuspended by vigorous vortexing in sample buffer containing 3%
SDS, 100 mM DTT, 60 mM Tris (pH 6.8), 0.01% bromophenol blue
and 10% glycerol. Equal loading of MOLT-4 (or HL-60) cell lysates
was achieved by using the extract from equivalent cell numbers in
each lane. Immunoblots were performed as previously described
(Stoeber et al, 2001) using affinity-purified rabbit polyclonal anti-
Geminin antibodies, and antibodies obtained from commercial
sources against the following antigens: Mcm2 (clone 46) and PCNA
(Clone 24; BD Transduction Laboratories™, Lexington, KY, USA),
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Cyclin A (C-19; Santa Cruz; CA, USA). Total cell extracts from
equivalent cell numbers were separated on 10% SDS-PAGE gels
(Invitrogen), before transfer to Hybond-P membranes (Amersham,
Little Chalfont, UK), incubation with primary and secondary
antibodies (HRP-conjugated anti-mouse or anti-rabbit antibodies
(DAKO, Glostrup, Denmark)), and visualisation of immune
complexes using enhanced chemiluminescence (Amersham).

Immunohistochemistry and expression profile analysis

All available slides from each case were reviewed and a block was
selected containing a representative area of oligodendroglioma.
Immunohistochemistry was performed using antibodies against
Mcm2, Ki67, activated caspase 3 and p21, as shown in Table 1.
Apoptotic bodies were assessed on H&E-stained sections. Im-
munohistochemistry was performed using an ABC method and the
signal visualised using diaminobenzidine. Serial sections were cut

Table I Conditions for immunohistochemistry

Antibody Source Dilution Incubation Ag retrieval

Ki67 Novocastra [:25 I'h RT MW 20 min Na citrate pH 6

p2l DAKO [:25 I'h RT MW 20 min Na citrate pH 6

Caspase 3 R&D systems | :600 O/N 4°C MW 20 min Na citrate pH 6

Mcm?2 Transduction  1:1000 I'h RT PC 2min Na citrate pH 6
laboratories

G92 See text

G95 See text

RT =room temperature, O/N =overnight, MW =microwave, PC = pressure

at 4 um onto APES-coated slides, or at 3 yum onto ChemMate slides
(DAKO) for Ki67, Mcm2 and Geminin preparations. Areas of
highest cellularity and expression were used for quantitation, as
previously described (Wharton et al, 1998). For each marker, a
percentage labelling index was obtained from a count of at least
1000 cells using an eyepiece graticule.

Statistical analysis

Statistical analyses were performed using the Statistical Package
for the Social Science (SPSS, V.10.1). Labelling indices between
grades were compared using the Mann-Whitney U-test and
correlation determined using Pearson’s coefficient of correlation.

RESULTS

Generation and characterisation of rabbit polyclonal
antibodies against human Geminin

We raised rabbit polyclonal antisera G92 and G95 against
bacterially expressed full-length human Geminin. In immunoblots
of total cell lysates from asynchronously proliferating human
MOLT-4 leukaemic lymphocytes (Figure 1A, lane 1) and human
promyelocytic HL-60 cells (Figure 1A, lane 2), affinity-purified
antibody G95 detected a single protein with an estimated
molecular mass of ~33kDa, consistent with the reported
electrophoretic mobility of human Geminin (McGarry and
Kirschner, 1998; Wohlschlegel et al, 2000), while the pre-immune
sera did not (data not shown). Antibody G95 also recognised
recombinant Hise-tagged Geminin with a molecular mass of

cooker. ~34kDa (Figure 1A, lane 3). In addition, bivariate flow cytometric
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Figure I (A) Immunoblots of total cell lysates prepared from asynchronously proliferating MOLT-4 and HL-60 cells and rec. human Geminin with anti-

