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Rates of b-amyloid accumulation are
independent of hippocampal
neurodegeneration

ABSTRACT

Objective: To test the hypotheses predicted in a hypothetical model of Alzheimer disease (AD)
biomarkers that rates of b-amyloid (Ab) accumulation on PET imaging are not related to hippo-
campal neurodegeneration whereas rates of neurodegenerative brain atrophy depend on the
presence of both amyloid and neurodegeneration in a population-based sample.

Methods: A total of 252 cognitively normal (CN) participants from the Mayo Clinic Study of Aging
had 2 or more serial visits with both amyloid PET and MRI. Subjects were classified into 4 groups
based on baseline positive/negative amyloid PET (A1 or A2) and baseline hippocampal volume
(N1 or N2). We compared rates of amyloid accumulation and rates of brain atrophy among the
4 groups.

Results: At baseline, 148 (59%) were amyloid negative and neurodegeneration negative (A2N2),
29 (12%) amyloid negative and neurodegeneration positive (A2N1), 56 (22%) amyloid positive
and neurodegeneration negative (A1N2), and 19 (8%) amyloid positive and neurodegeneration
positive (A1N1). High rates of Ab accumulation were found in those with abnormal amyloid at
baseline and were not influenced by hippocampal neurodegeneration at baseline. In contrast,
rates of brain atrophy were greatest in A1N1.

Conclusions: We describe a 2-feature biomarker approach to classifying elderly CN subjects that
is complementary to the National Institute on Aging–Alzheimer’s Association preclinical staging
criteria. Our results support 2 key concepts in a model of the temporal evolution of AD bio-
markers. First, the rate of Ab accumulation is not influenced by neurodegeneration and thus
may be a biologically independent process. Second, Ab pathophysiology increases or catalyzes
neurodegeneration. Neurology® 2014;82:1605–1612

GLOSSARY
Ab 5 b-amyloid; AD 5 Alzheimer disease; CN 5 cognitively normal; FDG 5 fluorodeoxyglucose; HVa 5 total intracranial
volume–adjusted hippocampal volume; MCI 5 mild cognitive impairment; MCSA 5 Mayo Clinic Study of Aging; MPRAGE 5
magnetization-prepared rapid gradient echo; NFT5 neurofibrillary tangle; NIA-AA5 National Institute on Aging–Alzheimer’s
Association; ROI 5 region of interest; SNAP 5 suspected non-Alzheimer pathophysiology; SUVR 5 standardized uptake
value ratio; TIV 5 total intracranial volume.

Biomarkers of Alzheimer disease (AD) pathophysiology have been grouped into 2 qualitatively
different categories: biomarkers of b-amyloid (Ab) plaques and biomarkers of tau-related neuro-
degeneration. Recent National Institute on Aging–Alzheimer’s Association (NIA-AA) criteria
for AD address the use of AD biomarkers in all 3 clinical phases of the disease—preclinical, mild
cognitive impairment (MCI), and AD dementia.1–3 Based on the idea that AD biomarkers
become abnormal in an ordered but temporally overlapping manner,4 the preclinical phase is
divided into 3 stages: stage 1, Ab positive; stage 2, Ab plus neurodegeneration; stage 3, Ab plus
neurodegeneration plus subtle cognitive impairment.1

In our initial study describing operationalization of the NIA-AA preclinical AD criteria,5 we
found 16% of cognitively normal (CN) elderly from a population-based sample were in stage 1,
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12% in stage 2, and 3% in stage 3, while 43%
had no biomarker abnormalities and were des-
ignated stage 0. Notably, 23% had abnormal
neurodegenerative imaging biomarkers (fluoro-
deoxyglucose [FDG] PET or hippocampal atro-
phy on MRI) but normal amyloid PET.5 We
labeled this group suspected non-Alzheimer
pathophysiology5 (SNAP) on the assumption
that a mixture of non-AD pathophysiologies—
e.g., hippocampal sclerosis, Lewy body disease,
cerebrovascular disease, and medial temporal
tauopathy without Ab6–8—accounted for the
neurodegenerative biomarker findings in these
subjects. The SNAP group did not fit into the
NIA-AA scheme, which was logical given the
supposition that the neurodegeneration in
SNAP was due to non-AD pathophysiologies.

