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Abstract

Among the five known SARS-CoV-2 variants of concern, Delta is the most virulent leading to severe
symptoms and increased mortality among infected people. Our study seeks to examine how the biophys-
ical parameters of the Delta variant correlate to the clinical observations. Receptor binding domain (RBD)
is the first point of contact with the human host cells and is the immunodominant form of the spike protein.
Delta variant RBD contains two novel mutations L452R and T478K. We examined the effect of single as
well as the double mutations on RBD expression in human Expi293 cells, RBD stability using urea and
thermal denaturation, and RBD binding to angiotensin converting enzyme 2 (ACE2) receptor and to neu-
tralizing antibodies using isothermal titration calorimetry. Delta variant RBD showed significantly higher
expression compared to the wild-type RBD, and the increased expression is due to L452R mutation.
Despite their non-conservative nature, none of the mutations significantly affected RBD structure and sta-
bility. All mutants showed similar binding affinity to ACE2 and to Class 1 antibodies (CC12.1 and LY-
CoV016) as that of the wild-type. Delta double mutant L452R/T478K showed no binding to Class 2 anti-
bodies (P2B-2F6 and LY-CoV555) and a hundred-fold weaker binding to a Class 3 antibody
(REGN10987), and the decreased antibody binding is determined by the L452R mutation. These results
indicate that the immune escape from neutralizing antibodies, rather than increased receptor binding, is
the main biophysical parameter that determined the fitness landscape of the Delta variant RBD.

� 2022 Elsevier Ltd. All rights reserved.
Introduction

In late 2019, a novel coronavirus (2019-nCoV),
later renamed as severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), was
discovered in Wuhan, China and quickly became
the center of the ongoing pandemic coronavirus
disease 19 (COVID-19). SARS-CoV-2 enters
human host cells with its spike protein interacting
with the angiotensin converting enzyme 2 (ACE2)
located on the cell surface.1–5 A specific structural
region within the spike protein, known as the recep-
td. All rights reserved.
tor binding domain (RBD), binds to the ACE2 recep-
tor. SARS-CoV-2 has been shown to continuously
mutate in multiple regions of the spike protein lead-
ing to new variants of interest (VOI) and more sev-
ere variants of concern (VOC). VOCs in general
have been shown to have increased infectivity,6–9

enhanced ACE2 binding,10–12 escape from the
human immune system,4,10,13 and evade FDA-
approved monoclonal antibody therapies.4,6,9 To
date, there have been five known VOCs, which
include Alpha, Beta, Gamma, Delta, and the
Omicron.
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Out of all the five VOCs, Omicron is the most
transmissible variant, whereas Delta is the most
virulent leading to more severe symptoms and an
increased mortality among infected patients. Delta
variant arose from the B.1.617 lineage, and is
specifically labeled as variant B.1.617.2. It was
first identified in India and has since been
accounted for the majority of COVID-19 deaths
worldwide.14,15 Delta variant has been shown to
have higher viral titers in COVID-19 patients com-
pared to previous variants.15–17 Prior to the emer-
gence of Omicron variant, increased breakthrough
infections of COVID-19 in vaccinated patients have
been attributed to the Delta variant.16–19 A single
dose of vaccination was found to be only 33% effec-
tive in protecting against the Delta variant as
opposed to 48.7% against the Alpha variant, and
two vaccination doses were only 88% effective for
the Delta variant compared to 93.7% for the Alpha
variant.20

Delta variant introduces several mutations in the
N-terminal domain (NTD), RBD, and the furin
cleavage site of the spike protein that makes it
distinct from the unmutated, wild-type (WT)
virus.21 Unlike previous variants, which have had
mutations that have been predicted by in vitro evo-
lution through biophysical parameters such as
ACE2 binding, the mutations in the Delta variant,
particularly in the RBD, have not previously been
predicted to lead to a more dangerous variant.12,22

Delta RBD contains two mutations which change
the characteristic nature of the amino acid: a
hydrophobic amino acid leucine mutated to a posi-
tively charged amino acid arginine at position 452
(L452R) and an uncharged amino acid threonine
mutated to a positively charged lysine at position
478 (T478K) in the primary structure of the pro-
tein.6,9,14,23,24 None of these two mutations are part
of the RBDs of previously discovered VOCs that
include Alpha (N501Y), Beta (K417N/E484K/
N501Y), or Gamma (K417T/E484K/N501Y). The
newly discovered Omicron VOC RBD contains only
the T478K mutation and not the L452R mutation.25