Geminin antibody G95. Rabbit polyclonal affinity-purified antibody G95 detected a single protein with a molecular mass of ~33kDa in total lysates from
MOLT-4 (lane ) and HL-60 (lane 2) cells, and recognised nanogram quantities of rec. Geminin (lane 3; ~34kDa). (B) Bivariate flow cytometry of
asynchronous MOLT-4 cells with G95 alone, or G95 plus rec. Geminin, further supports the notion that the antibody is specific for human Geminin. Note
that cells in GI (2C; grey dots) are Geminin-negative, whereas cells in S—G2—M (black dots) are positive for Geminin. Pre-incubation of G95 with rec.
Geminin results in loss of cell cycle periodicity and little Geminin expression is detected at any stage of the cell cycle. (C) Schematic of membrane elution.
Asynchronously growing MOLT-4 cell cultures are immobilised on surfaces such that gravity coupled with cell division results in release of one daughter cell,
while the other remains surface-bound. Newbom early G| -phase cells are continuously released in the effluent and grow synchronously without evidence of
disturbance. (D) Immunoblots of origin-licensing factors and control proteins in synchronously proliferating MOLT-4 cells. Protein levels of Mcm2, Geminin,
Cyclin A and PCNA were determined in lysates from equivalent numbers of cells isolated from synchronous batch cultures at the indicated times.
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analyses of Geminin expression and DNA content in asynchro-
nously proliferating MOLT-4 cells showed that Geminin was
absent in cells (represented as dots) with a 2C (or G1 phase) DNA
content (grey dots) and increased during S and G2 phases of the
cell cycle (black dots; Figure 1B), consistent with previous studies
in HeLa cells (McGarry and Kirschner, 1998; Wohlschlegel et al,
2000). Pre-incubation of antibody G95 with a 1:10 ratio of
recombinant Geminin resulted in loss of detection of this cell
cycle-specific expression (Figure 1B). Affinity-purified antibody
G92 also recognised the ~33kDa band in total cell lysates, but
showed weak crossreactivity with nonspecific bands of higher
molecular mass (data not shown). Antibody G95 was therefore
chosen for subsequent detailed immunoblot analysis of Geminin
expression during the proliferative cell cycle.

Cell cycle expression of origin-licensing factors and
tumour cell kinetics

Determination of the molecular and temporal events comprising
the process of mammalian DNA replication often requires the use
of synchronous cell populations. We have examined expression of
the standard proliferation marker Ki67, the DNA replication-
licensing factor Mcm2 and the repressor of origin-licensing
Geminin during the proliferative cell cycle, using a novel,
nonchemical method for cell synchronisation (membrane elution;
Thornton et al, 2002; Helmstetter et al, 2003; Figure 1C). We have
employed membrane elution because use of chemical methods for
cell synchronisation may account in part for reported discrepan-
cies in temporal periodicities and subcellular localisation of
replication proteins such as Orcl (Pak et al, 1997; Kreitz et al,
2001; Okuno et al, 2001; Li and DePamphilis, 2002) and Cdc6
(Fujita et al, 1999; Jiang et al, 1999; Mendez and Stillman, 2000;
Petersen et al, 2000).

Newborn (early G1-phase) MOLT-4 cells isolated by membrane
elution progressed through a full cycle of synchronous growth, as
demonstrated by FACS analysis of the DNA content (Figure 1D). In
total cell extracts prepared from these synchronous batch cultures,
protein levels of the DNA replication-licensing factor Mcm2
increase linearly in early G1 phase up to a maximum in S phase
before decreasing during the latter part of the cell cycle (Figure 1D).
Moreover, cell synchronisation by membrane elution has revealed
a similar cell cycle-dependent periodicity in Mcm5 and Mcm7
expression (Eward et al, manuscript submitted), findings that may
have been previously obscured by metabolic perturbation due to
the use of chemical synchronisation agents. Previous work has
suggested that Geminin is present during S, G2 and early mitosis of
the proliferative cell cycle before ubiquitination by the anaphase-
promoting complex (McGarry and Kirschner, 1998; Wohlschlegel
et al, 2000; Nishitani et al, 2001; Tada et al, 2001). Using our newly
generated affinity-purified polyclonal anti-Geminin antibody G95
(Figure 1A), we found little to no expression of this repressor of
origin licensing during G1 phase, with detectable levels at the G1/S

Table 2 Labelling indices — descriptive statistics
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transition and increasing linearly during the remainder of the cycle
before mitotic degradation (Figure 1D). Notably, the Geminin
expression profile is similar to Cyclin A, another oscillating cell
cycle regulator which, like Geminin, is degraded at the metaphase
to anaphase transition via the ubiquitin-proteasome pathway
(Figure 1D) (Yam et al, 2002). In contrast to the proteins described
above, protein levels of proliferating cell nuclear antigen (PCNA)
remained constant during synchronous progression through the
cell cycle (Figure 1D). Moreover, the fraction of MOLT-4 cells
expressing the standard proliferation marker Ki67 during syn-
chronous growth (85-95%; determined by FACS analysis)
remained constant and was similar to the proportion that was
Ki67-positive in asynchronous culture (data not shown). Geminin
therefore provides a precise estimate of the S-G2-M growth
fraction in dynamic cell populations and the ratio of Geminin/Ki67
provides information about the relative length of the G1 phase of
the proliferative cell cycle (Figure 1D).

Correlation of Geminin expression to replication licensing
and cell proliferation

Ki67 and Mcm?2 both demonstrated an increased labelling index in
WHO grade IIT compared to grade II tumours (P<0.01), reflecting
greater proliferation with increasing anaplasia (Table 2). Values for
Mcm2 obtained in this study showed a pattern of increasing
expression with grade similar to that observed previously by us in
a separate series of oligodendroglial tumours (Wharton et al,
2001).

