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Understanding the ecological processes that underpin the dynamics of 

community turnover in response to environmental change is critical to predicting 

how warming will influence ecosystem functioning. Here, we  quantify the 

effect of changing temperature on community composition and ecosystem 

functioning via the action of ecological selection on population-level thermal 

traits. To achieve this, we use microbes isolated from a network of geothermal 

streams in Iceland where in situ temperatures span 8–38°C within a single 

catchment. We  first quantified variability in thermal tolerance between taxa, 

and then assembled synthetic communities along a broad thermal gradient 

to explore how temperature-driven selection on thermal tolerance traits 

shaped the emergent community structures and functions. We found marked 

changes in community structure and composition with temperature, such 

that communities exposed to extreme temperatures (10, 35°C) had highly 

asymmetric biomass distributions and low taxonomic richness. Thermal optima 

were a good predictor of the presence and relative abundance of taxa in the high-

temperature treatments. We also found that the evenness of the abundance 

distribution was related to ecosystem production, such that communities with 

more equitable abundance distribution were also the most productive. Our 

results highlight the utility of using a multi-level approach that links population-

level traits with community structure and ecosystem functioning to better 

understand how ecological communities will respond to global warming.
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Introduction

Habitat destruction, over-exploitation, and non-native species invasions have been the 
prominent focus of research into biodiversity loss, but climate change is predicted to 
emerge as the main threat to global biodiversity over the coming decades (Ceballos et al., 
2015; Cowles et al., 2016; Craven et al., 2016; Newbold, 2018). Currently, an estimated 25% 
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of all species are at threat from extinction and that number is 
projected to rise further in the future (Ceballos et al., 2015, 2017). 
Substantial evidence suggests that the structure of ecological 
communities (e.g., taxonomic composition, species richness, and 
biomass distribution) is critical to maintaining the stability and 
productivity of ecosystems and that the reorganization of 
community structure due to environmental change will 
compromise the capacity of ecosystems to provide vital services 
(e.g., carbon storage and maintenance of soil fertility; Loreau et al., 
2003; Elmqvist and Fragkias, 2013; Awasthi et al., 2014; Garcia 
et al., 2018; Garcia-Palacios et al., 2018). Understanding how novel 
communities emerge under global warming is therefore crucial to 
predict the impact on ecosystem functioning (Angilletta, 2009; 
Isbell et al., 2015; Garcia et al., 2018; Bestion et al., 2020).

Traits are measurable physiological or morphological 
properties of individuals that strongly influence organism 
performance and ultimately fitness (Lavorel and Garnier, 2002; 
Violle et  al., 2007). Different traits (or combinations of traits) 
affect fitness under particular environmental regimes, and 
therefore, phenotypic trait variance is thought to be a key feature 
that determines how ecosystem structure and function respond to 
environmental change (Norberg et al., 2001; Cunningham and 
Read, 2003; Enquist et al., 2015). Trait-based approaches have 
received growing interest because they offer the potential of 
developing a predictive framework for understanding of how 
species organize within communities and indeed how they may 
reorganize under environmental change (Lavorel and Garnier, 
2002; McGill et al., 2006; Litchman and Klausmeier, 2008).

Thermal performance curves (TPC) characterize how 
components of fitness (e.g., individual growth rate) change with 
temperature and have a unimodal shape, increasing up to a 
maximum (optimal temperature, Topt) and then rapidly declining 
(Angilletta, 2009; Padfield et al., 2016). The parameters describing 
the shape of the curve (e.g., Topt) can be considered traits—i.e. 
characteristics that influence fitness under environmental 
variation (Schaum et al., 2017; Bestion et al., 2018; Kontopoulos 
et  al., 2020). These traits are likely to influence both species’ 
persistence in the environment as temperature regimes change 
and their contribution to ecosystem functioning by shaping 
performance relative to competitors (e.g., in terms of growth rate 
and biomass production; Norberg et al., 2001; Cunningham and 
Read, 2003; Garcia et al., 2018). Thus, species-specific thermal 
tolerance traits offer a tool to understand (and even predict) how 
novel communities may emerge as ecosystems warm in the 
coming decades. Consider, for example, a pool of species with 
diversity in thermal tolerance traits, if the species pool is exposed 
to different thermal scenarios, the taxonomic structure of the 
assemblage will be influenced by the differential performance of 
the species embodied in their tolerance curves (Figure 1). At 
benign temperatures where few species experience thermal stress, 
temperature will have little impact on community structure, 
which will be  determined by other limiting factors (resource 
competition, predation, and parasitism; Figure  1; Case 2). 
However, under thermal stress, due to either low (case 1) or high 