The observation that such a large proportion
(23%) fell into the SNAP category5 suggests a
complementary way to think about biomarker
classification of elderly CN subjects that parallels
NIA-AA preclinical AD staging.1 If each subject
is labeled positive or negative on Ab and neuro-
degenerative biomarkers, then all elderly CN
subjects can be divided into 4 groups: Ab nega-
tive and neurodegeneration negative (A2N2),
which corresponds to preclinical AD stage 0;
amyloid negative and neurodegeneration posi-
tive (A2N1), which corresponds to SNAP;
amyloid positive and neurodegeneration nega-
tive (A1N2), which corresponds to preclinical
AD stage 1; and amyloid positive and neuro-
degeneration positive (A1N1), which corre-
sponds to preclinical AD stages 2 and 3
(figure 1). By ignoring subtle cognitive changes
and by not requiring Ab to precede neurodegen-
eration in preclinical late-onset AD, this 2-feature
system aligns biomarkers in preclinical AD1 with

the biomarker schemes used for MCI and AD
dementia in the 2011 NIA-AA criteria.1–3

In the present study, we used structural MRI
alone as our biomarker for neurodegeneration,
thereby avoiding the problem of how to com-
bine up to 3 neurodegeneration biomarkers
(CSF tau, atrophy, and FDG-PET hypometab-
olism). This also permitted us to use a single
precise neurodegenerative rate of change mea-
sure—structural MRI—in our analyses. Because
MRI was the only neurodegenerative biomarker
in this study, the proportions of subjects in the
various groups were different from those we
reported in our original publication describing
preclinical AD staging and SNAP,5 where both
MRI and FDG-PET were used for classification
of neurodegeneration.

By relating baseline imaging biomarker val-
ues to subsequent rates of change in those bio-
markers, we can make inferences about possible
disease mechanisms.9 Our objective was to test
predictions from a hypothetical biomarker
model of AD.4,10 Specifically, we tested the
hypotheses that rates of Ab accumulation are
not related to hippocampal neurodegeneration
whereas rates of neurodegenerative atrophy
depend on the presence of both amyloid and
neurodegeneration. Our approach was to com-
pare rates of brain atrophy in an AD-signature
set of regions11 (as our measure of neurodegen-
eration) and rates of Ab accumulation on PET
imaging among groups defined by normal or
abnormal baseline Ab and hippocampal neuro-
degeneration in a large sample of CN subjects
from a population-based study.

METHODS Participants. Participants were drawn from the

Mayo Clinic Study of Aging (MCSA). The MCSA is a longitudi-

nal population-based observational study of cognitive aging

that was established in Olmsted County, Minnesota, in 2004,

initially enrolling subjects aged 70–90 years. Continuous

replenishment results in an active cohort of about 2,000

subjects, approximately 80% of whom are classified as CN.

To be eligible for inclusion in the current study, subjects must

have been classified as CN5 at the time of baseline imaging and

must have had 2 or more multimodal serial imaging assessments,

defined as amyloid PET and MRI obtained at the same time

points. A total of 252 subjects met these criteria. The imaging

studies were obtained over the period March 2006–June 2013.

The median (min, max) time between first and last imaging

examinations was 1.4 (1.0, 6.4) years.

Standard protocol approvals, registrations, and patient
consents. These studies were approved by the Mayo Clinic and

Olmsted Medical Center Institutional Review Boards. Signed

informed consent was obtained from all participants.