Both Geminin antibodies, G92 and G95, gave strong, predomi-
nantly nuclear staining (Figure 2). Cytoplasmic staining was noted
in some cases, especially with antibody G92. Quantitation of
staining with the two antibodies produced comparable results with
very good correlation (r=0.89, P<0.01) (Figure 3). Although
comparable, staining with G95 was stronger and the values for this
antibody have been used for subsequent analyses.

Geminin expression showed a clear relationship to grade, with
greater labelling indices for both antibodies for grade III vs grade
II tumours (P<0.001), and with a greater variation for the higher
grade tumours (Figure 4, Table 2). Geminin expression showed a
close relationship to licensing for proliferation, with a strong
quantitative relationship to Mcm2 labelling index (r=0.76,
P<0.01) (Figure 5). Examination of the scatter plot did not
suggest the presence of any distinct clustered subgroup in which
the relationship of Geminin expression to chromosome licensing
was differently defined.

Relationship of Geminin to p21/WAF1 expression

We sought to determine whether Geminin behaved similarly to the
cell cycle inhibitor p21. Although the p21 labelling index showed a
trend towards increased labelling with higher grade, this was not
significant. Similarly, although p21 showed a correlation with the

Grade Statistic Ki67 Mcm2 Al Csp3 p2l G92 G95

I Mean (s.d) 114 (85) 160 (15.3) 08 (05) 1.8 (2.5) 23Q27) 25 (1.8) 24 (19)
Median (IQR) 88 (11.7) 102 (16.8) 06 (08) 09 (1.6) 1.5 (3.4) 25 (2.5) 23 (28)

Il Mean (s.d) 22,1 (163) 400 (25.1) 1.1 (07) 24 (2.5) 44 (54) 89 (9.8) 8.5 (6.9)
Median (IQR) 213 (182) 37.8 (44.6) 09 (08) 16 (32) 32 (45) 64 (5.1 64 (72)
P-value* 0.002 <0.001 0058 0335 006 <0.001 <0.001

Al =apoptosis index based on H&E counts, IQR =interquartile range, P-value* =for grade Ill vs grade Il tumours, Mann—Whitney U-test.
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Figure 2 Geminin immunohistochemistry. (A) Low-grade oligodendroglioma showing a single Geminin-positive nucleus (arrow) stained with G95. (B)
G92 showing a similar nuclear pattern of staining. (€) Anaplastic oligodendroglioma showing multiple nuclei stained with G95. Diffuse cell staining is
observed in mitotic figures (arrows). (D) Anaplastic oligodendroglioma stained with G92.

50

N w B
o o o

Gem 92 labelling index

—_
o

0 10 20 30 40 50
Gem 95 labelling index

Figure 3 Scatter plot showing a close correlation between labelling
indices obtained with G92 and G95.

Mcm?2 proliferation marker, this was very weak (r=0.3, P<0.05)
(Figure 6). There was no correlation between p21 and Geminin
(r=0.17, P=0.224).

Induction of p21 may occur due to activation of p53 and may
therefore relate to increasing cellular stress. We therefore sought to
determine whether p21 or Geminin expression might correlate
with degree of apoptosis. Apoptosis was assayed by means of
counts of apoptotic bodies and labelling index for activated
caspase 3. Both of these markers demonstrated a nonsignificant
trend towards higher labelling with grade. Neither p21 nor
Geminin expression demonstrated a significant correlation to
levels of apoptosis (Figure 7).
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Figure 4 Box-whisker plot showing labelling indices for G95 and p21! in
relation to histological grade. Median values are shown as heavy lines within
the boxes. Outlying values (> 1.5 box lengths from the upper end of the
box) are represented as stars or circles.

The Geminin/Ki67 ratio is a new parameter for
determining the relative length of G1 phase in dynamic cell
populations

A comparison of Geminin/Ki67 ratios between low- and high-
grade tumours reveals significant differences. The ratio is
significantly higher for the grade III tumours (mean 0.39, s.d.
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Figure 5 Scatter plot showing a strong linear correlation between
Geminin and Mcm2 expression.
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Figure 6 Scatter plot showing a poor relationship between p2| and
Mcm?2 labelling indices.
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Figure 7 Scatter plot showing the relationship of apoptosis index with
G95 (squares and solid line) and with p21 (triangle and dashed line).
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Figure 8 Box plot showing Geminin to Ki67 ratio for grade Il and grade
Il oligodendrogliomas.

0.2) than grade II tumours (mean 0.25, s.d. 0.17; P=0.005)
(Figure 8), indicating a relatively shorter Gl phase in these
tumours. There was no significant correlation between Geminin/
Ki67 ratio and apoptosis.