temperatures (case 3), communities are likely to move toward 
being dominated by a few taxa that can cope with the (relatively) 
extreme environmental conditions. These communities are 
characterized by low species richness (Figure 1) and low evenness 
in the distribution of biomass among species, i.e., the few species 
that can survive the extreme conditions dominates the 
community. Consequently, declines in species richness and shifts 
toward more asymmetric biomass distributions are anticipated to 
significantly impair ecosystem function (Norberg et al., 2001; 
Litchman et al., 2007; Enquist et al., 2015).

Trait-based approaches have been used to understand a wide 
variety of taxa (plants, phytoplankton, zooplankton, and microbial 
communities). These studies are typically conducted at broad scales 
using observational data and often within a single trophic level 
(Westoby and Wright, 2006; Follows et  al., 2007; Follows and 
Dutkiewicz, 2011; Edwards et al., 2013; Record et al., 2013; Coles 
et al., 2017). While observational studies have led to major advances 
in the development of trait-based approaches, they also suffer from 
limitations because environmental variables that are hypothesized as 
being key drivers of variation in traits and fitness are often 
confounded, making it challenging to causally link traits with the 

FIGURE 1

Graphical representation of community assembly based on 
thermal traits under different temperature conditions. Case 1: 
Community exposed to cold temperature (~10°C); Case 2: 
Community exposed to ambient temperature (~20°C); and Case 
3: Community exposed to warm temperature (~40°C). The 
vertical axis represents the fitness of the species (e.g., growth 
rate). Consider, for example, a pool of species with diversity in 
their thermal tolerance traits, if the species pool is exposed to 
different thermal scenarios, the taxonomic structure of the 
assemblage may differ based on the relative fitness of the 
species’ embodied in their tolerance curves. At benign 
temperatures where few species experience thermal stress, 
communities are likely to have high levels of species richness 
(Case 2). However, under thermal stress, due to either low (case 
1) or high temperatures (case 3), communities are likely to move 
toward being dominated by a few taxa that are able to cope with 
the (relatively) extreme environmental conditions. These 
communities are characterized by low species richness and low 
evenness in the distribution of biomass among species, i.e., the 
few species that can survive the extreme conditions dominate 
the community.
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environment. By contrast, experimental approaches offer the 
opportunity to test causal relationships between environmental 
factors and the distribution of traits in communities, and their effect 
on ecosystem functioning. Of course, the drawback of an 
experimental approach is that experiments are often conducted in 
highly simplified environments that can be limited in terms of their 
ecological realism. While observational studies in traits-based ecology 
have been plentiful, experimental approaches have received far less 
attention as a tool for developing and testing trait-based theory 
(Elmendorf et al., 2012, 2015; Khaliq et al., 2014; Pinsky et al., 2019).

In this regard, microbial communities are an excellent model 
system for investigating the link between species traits and 
community structure because some traits can be easily quantified, 
ecological dynamics play out rapidly and experiments can 
be carried out in high throughput with massive replication (Bell 
et al., 2005; Fiegna et al., 2015; Goldford et al., 2018). Microbes also 
play a key role in ecosystem processes such as the decomposition 
of organic matter, the recycling of nutrients as well as forming the 
base of food webs (Woodwell et  al., 1998; Woodward, 2007). 
Disruption to microbial community structures could therefore 
affect the structure and functioning of entire ecosystems (Yvon-
Durocher et al., 2010; Wang et al., 2014). Here, we use bacterial 
isolates from freshwater Icelandic geothermal streams to investigate 
how species richness (the number of species) and evenness (the 
relative abundance of species) respond to changing thermal regimes 
and how these changes may affect ecosystem functioning. We also 
investigate how variance in thermal tolerance traits between taxa 
shape compositional changes in the communities under different 
thermal regimes. These experiments aim to further improve our 
understanding of the mechanisms that drive community responses 
to environmental warming to ultimately help build a body of 
knowledge that can be used to develop models that can predict the 
impacts of environmental change on ecosystem services.