Figure 1 Relating 2-feature biomarker classification to operationalized
National Institute on Aging–Alzheimer’s Association preclinical
staging

Illustration of how the operationalized National Institute on Aging–Alzheimer’s Association
preclinical staging criteria correspond to the 2-feature biomarker classification. SNAP 5

suspected non-Alzheimer pathophysiology.
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Amyloid PET methods. PET images were acquired using the

same PET/CT scanner. Pittsburgh compound B PET12 scans,

consisting of four 5-minute dynamic frames, were acquired

from 40 to 60 minutes after injection. Image analysis was done

with our in-house fully automated pipeline,13 which uses MRI to

guide PET region of interest (ROI) placement and to perform

partial volume correction.14 An amyloid PET standardized uptake

value ratio (SUVR) was formed by calculating the median uptake

over voxels in the prefrontal, orbitofrontal, parietal, temporal,

anterior cingulate, and posterior cingulate/precuneus ROIs and

dividing the median uptake value from this meta-ROI by the

median uptake over voxels in the cerebellar gray matter ROI of

the atlas. Using these methods, the relative measurement error

(analogous to a coefficient of variation) for serial amyloid PET is

about 3%,15 indicating adequate longitudinal measurement

precision. Annual change in amyloid PET was estimated by

fitting a regression line using all available scans within each

person. The slope of this regression line is the amyloid PET

accumulation rate. Longitudinal rates in the component ROIs

were each highly correlated with the rate in the meta-ROI

(all p , 0.001).

MRI methods. All subjects underwent MRI scanning at 3T with

a standardized protocol that included a 3Dmagnetization-prepared

rapid gradient echo (MPRAGE) sequence. Scans were performed

on 1 of 2 scanners from the same manufacturer. Hippocampal

volume at baseline was measured with FreeSurfer (v5.1) and total

intracranial volume (TIV) was measured using an in-house

algorithm whereby a TIV mask is propagated from template space

to each subject’s MPRAGE image. Each subject’s raw

hippocampal volume was adjusted for TIV by calculating the

residual from a linear regression of hippocampal volume (y) vs TIV

(x) within 278 APOE e4-negative CN subjects (as in reference 5).

Baseline subject classification for the neurodegeneration variable was

based on this TIV-adjusted hippocampal volume (HVa).

Change in brain volume from the first to last scan was mea-

sured using TBMSyN16 (also see TBM-SyN Based Scores at

http://www.adni-info.org). TBM-SyN is the longitudinal exten-

sion of our previously validated (through both clinical and

autopsy correlation) STAND score11 method, which was devel-

oped as a single time-point measure. Within-subject change is

captured by computing the log of the Jacobian determinants from

a nonlinear deformation estimated using SyN,17 to align longitu-

dinal images. The deformation is computed in both directions

explicitly, and the log of the Jacobian determinants formed in

each direction. These log Jacobian maps are then annualized and

integrated over ROIs, and the values from the forward and reverse

directions averaged together within each ROI. Atrophy rates were

computed from annualized log Jacobian determinant values in

our previously published AD-signature meta-ROI,11 which

includes the right and left hippocampus, amygdala, entorhinal

cortex, precuneus, temporal pole, ventricle, parahippocampal,

fusiform, angular, superior, mid, and inferior temporal and

occipital gyri. This rate was multiplied by 100 and can be inter-

preted as approximately the percentage change in volume for the

ROIs per year; we refer to it as the AD-signature atrophy rate.

This TBM-SyN method has been used to analyze approximately

4,400 Alzheimer’s Disease Neuroimaging Initiative MRI exami-

nations, which are publicly available at http://www.adni-info.org.

Both hippocampal volume and the AD-signature meta-ROI

include the topography of brain atrophy that is characteristic of

AD.11 We used HVa to classify subjects at baseline while the

AD-signature meta-ROI, with TBM-SyN used for atrophy rate

measures. Our reasoning was that hippocampal volume is a

widely used and accepted biomarker in the field for classifying

subjects, while there is no universal standard analogous to the

AD-signature meta-ROI we employed. However, atrophy rate

measures were one of the two primary outcomes in this analysis

and the TBM-SyN algorithm using the AD-signature meta-ROI

produces more precise rate measures than hippocampal

volumes.16

Cutpoints and subject classification. We defined the negative/

positive threshold for amyloid PET scan and HVa such that 90% of

an independent group of clinically diagnosed AD participants,

described in our original publication describing preclinical AD stag-

ing and SNAP,5 were categorized as abnormal. Cutpoints were

20.63 HVa and 1.50 for amyloid PET SUVR. Participants were

classified into 4 groups defined by the combination of abnormality

for amyloid (A) and HVa (neurodegeneration, N) at baseline:

A2N2, A2N1, A1N2, and A1N1.