DISCUSSION

We have used two polyclonal affinity-purified antibodies to detect
the expression of Geminin in a series of human oligodendroglio-
mas. Both antibodies produced very similar quantitative results,
and demonstrated a predominantly nuclear pattern of expression,
as previously reported in proliferating cell populations (Wohls-
chlegel et al, 2002). Cytoplasmic expression was noted in some
cases, particularly using the G92 antibody. The labelling index for
Geminin was higher for grade III than for grade II tumours,
and showed a strong positive correlation with markers of
proliferation (Ki67) and DNA replication licensing (Mcm2). Our
data show that expression of this origin licensing repressor is
tightly coupled to proliferation in these tumours and do not
support the alternative hypothesis that Geminin is an inhibitor of
cell proliferation. The loss of Geminin therefore does not appear to
be rate-limiting in the establishment of high-grade anaplastic
tumours and may indicate that re-licensing of DNA replication
does not contribute to genetic instability in these tumours. A
similar pattern of expression, whereby Geminin appears to be
expressed in proliferating cells, in a manner analogous to cell-cycle
progression factors, has been noted in proliferating normal tissues
(Wohlschlegel et al, 2002).

Oligodendrogliomas may be subdivided into two molecular
types, according to whether there is deletion from chromosome 1p
and 19q. The presence of 1p/19q loss predicts a longer
progression-free survival and a better response to combination
chemotherapy (Cairncross et al, 1998; Smith et al, 2000; Ino et al,
2001). Similar cytogenetic abnormalities are observed in tumours
which also have areas of astrocytic differentiation (Kraus et al,
1995; Maintz et al, 1997). These molecular subgroups appear
histologically similar (Sasaki et al, 2002). It is conceivable,
however, that such subgroups differ in their patterns of cell cycle
dysregulation. Inspection of scatter plots for our data does not
reveal any distinct tumour subgroups in which the relationship
of Geminin to that of proliferation licensing might be differently
defined, but this is a hypothesis that we are exploring in further
work.
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We also sought to determine in this tumour type whether
Geminin behaved in a similar way to a known cell-cycle inhibitor,
p21. p21 (WAF1/CIP1) and p27 bind to, and inhibit, a range of
Cyclin/CDK complexes, resulting in inhibition of cell cycle
progression (Coqueret, 2003). Previous studies have demonstrated
p21 expression in oligodendrogliomas. Some studies have
suggested that p21 expression increases with increased tumour
grade, with lack of p21 expression associated with a better
prognosis (Miettinen et al, 2001), although other studies have
found little difference in expression between low- and high-grade
tumours (Korshunov and Golanov, 2001). In our series,
we have shown a nonsignificant trend towards higher p21 labelling
indices with higher tumour grade. In contrast, Geminin expression
is strongly related to higher tumour grade and growth fraction.
This suggests that Geminin behaves somewhat differently from
classical cell cycle inhibitors. Data from normal tissue suggest that,
whereas Geminin is particularly associated with proliferating cells,
p21 is more typically seen in quiescence (Wohlschlegel et al, 2002).
Similarly, in our study, the lower expression of Geminin in low-
grade tumours suggests that this origin-licensing repressor is not
required for maintaining tumour cells in quiescence.

Induction of apoptosis in tumours may also reflect cell stress
and in oligodendrogliomas, as in many other tumour types, there
is a trend towards greater levels of apoptosis in higher grade
tumours (Schiffer et al, 1997; Wharton et al, 1998). Activation of
cell cycle inhibitors in higher grade tumours may be a response to
greater cell stress. Expression of p21 is induced by p53 (Prives and
Hall, 1999), and it is possible that such a pathway might operate in
high-grade oligodendrogliomas (Miettinen et al, 2001). We there-
fore hypothesised that there may be a potential linkage between
expression of cell cycle inhibitors and apoptosis. We estimated
apoptosis using counts of apoptotic bodies in H&E preparations,
which correlates well with the TUNEL method (Wharton et al,
1998), and by immunohistochemistry to activated caspase 3.
Activated caspase 3 has been used as a marker for apoptosis, with a
good correlation with other apoptotic indices (Duan et al, 2003). In
this series, neither p21 nor Geminin showed a statistical relation-
ship to these markers of apoptosis.

The differential expression patterns of Ki67, Mcm2-7 and
Geminin during the mitotic cell cycle and their tight down-
regulation in out-of-cycle states (Stoeber et al, 2001; Wohlschlegel
et al, 2002) provide a novel and powerful multi-parameter analysis
for assessment of growth fraction and cell cycle kinetics in human
tissues and tumours. Using membrane elution, we have shown that
Geminin expression is restricted to the S-G2-M phase of the
proliferative cell cycle in human cells (Figure 1D). Previous
assessment of the S-phase fraction has relied on methodologies
such as flow cytometry, in vitro incorporation of *H-thymidine
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