Materials and methods

Biofilm samples were collected in May 2016 from the surface 
of rocks from 11 natural freshwater streams in Hveragerdi Valley, 
Iceland (latitude = 64.02, longitude = −21.18). These 
groundwater-fed streams ranged in temperature from 7 to 38°C 
due to varying geothermal warming of the bedrock (O’Gorman 
et al., 2014). Samples were frozen after collection with 17% glycerol 
and stored at −20°C until they were processed in the laboratory.

Once in the laboratory, samples were thawed at 20°C and were 
prepared by spreading 10 μl consecutive dilutions onto agar plates 
with sterile glass beads. The plates were then incubated at 20°C for 
10 days to allow the bacterial populations to grow. The resulting 
colonies were selected at random, placed into 200 μl LB broth, and 
incubated for 48 h. Samples were subsequently centrifuged, the 
supernatant removed, and the pellet re-suspended in a mix of LB 
broth and 17% glycerol before being frozen at −80°C. Isolates 
were assigned taxonomic identification using 16S PCR followed 
by Sanger sequencing within the 16S rRNA gene. Taxonomy was 

classified by using the Silva database. A total of eight different taxa 
were selected for the experiments based on the ability for visual 
discrimination of taxa on agar plates. The taxa isolated represented 
eight different genera and were Pseudomonas sp., Chromobacterium 
sp., Iodobacter sp., Serratia sp., Aeromonas sp., Mucilaginibacter 
sp., Herbaspirillum sp., and Janthinobacterium sp. (details and 
accession numbers are given in Supplementary Table S1).

Taxon-level thermal tolerance

The eight taxa were defrosted in LB and acclimated for 24 h. 
Samples were then transferred into a protozoan media prepared by 
adding protozoan pellets to autoclaved Volvic® mineral water at a 
ratio of 0.76 g of pellets to 100 ml of water. The Volvic water is 
characterized by its low mineralization content and stable pH. For 
this reason, it is media widely used in microbial experiments. 
Protozoan pellets were used as they are created from plant material 
that encompasses a large diversity of carbon sources that facilitate 
bacterial growth (Tan et al., 2012). Samples were then diluted to a 
common density and pipetted into a 96-well plate with 200 μl of 
filtered and autoclaved protozoan medium. Six replicates of each 
taxon were exposed to nine temperature treatments (0, 15, 20, 25, 
30, 35, 40, 45, and 50°C). Furthermore, four “blanks” were included 
in the well-plate, which solely comprised the protozoan medium. 
Each well-plate was placed into a Percival incubator at the nine 
assay temperatures. The optical density (OD600) of each replicate 
was measured every 2 h using a BioTek reader synergy 2 at 600 nm 
wavelength. The optical density of each replicate was compared to 
blank samples to account for any organic matter present in the 
protozoan medium. This process was repeated until each of the taxa 
reached carrying capacity. Growth rates [r (h−1)] and carrying 
capacities were calculated by fitting the logistic growth equation to 
the biomass measurements using non-linear least squares regression:
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where Nt is the biomass at time, t, K is the carrying capacity, 
N0 is the biomass at the start of the experiment, and r is the 
exponential population growth rate (h−1). The thermal tolerance 
curve was calculated by fitting the Sharpe-Schoolfield equation 
to the average population growth rate (the mean of six technical 
replicates was calculated at each temperature along the thermal 
gradient) for each taxon:

 

ln ln

ln

r T E
kT kT

r T

e

a
C

c

E
kT kT

( )( ) = −








 + ( )( )

− +
−








1 1

1

1 1

 
h

h















 

(2)

https://doi.org/10.3389/fmicb.2022.906252
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Garcia et al. 10.3389/fmicb.2022.906252