Analyzing the biophysical parameters that
determine the fitness landscape of viruses is of
considerable interest in recent years, particularly
in the case of HIV, influenza, dengue, hepatitis C,
and other retroviruses.26–31 In the case of SARS-
CoV-2 RBD, we along with others have recently
shown that increased receptor binding, escape from
neutralizing antibodies, and maintaining protein
structure, stability, and expression despite the
non-conservative nature of amino acid mutations
are important parameters that direct the natural
selection of mutations and determine the biophysi-
cal fitness landscape of emerging variants.10,32–37

These biophysical analyses were done on Alpha,
Beta, and Gamma VOCs before the Delta variant
has emerged. Whether the two novel mutations of
the Delta RBD, which were not part of the previous
VOCs, follow similar natural selection principles is
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not clear. This study examined the effect of the
two single amino acid mutations L452R, T478K
and the double mutant L452R/T478K on the bio-
physical properties (structure, stability, receptor
binding, and binding to neutralizing antibodies) of
the RBD. Our results indicate that the Delta RBD
does not show increased ACE2 receptor binding
compared to theWTRBD unlike the previous VOCs
(Alpha, Beta, and Gamma), but shows increased
protein expression, consistent with increased spike
protein expression and viral titers in Delta patients,
and escapes multiple neutralizing antibodies.
Increased expression and antibody escape is deter-
mined by the L452R mutation.
Results

L452R mutation enhances Delta variant RBD
expression

VOCs including Delta are known to have
decreased levels of neutralization titers in both
vaccinated and unvaccinated individuals.15–17,38 In
addition, Delta variant COVID-19 patients have viral
titers ten times higher than that of the other vari-
ants.15 A plausible explanation is that the mutations
in the Delta variant might have a selective advan-
tage in terms of increased expression of viral pro-
teins over the wild-type virus. Higher quantities of
the viral proteins could allow for more virus particles
to be created.39 In order to test if this clinical obser-
vation could be correlated with the increased
expression of RBD,which is amajor part of the spike
protein, expression of the wild-type (WT) RBD and
its Delta mutants (L452R, T478K, and L452R/
T478K)was tested in human embryonic kidney cells
(Expi293 HEK). HEK cells can be used to test the
mutation effects on protein expression levels, since
protein expression profiles and the quality control
mechanisms in different human cells are similar. In
addition, SARS-CoV-2 has been shown to infect
the kidney cells,40–42 and HEK cells naturally
express the ACE2 receptor. After 48 hours of trans-
fection, secreted proteins in the supernatants were
analyzed using SDS-PAGE (Figure 1(A)) and the
expression levels were quantified as a ratio of the
mutant over WT RBD (Figure 1(B)). Both the
L452R single mutant and the Delta double mutant
L452R/T478K showed �70% higher expression
compared to WT RBD (Figure 1(B)). No significant
differences in expression were observed for the
T478K mutant compared to the WT RBD. These
results indicate that the L452Rmutation is responsi-
ble for the increased expression of Delta variant
RBD and possibly the spike protein expression.
None of the Delta mutations significantly affect
global protein structure

Both mutations L452R and T478K are non-
conservative mutations where one type of amino



Figure 1. Expression differences between WT RBD and its Delta mutants. (A) SDS-PAGE showing relative
expression of RBD variants 48 hours after transfection. Ladder represents the molecular markers (from top to bottom:
180, 130, 100, 70, 55, 40, 35, 25, and 15 kDa, respectively). (B) Normalized relative expression of RBD variants.
Results in panel A were repeated in triplicate to obtain the data shown in panel B.
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acid is mutated to another type of amino acid with
differing physical properties. Such mutations tend
to destabilize proteins if the amino acid prior to
mutation is involved in stabilizing the protein
structure. To test the effect of mutations on RBD
structure, we used far-UV circular dichroism and
fluorescence spectroscopy. Figure 2(A) shows
SDS-PAGE of purified proteins, and the single
bands on the gel show the high purity of protein
samples used for biophysical analyses reported in
this manuscript. Figure 2(B) shows the far-UV
circular dichroism (CD) and Figure 2(C) shows the
intrinsic protein fluorescence spectra of the WT
RBD and its Delta single mutants and the double
mutant. Spectra of the WT match those reported
Figure 2. (A) SDS-PAGE of purified RBD constructs. Ladd
180, 130, 100, 70, 55, 40, 35, 25, and 15 kDa, respectively).
Delta mutants. (C) Intrinsic fluorescence spectra of WT RB