Statistical methods. Pairwise differences in patient characteris-

tics among the 4 biomarker groups (A2N2, A2N1, A1N2,

A1N1) were assessed using t tests and x2 tests. We compare

rates of change among the 4 groups with pairwise t tests. Since the
distribution of HVa is not bimodal like amyloid PET, and con-

sequently less suggestive of a cutpoint, we also used linear regres-

sion in a secondary analysis to assess the relationship between the

baseline measures of amyloid PET and neurodegeneration (HVa)

and the rates of AD-signature atrophy and amyloid PET

accumulation. For each rate, we fit a linear regression model

with HVa as a continuous predictor, amyloid PET as positive/

negative, and the interaction between the 2 baseline measures.

RESULTS Demographics. A1N1 subjects were older
than A2N2 (p , 0.001) and A1N2 subjects (p 5
0.02) (table). Sex was not different among the groups.
The proportion of APOE e4 carriers was greater in
A1N2 compared to A2N2 (p , 0.001) and
A2N1 (p 5 0.01) and greater in A1N1 compared
to A2N2 (p , 0.001) and A2N1 (p 5 0.01).

Imaging analyses. The AD-signature atrophy rate was
greater in the A1N1 group (figure 2) than the
A2N2 (p 5 0.002), the A2N1 (p 5 0.04), and
the A1N2 (p 5 0.02) groups. There were no
significant differences in AD-signature atrophy
rates between the A2N2, A2N1, and A1N2

groups.
In contrast, the amyloid PET accumulation rate

was greater in both the A1N2 and A1N1 groups
compared to the A2N2 and A2N1 groups (p ,

0.001 for all). The amyloid accumulation rate did not
differ between the A2N2 and A2N1 groups or
between the A1N2 and A1N1 groups.

In a secondary analysis, we used linear regression to
assess the relationship between baseline biomarkers and
rates with HVa as a continuous predictor and amyloid
PET categorized as positive or negative. The results
were similar to those we saw among the 4 biomarker
groups. For the AD-signature atrophy rate, there was
evidence (p 5 0.06) of an interaction between HVa
and amyloid PET such that among subjects with posi-
tive amyloid PET scans, the AD-signature atrophy rate
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was greater for those with more abnormal HVa levels
(p 5 0.002, figure 3). However, among the subjects
with negative amyloid PET scans, the AD-signature
atrophy rate did not differ by HVa level. For the amy-
loid PET accumulation rate, there was no significant
interaction between baseline amyloid PET and HVa.
The rate of amyloid PET accumulation was greater in
those with positive amyloid PET scans compared to
negative (p , 0.001) but was not different by baseline
HVa (p 5 0.49).

DISCUSSION We present a way to characterize
elderly CN individuals using Ab and neurodegenera-
tion biomarkers that is complementary to the NIA-AA
preclinical staging criteria.1 Our major findings were
that high rates of Ab accumulation were found in
those with abnormal Ab at baseline and were not
influenced by hippocampal neurodegeneration at
baseline. In contrast, AD-signature atrophy rates
increased with greater baseline neurodegenerative
atrophy and were greatest when both Ab and
hippocampal neurodegeneration were present at
baseline.

In relating our imaging findings to disease mecha-
nisms, we assume that amyloid PET directly measures
fibrillar Ab deposits, which has been thoroughly docu-
mented through imaging-autopsy studies.18,19 We also
assume that atrophy on MRI is a direct measure of
neurodegeneration—i.e., loss of neurons or their pro-
cesses.10 Multiple independent imaging-autopsy stud-
ies document that brain atrophy correlates well with
both cell loss20 and tau pathology (both Braak stage
and immunohistochemical measures of tau burden),