Frontiers in Microbiology 04 frontiersin.org

where r(T) is population growth rate (h−1), k is Boltzmann’s 
constant (8.62*10−5 eV K−1), Ea is the activation energy and 
indicates the steepness of the slope of the rising part of the TPC, 
T is the temperature in Kelvin (K), Eh is the temperature-
induced inactivation of growth above Th, which is the 
temperature where half the enzymes are non-functional, and 
r(Tc) is the rate of growth at a reference temperature, in this 
case, 18°C. Equation 2 was fitted to the growth rate data. 
Non-linear curve fitting of growth rate data was achieved by 
modeling 1,000 random sets of initial parameters extracted from 
a uniform distribution and retaining the combination that 
returned the lowest Akaike information criterion (AIC score) 
using the “nlsLoop” package (Padfield et al., 2016) in R program 
(R Core Team, 2019). The optimum temperature of growth 
(Topt), the temperature at which the species shows their 
maximum growth rate, was calculated by differentiating 
Equation and solving for the maxima yielding the 
following equation:
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The different parameters, Topt, Ea, r(Tc), and Th, that 
characterize the shape of the TPC are considered hereafter as 
thermal traits (see estimated parameters, CI, and quasi r2 estimates 
in Supplementary Table S2).

Quantifying temperature-driven changes 
in community structure

The eight taxa were defrosted in LB for 24 h at 20°C and then 
assembled into communities at equal densities. To build the 
communities, 500 μl of each of the eight taxa was added to 96 ml 
of 0.2 μm filtered and autoclaved protozoan medium to yield 
100 ml of the mixed community sample at each temperature. Four 
milliliter of each community sample was then placed into 5 ml 
vials with a 1 ml headspace. This process was repeated 20 times 
and included four blanks that solely comprised the protozoan 
medium. The samples were then placed into Percival incubators 
for 7 days at six temperatures (10, 15, 20, 25, 30, and 35°C). 200 ul 
of each sample was collected every day so the optical density of 
each replicate could be quantified using the BioTek reader synergy 
2 at 600 nm wavelength. The 200 μl of the sample taken was 
immediately replaced with 200 μl of Milli-Q water acclimated at 
the relevant treatment temperature.

Biomass (OD600) was monitored every 2 days at each assay 
temperature during the experimental incubation to assess the 
changes in biomass over time at each temperature treatment 
(10, 15, 20, 25, 30, and 35°C). Communities were initially 
inoculated at low density and reached carrying capacity within 
48 h. Biomass then declined logarithmically over the course of 

the experiment, meaning that the relative change in biomass 
decelerated over time (Supplementary Figure S3). After 7 days, 
the change in biomass over time was small for most 
experimental units, indicating that the community biomass 
had stabilized.

The changes in biomass over time at different temperature 
treatments were analyzed using a linear mixed-effect model using 
R function “lmer” from R package “lme4,” (Bates et al., 2014), 
treating “replicate” (20 community replicates per temperature) as 
a random effect on the intercept to account for the 
non-independence of community replicates with time. Biomass 
was included in the model as the response variable, time as a 
predictor variable, and temperature treatment as a factor with six 
levels. We performed model selection using likelihood-ratio tests 
starting with the most complex model and sequentially removing 
terms until all parameters were significant at p < 0.05 (see model 
selection in Supplementary Table S10).

At the end of the incubation experiment, community samples 
were then diluted depending on the optical density measurements 
and 10 μl of each sample was plated on agar, (including the blank 
samples) to a dilution of 10−5. These plates were incubated at the 
relevant temperature treatments until individual colony 
morphology could be distinguished. Each plate was subsequently 
photographed, and the microbial colonies were identified using 
observations of colony appearance.

The colony counts for each replicate at the end of the 
experiment were used to calculate the relative abundance of each 
species within their communities and the species diversity, which 
was quantified using Shannon’s diversity index (H′):

 
′ = − ( )
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where R is species richness and pi is the species richness 
divided by the total number of individuals found within the 
community. We also estimated species evenness using Pielou’s 
evenness (J):

 
J = ( )′H R/ log

 
(5)

To quantify the effect of temperature on community diversity 
(richness and evenness), we fitted the metrics of richness and 
evenness to linear and quadratic models to assess the form of the 
relationship between diversity and temperature change. Model 
comparison was conducted via sequential likelihood-ratio tests 
(see model selection in Supplementary Table S3).

To determine whether community composition differed 
among temperatures, we  performed a principal components 
analysis (PCA) using the taxon-level relative abundance data for 
each community. Analyses were performed using the R package 
“vegan” (Oksanen et  al., 2012). A permutational multivariate 
ANOVA (PERMANOVA) was then conducted to test whether the 
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composition of communities differed among temperature 
treatments using the “adonis” function. A pairwise PERMANOVA 
was used to assess pairwise comparisons of composition between 
temperature treatments. This statistical test provides an adjusted 
value of p, which uses the Bonferroni correction to reduce Type 1 
error from multiple comparisons. All the analyses were conducted 
in R program (R Core Team, 2019).

Linking thermal traits to relative 
abundance

We explored the coupling between the abundance of a taxon 
at each temperature and its thermal tolerance traits. We quantified 
two different traits: species-specific thermal optima (Topt,°C) and 
growth rate r(T) (h−1) at each assay temperature. We used two 
separate analyses of covariance (ANCOVA) models to test 
whether relative abundance was influenced by taxon-specific 
thermal traits [Topt or r(T)]. For analysis one, we used relative 
abundance as the response variable, with taxon-specific thermal 
optima (Topt) as a continuous covariate and assay temperature as 
a categorical factor with six levels. For analysis two, we  used 
relative abundance as the response variable, with taxon-specific 
growth rate at the assay temperature [r(T)] as a continuous 
covariate and assay temperature as a categorical factor with six 
levels. To quantify the significance of differences in the 
parameters among all pairwise combinations of the six 
temperature levels, we used post-hoc Tukey’s tests via the “glht” 
function in the “multcomp” package for R statistical software (see 
Supplementary Tables S5, S6). We only included data for taxa that 
were present in more than 25% of the replicate communities at 
each temperature to avoid rare taxa driving the outcomes of the 
statistical analyses. In this case, only taxa that were frequently 
observed at each assay temperature contribute to the 
observed outcomes.

Impact temperature and community 
structure on ecosystem function

We quantified whether the ecosystem functioning community 
was associated with changes in temperature and community 
structure along the thermal gradient. We  considered biomass 
production (measured as OD600) by day 7 of the experiment, as an 
estimate of ecosystem function (Cardinale et  al., 2007; Garcia 
et  al., 2018). We  conducted two analyses. The first, assessed 
relationship between ecosystem function and temperature. The 
second, assessed relationship between ecosystem function and 
community evenness. For both analyses, we fitted a polynomial 
model where ecosystem function was the response variable and 
either temperature or evenness was continuous predictor variables 
which included both linear and quadratic coefficients. We then 
sequentially removed the quadratic and linear coefficients to 
assess whether a quadratic, linear, or no relationship best 

characterized the data. Model comparison was conducted via 
sequential likelihood-ratio tests (see model selection in 
Supplementary Table S7).

Results

The thermal tolerance curves for each taxon exhibited a 
characteristic unimodal curve as growth increased exponentially 
to an optimum and then declined rapidly as temperature increased 
beyond the optimum (Figure 2A). There was substantial variation 
among taxa in all the parameters of the thermal tolerance curves 
(Figure 2; Supplementary Table S2). We found that the Topt for 
growth rate ranged from 18.7°C (Pseudomonas sp) to 35.3°C 
(Chromobacterium sp), with a mean of 28.7 ± 5.21°C (Figure 2B), 
while the Ea ranged between 0.23 and 1.06 with a mean of 
0.58 ± 0.31 (Figure 2C).

To investigate the effect of temperature on community 
structure and composition and the role of taxon-specific thermal 
traits on community composition, we  assembled artificial 
communities with the eight taxa previously characterized along a 
thermal gradient (10–35°C). After 1 week, we  quantified the 
composition and relative abundance of each taxon within each 
community. Indices of taxon richness and evenness were 
significantly affected by temperature (richness: F2,111 = 9.75, 
r2 = 0.15, p < 0.001; evenness: F2,87 = 4.57, r2 = 0.1, p = 0.01, Figure 3; 
Supplementary Table S3). The effects of temperature on taxon 
richness were best characterized by a unimodal model in which 
richness remained relatively unchanged between 10 and 30°C, but 
then declined dramatically at 35°C, where only two species made 
up the community (Herbaspirillum sp. and Mucilaginibacter sp.), 
in which Herbaspirillum sp. dominated (>80%; Figure  4A; 
Supplementary Figure S1). Evenness also exhibited a unimodal 
relationship with temperature, being best characterized by a 
quadratic model, where equitability in taxon abundance peaks at 
intermediate temperatures 15–25°C and declined significantly at 
the extremes (10 and 35°C). These patterns were reflected in the 
rank abundance curves, which were steepest at the coldest (10°C) 
and hottest (35°C) temperatures, while shallower slopes 
were  observed at intermediate temperatures (15–30°C; 
Supplementary Figure S1), highlighting that abundance was 
concentrated in a small number of highly abundant species at 
extreme temperatures.