but not with fibrillar Ab deposits.21,22 However, hip-
pocampal atrophy is not specific for AD.23 Non-AD
pathologic processes common in the elderly24 also
result in brain volume loss—for example, hippocampal
sclerosis, ischemic cerebral vascular disease, perhaps
TDP43, and medial temporal tauopathy without
Ab.23 Regarding medial temporal tauopathy, Braak
and Braak6 found that 97% of autopsied subjects in
their 70s have neurofibrillary tangle (NFT) stage I–II
or greater. The median age in our study was 78, so we
can safely assume that nearly all subjects in our study
had some degree of NFT pathology at baseline. More-
over, aging in the absence of known pathologic pro-
cesses may be associated with brain atrophy.25 In the
absence of in vivo biomarkers of all of these etiologic
processes, it is impossible to know in a given subject
what proportion of hippocampal volume loss is tau-
related vs due to other degenerative processes. Thus,
we interpret hippocampal atrophy as a nonspecific
measure that could reflect any of these age-related pro-
cesses that lead to neurodegeneration, but must reflect
tau-related (i.e., AD) neurodegeneration to varying
degrees in all our subjects because of their age. Tau
PET ligands26 will be essential to understanding the
relationships between etiologically nonspecific imaging
measures of neurodegeneration such as MRI and
FDG-PET and the different underlying neurodegen-
erative processes that are common in the elderly.24

We and others have previously reported that rates
of Ab accumulation vary with an inverted U-shape
when plotted against baseline amyloid level.15,27–29

This inverted U-shaped rate vs baseline amyloid plot
(after integration with respect to time) gives a sigmoid

Table Characteristics of participants

Characteristic Overall (n 5 252) A2N2 (n 5 148) A2N1 (n 5 29) A1N2 (n 5 56) A1N1 (n 5 19)

Age, y 78 (75, 83) 77 (75, 82) 78 (76, 84) 79 (77, 82) 82 (80, 84)

Male, n (%) 153 (61) 86 (58) 17 (59) 38 (68) 12 (63)

APOE e4 positive, n (%) 68 (27) 28 (19) 5 (17) 25 (45) 10 (53)

Education, y 14 (12, 16) 14 (12, 16) 15 (13, 17) 14 (12, 16) 12 (12, 14)

Baseline imaging biomarkers

Amyloid PET, SUVR 1.38 (1.30, 1.57) 1.32 (1.29, 1.38) 1.37 (1.34, 1.39) 1.87 (1.62, 2.06) 1.91 (1.66, 2.28)

Hippocampal volume, cm3 7.0 (6.5, 7.5) 7.2 (6.9, 7.6) 5.8 (5.4, 6.2) 7.1 (6.7, 7.6) 5.9 (5.8, 6.3)

HVa 0.09 (20.47, 0.61) 0.32 (20.10, 0.67) 20.96 (21.24, 20.79) 0.19 (20.20, 0.67) 20.93 (21.01, 20.82)

Annual rate of change in
imaging biomarkers

Amyloid PET accumulation,
SUVR per year

0.02 (0, 0.06) 0.02 (0, 0.04) 0.01 (0, 0.04) 0.07 (0.04, 0.10) 0.07 (0, 0.11)

AD-signature atrophya 20.81 (21.21, 20.40) 20.70 (21.13, 20.29) 21.00 (21.18, 20.47) 20.86 (21.20, 20.45) 21.30 (21.80, 21.03)

Time between first and last
scans, y

1.4 (1.3, 2.6) 1.4 (1.3, 2.6) 1.4 (1.3, 2.7) 1.4 (1.3, 2.6) 1.4 (1.3, 2.6)

Abbreviations: AD 5 Alzheimer disease; HVa 5 total intracranial volume–adjusted hippocampal volume; SUVR 5 standardized uptake value ratio.
Values shown are median (IQR) unless otherwise noted.
aUnits are approximately annual percent change per year.
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shape to a plot of amyloid load vs time, as was pre-
dicted hypothetically.4 This same finding was present
in the amyloid PET data in this study; however, in
the present study we focus on interrelationships
among amyloid accumulation and atrophy rates.