To quantify whether species composition also changed 
with temperature, we  performed a principal component 
analysis. We found significant differences in the composition 
of taxa present at the end of the experiment among the six 
temperature treatments (Supplementary Figure S2, 
PERMANOVA: F1,112 = 39.61, p = 0.001, Supplementary  
Table S8). Pairwise comparisons showed that there was a 
significant difference in community composition between the 
communities incubated at 10 and 35°C and all other 
communities (see Supplementary Table S9). Janthinobacterium, 
Chromobacterium, Iodobacter, and Serratia sp. were present 
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within communities exposed at intermediate temperatures 
(Figure 4A; Supplementary Figure S2). Pseudomonas sp. was 
more persistent within communities at 20°C and Aeromonas 

sp. dominated at 10°C, whereas Mucilaginibacter and 
Herbaspirillum sp. were associated with the higher temperature 
treatments (30 and 35°C; Supplementary Figure S2).

A B

FIGURE 3

Diversity and richness indices. Species evenness and richness indices for communities comprising eight bacterial taxa incubated at 10, 15, 20, 25, 
30, and 35°C. (A) Taxon richness for community cultures at each temperature treatment. (B) Taxon evenness for communities at each temperature 
treatment. The black dots and the error bars represent the mean and the SEM. The gray dots are the values obtained in each of the 20 community 
replicates. The red line represents the fit of a unimodal model (see details of model selection in Supplementary Table S3).

A B

C

FIGURE 2

Thermal tolerance curves for the eight bacteria taxa. (A) Fitted thermal tolerance curves of population growth rate [ln(r(T))] for each of the eight 
taxa analyzed using the Sharpe-Schoolfield equation (Materials and methods). Different colored lines represent the taxa and different colored 
points represent the mean values of the technical replicates per taxa and temperature. (B) Probability density plot representing the distribution of 
thermal optimum temperature (Topt). (C) Probability density plot showing variation in the activation energy (Ea) between the eight taxa.
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To assess whether taxon-specific thermal traits were predictive 
of community composition, we isolated the different taxa at each 
temperature and quantified their relative abundance at the end of 
the experiment. We found that the optimum temperature was 
significantly correlated with the relative abundance of the taxa 
within communities at different temperatures (F11,283 = 11.55, 
r2 = 0.31, p < 0.001), particularly the high-temperature treatments 
(30 and 35°C; Figures 4B, 5; Supplementary Table S4). We also 
found that growth rate at the test temperature was significantly 
correlated to the relative abundance of the taxa within 
communities across the thermal gradient (F11,283 = 12.5, r2 = 0.33, 
p < 0.001; Figure 5; Supplementary Table S4).

To understand how changes in community structure affect the 
productivity of the communities along the thermal gradient, 
we  compared community biomass (OD600), as an estimate of 
ecosystem functioning, with the evenness of taxon abundance. 
Both evenness and ecosystem functioning (biomass accumulated) 
exhibited quadratic relationships with temperature (evenness: 
F2,87 = 4.57, r2 = 0.1, p = 0.01; ecosystem function: F2,117 = 7.62, 
r2 = 0.12, p < 0.001, Figures 3B, 6; Supplementary Tables S3, S7). 
Communities with higher evenness were more productive which 
tended to correspond with intermediate temperatures (mainly 
25°C). Indeed, we  found a significant correlation between 
evenness and biomass across the experiment (F1,88 = 10.46, 
r2 = 0.11, p = 0.002, Figure 6B).

Discussion

We assembled communities of eight bacterial isolates that 
express wide variation in thermal performance (Figure  2; 
Supplementary Table S2) and exposed them to a broad gradient 
in temperature to investigate how variance in thermal tolerance 

traits between taxa shape structural and functional changes in 
microbial communities under different thermal regimes. 
We hypothesized that temperature-driven changes in taxonomic 
composition, community structure, and ecosystem function 
would be linked to taxon-specific thermal traits (Figure 1). Our 
experimental approach aimed to understand the processes that 
determine how environmental change drives community 
reorganization and ecosystem functioning.

At the community level, we observed marked changes in the 
number of species present at the end of the experiment but also in 
the abundance distribution with temperature. As we  initially 
hypothesized, at intermediate temperatures (Figure  1, Case 2, 
15–25°C), we  found greater evenness in the distribution of 
abundance (Figure  3; Supplementary Figure S1). However, as 
temperature departed from ambient conditions either via cooling 
(Figure 1, Case 1, 10°C) or warming (Figure 1, Case 3, 30 and 
especially 35°C), evenness decreased (Figure  3; 
Supplementary Figure S1) and communities became highly 
skewed, being dominated by a small number of taxa (Figure 4A; 
Supplementary Figure S1). In addition to the changes in the 
distribution of biomass among taxa caused by temperature change, 
we  also observed a decline in species richness with increasing 
temperature, especially beyond 25°C (Figure 3; Supplementary  
Figure S1).

Our results also revealed significant taxonomic differences in 
community composition along the thermal gradient (Figure  4; 
Supplementary Figure S2). These compositional differences were 
particularly pronounced between the extreme temperature treatments 
(10, 30, and 35°C) and the rest of the assay temperatures 
(Supplementary Table S9). We  also found that some taxa were 
associated with these extreme temperatures; for example, Aeromonas 
sp. was associated with 10°C, Mucilaginibacter sp. with 30°C, and 
Herbaspirillum sp. with 35°C (Figure 4; Supplementary Figure S2). 

A B

FIGURE 4

Changes in community composition with temperature. (A) Composition of bacterial taxa within communities incubated at 10, 15, 20, 25, 30, and 
35°C for 7 days. Bar plot representing the percentage (%) of each taxon recovered in the samples at each temperature after the incubation period. 
(B) The composition of optimal growth temperatures for bacterial taxa within communities incubated at 10, 15, 20, 25, 30, and 35°C for 7 days. The 
gray dashed lines represent the optimal temperatures of bacterial taxa that were present in the original eight-taxa communities, and the red boxes 
represent the range of optimal temperatures of the taxa recovered within each temperature treatment at the end of the experiment. The size of 
the point represents the number of colonies of each taxon within the communities present on agar plates after incubation.
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We also found that Pseudomonas sp. was the dominant species at 
ambient temperature (see Figure 4; Supplementary Figure S2, 20°C). 
To explore any links between changes in community composition 
and the taxon-specific thermal traits, we  compared the relative 
abundance of taxa in each community with the Topt of the taxa 
measured when grown in monoculture. In line with our expectations, 
we found that the compositional and structural changes were linked 
to variation in Topt, as evidenced by the significant correlation between 
Topt and the relative abundance of each taxon (Figure  5). The 
correlation between Topt and relative abundance was particularly 
pronounced at the high-temperature treatments (30 and 35°C; 
Figure 5; Supplementary Table S5). We observed that the taxa present 
in the low diversity, 30 and 35°C treatments, were within the group 
of taxa exhibiting high optimum temperatures for growth (28.9–
32.2°C) but also higher growth rates at the test temperatures in 
monoculture (Figures 2, 5; Supplementary Figure S2). Notably, no 
taxa with optimal growth temperatures below 28.9°C were present at 
the end of the experiment at these temperatures (Figure 4B).

While taxon-specific thermal optimum was a good predictor 
of community structure and function, particularly at high 
temperatures, there were anomalies that could not be explained by 
this thermal trait alone. For example, Chromobacterium sp., which 
had the highest thermal optimum of 35.3°C, was not present in 
communities incubated at 30 and 35°C. However, despite 
Chromobacterium sp. being the taxon with the highest Topt, it did not 
have the highest performance (growth rate) at those temperatures. 
The taxa (e.g., Herbaspirillum and Mucilaginibacter sp) with higher 

growth rates were therefore able to outcompete Chromobacterium 
sp. and dominate community biomass at 30 and 35°C (Figures 2, 4). 
This result emphasizes that differences in growth rate as well as 
thermal optima are important traits for understanding how 
microbial community dynamics respond to temperature change.