Several groups have shown that atrophy rates are
higher in Ab-positive than amyloid-negative CN sub-
jects.30,31 This observation has been refined to show
that high rates of entorhinal cortex atrophy depend
on the presence of both abnormal CSF phospho-tau
and CSF Ab 42 in CN and MCI subjects.32 High
hippocampal atrophy rates depend on the presence of
both abnormal amyloid PET and either FDG hypo-
metabolism or hippocampal atrophy.33 Whereas in
the present study we show that atrophy rates depend
on the presence of both abnormal amyloid PET and
hippocampal neurodegeneration, we also compared
the rates of amyloid and neurodegeneration within
the same subjects, which allows for more comprehen-
sive inferences about possible disease mechanisms. As

discussed in reference 9, we assume that a baseline
variable that is associated with a subsequent rate is
consistent with, though does not prove, a cause and
effect relationship. In contrast, lack of an association
between a baseline variable and a subsequent rate is
consistent with absence of a cause and effect
relationship.

The amyloid cascade hypothesis34 assumes serial
causal events with Ab aggregation causing tau aggrega-
tion and hyperphosphorylation and other downstream
pathologic processes that eventually lead to clinical
symptoms. Variations on the amyloid cascade hypoth-
esis for late-onset AD have been proposed that share the
common theme that Ab and tau are initiated indepen-
dently but interact with pathogenic synergy.35–37

We do not know the long-term clinical or patho-
logic outcomes of the subjects in our study at this
time; however, preclinical biomarker behavior in
our subjects supports some of the key features of a
biomarker model of late-onset AD described by some

Figure 2 Rates of atrophy and amyloid accumulation by 2-feature biomarker classification

Box plots of Alzheimer disease (AD)–signature atrophy rate (A) and amyloid PET accumulation rate (B) by baseline biomarker
group: amyloid negative and neurodegeneration negative (A2N2), amyloid negative and neurodegeneration positive
(A2N1), amyloid positive and neurodegeneration negative (A1N2), and amyloid positive and neurodegeneration positive
(A1N1). AD-signature atrophy rate is a measure of annualized log Jacobian values multiplied by 100, which can be inter-
preted as approximately the annualized percentage change in volume in the AD-signature regions. Amyloid PET accumu-
lation is a measure of annual rate of change in amyloid PET in standardized uptake value ratio per year.
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of us.4,10 (We specify late-onset AD here because
antecedent medial temporal tauopathy without Ab
is likely not a typical feature of autosomal dominant
AD nor perhaps AD in APOE e4 homozygotes.) The
pathophysiologic underpinnings of this biomarker
model are summarized as follows. Brainstem and
medial temporal NFT first appear (in most people
by late middle age but often younger38) in individuals
who do not have Ab plaques at that time. Amyloid
plaques arise later and independently from medial
temporal tauopathy. Through unknown mecha-
nisms, aggregated Ab catalyzes the acceleration of
antecedent medial temporal tauopathy leading to
neocortical spread of NFT, as initially proposed in
reference 7. This may occur by cell-to-cell transmis-
sion.39 The clinical phases of the disease are charac-
terized by plateauing of Ab accumulation40 while
tau-related neurodegeneration continues to proceed.
Clinical symptoms are attributable to neurodegene-
ration, not to a direct local toxic effect of Ab.40 Note
that this model does not contradict the amyloid cas-
cade hypothesis in the sense that Ab catalyzes tauop-
athy, not the reverse. The temporal evolution of
biomarker changes in the model reflects the supposi-
tion that while clinical symptoms are attributable to
tau-related neurodegeneration, Ab is the upstream
driver of this process.

Data in the present study support 2 key aspects of
this late-onset AD model.4,10 First, rates of Ab accu-
mulation were not influenced by hippocampal neu-
rodegeneration at baseline. Thus, to the extent that
hippocampal atrophy at baseline reflects tau-related
neurodegeneration, our data support the concept
that the rate of Ab accumulation is biologically inde-
pendent from tau-related neurodegeneration. Sec-
ond, we found that AD-signature atrophy rates
were elevated only in participants with evidence of
both Ab and hippocampal atrophy at baseline. We
can assume that nearly all our subjects had some
medial temporal tauopathy at baseline6; therefore,
to the extent that hippocampal atrophy reflects
tau-related neurodegeneration, our data support
the concept that Ab pathophysiology accelerates
tau-related neurodegeneration. Furthermore, our
AD-signature meta-ROI included areas outside
the medial temporal lobe, thus supporting the
notion that Ab may enhance spread of tau-related
neurodegeneration from allocortex to association
neocortex.7
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