Having established the impacts of temperature on microbial 
community structure and composition, we then investigated the links 
between community structure and ecosystem functioning along the 
thermal gradient. We found that like evenness in the abundance 
distribution, community biomass production (functioning) followed 
a unimodal relationship with temperature peaking at intermediate 
temperatures and declining at the extremes (Figure 6A). Asymptotic 
biomass was therefore positively correlated with evenness (Figure 6B), 
suggesting a link between the effect of warming on community 
structure and the emergent outcome for ecosystem functioning. The 
taxon-specific thermal tolerance curves imply that a large proportion 
of taxa are free from thermal stress at intermediate temperatures and 
thus temperature imposed very little environmental selection. By 
contrast, at high and low temperatures only a small number of taxa 
were able to tolerate these more extreme conditions (as evidenced by 
the taxon-specific thermal tolerance curves) and were able to 
dominate community abundance in the absence of competitors. 
Consequently, the more equitable abundance distribution and higher 
diversity at intermediate temperatures meant that a greater proportion 
of the total niche space available could be occupied by the species and 
the community was able to more fully exploit available resources and 
yield higher total biomass (Tilman, 2004).

FIGURE 5

Linking taxon-specific thermal traits with relative abundance. Upper row: thermal optima (Topt,°C). Lower row: growth rate at the assay 
temperature [r(T), h−1]. Each panel represents a temperature treatment. Gray dots represent the relative abundance and taxon-specific thermal trait 
in each replicate community. The black dots and the error bars represent the averaged relative abundance per taxon and the SEM. The red lines 
represent the fit of a linear model (see details of model selection in Supplementary Table S4). We found a marked increase in the strength of the 
correlation between Topt and relative abundance in the high-temperature treatments (30 and 35°C), while for r (T) we observe a positive 
relationship in the slope at all temperature treatments (35°C).
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While taxon-specific thermal traits were a good predictor of 
community composition and function at temperature extremes, 
they provided far less explanatory power at intermediate 
temperatures. When temperatures are benign for most taxa, i.e., 
at temperatures lower than thermal optima but higher than 
temperatures that cause low-temperature stress, temperature-
driven selection is likely to be weak relative to other factors that 
limit growth, such as resource availability. Under these benign 
thermal conditions, thermal traits, which characterize fitness at 
the bounds of environmental tolerance, are expected to be of little 
utility to understanding the dynamics of microbial community 
turnover and instead other traits that capture how fitness is 
impacted by the limiting environmental factor, i.e., resource 
acquisition traits, will play a predominant role. It is therefore 
important to stress that while a useful part of the ecologist’s 
arsenal, thermal tolerance traits have significant limitations to 
understanding microbial community dynamics outside of the 
specific cases where temperatures exceed thermal tolerance limits 
for taxa within regional species pool.

Understanding how rising temperatures will affect community 
structure and composition is crucial in predicting the impact of 
warming on ecosystem services. Our multi-level experiment 
demonstrated the links between taxon-specific thermal traits and 
the effects of temperature on community structure and ecosystem 
functioning. Our results highlight that a simple trait from thermal 
tolerance curves, such as the optimum temperature for growth 
and the rate of growth at the test temperature, offers significant 
explanatory power in understanding how aspects of community 

structure and function respond to warming. These results add to 
a large body of recent work highlighting how phenotypic traits 
offer a valuable conceptual and theoretical bridge that can link 
population, community, and ecosystem approaches to develop a 
mechanistic understanding of ecosystem-level responses to 
environmental change (Norberg et al., 2001; Lavorel and Garnier, 
2002; Hooper et  al., 2006; McGill et  al., 2006; Litchman and 
Klausmeier, 2008; Enquist et al., 2015).
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FIGURE 6

Linking community structure and ecosystem functioning. (A) Biomass production (OD600) for communities in each temperature treatment. The red 
line represents the fit of a quadratic model (see details of model selection in Supplementary Table S7). The black dots and the error bars represent 
the mean across replicates for each temperature treatment and the SEM. The gray points are the different community replicates for each 
temperature treatment. (B) Relationship between the evenness in the abundance distribution and ecosystem functioning estimated using the 
asymptotic biomass (OD600). The red lines represent the fit of a linear model (p < 0.01, Supplementary Table S7).
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