3

in the literature.10,43–45 More importantly, none of
the mutations caused significant changes in the
spectra, implying that the Delta mutations do not
significantly affect the global protein structure.
None of the Delta mutations enhance RBD
stability

Protein stability could provide valuable insight into
both the viability and flexibility of proteins and has
been shown to play a big role in the fitness of
viruses.27,46 To evaluate how the Delta mutations
alter the RBD stability, both thermal and urea denat-
uration melts were utilized. Change in protein struc-
ture with increase in temperature (Figure S1) was fit
er represents the molecular markers (from top to bottom:
(B) Far-UV circular dichroism spectra of WT RBD and its
D and its Delta mutants.
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to a two-state unfolding model (Eq. (1) in Materials
and Methods) to obtain the midpoint melting tem-
perature (Tm) of the proteins. Since the thermal
melts are not reversible, Tm values can only be used
as a qualitative measure of protein stability.10,47

Table S2 lists the mean fit parameters obtained
from three independent batches of protein expres-
sion. Compared to WT RBD, which showed a Tm

of 56.1 ± 0.7 �C, L452R displayed a similar stability
of 56.5 ± 0.2 �C, while T478K displayed a slightly
decreased Tm of 54.1 ± 0.1 �C. However, the Delta
double mutant L452R/T478K exhibited a Tm of 56.
6 ± 0.2 �C, similar to that of the WT (Figure S1
and Table S1).
Urea denaturation melts of RBD variants are

completely reversible (Figure S2). The native
signal showed a large change with denaturant
concentration, which might indicate partial
unfolding and non-2-state unfolding behavior that
needs to be further probed. However, since we
observed only a single sigmoidal transition,
denaturant melts were fit to a 2-state unfolding
model (Eq. (2) in Materials and Methods) to obtain
Gibbs free energy of unfolding in the absence of
denaturant (DG�unf) and the slope of linear
variation of DGunf with urea concentration (m-
value) for each variant. Table S2 lists the mean fit
parameters obtained from three independent
batches of protein expression. WT RBD showed a
DG�unf of 8.1 ± 0.3 kcal/mol with a m-value of �1.
24 ± 0.06 kcal/mol/M [urea]. Both single mutants
L452R and T478K showed similar stability as that
of the WT RBD. L452R displayed a DG�unf of 8.1 ±
0.2 kcal/mol with a m-value of �1.43 ± 0.04 kcal/
mol/M [urea], while T478K showed DG�unf and m-
values of 7.9 ± 0.5 kcal/mol and �1.37 ± 0.09 kcal/
mol/M [urea], respectively. Delta double mutant
L452R/T478K was also found to have similar
stability as that of the WT RBD, with a DG�unf of 8.
6 ± 0.3 kcal/mol and an m-value of �1.53 ± 0.06 k
cal/mol/M [urea] (Table S2). These equilibrium
stability values obtained from urea denaturant
melts agree quite well with the trends observed
with thermal denaturation melts (Table S1) and
indicate that none of the Delta mutants
significantly affect RBD stability.

Delta mutations do not show increased affinity
for ACE2 receptor

Since SARS-CoV-2 enters host cells with its RBD
binding to ACE2, the relative binding affinity of the
RBD can play a key role in how variants are
evolving. An increase in the affinity of the Delta
variant to ACE2 could allude to a potential
mechanism where the VOC allows more viral
entry into host cells. Previous VOCs (Alpha, Beta,
and Gamma) have shown enhanced ACE2
binding compared to the WT RBD.10 Location of
the two amino acid mutations L452R and T478K
in the Delta variant RBD with respect to ACE2 bind-
ing interface is shown in Figure 3(A). None of the
4

two mutations are part of the ACE2 interface. Fig-
ure 4 shows isothermal titration calorimetry (ITC)
thermograms for the WT RBD and Delta mutants,
and Table 1 lists the average fit parameters from
three independent batches of protein expression.
WT RBD binding to ACE2 shows a typical exother-
mic reaction with a Kd of 10.0 ± 3.1 nM and a DH
value of �11.8 ± 0.2 kcal/mol. None of the Delta
mutations significantly altered the binding affinity
of RBD for ACE2. Both L452R and T478K mutants
and the Delta double mutant L452R/T478K dis-
played similar Kd values of 6.2 ± 3.7 nM, 17.1 ± 4.
8 nM, and 10.8 ± 3.3 nM, respectively, similar to that
of the WT RBD (Table 1).

Delta RBD mutations do not escape Class 1
antibodies

Clinical observations associated with Delta
variant could be related to SARS-CoV-2 escaping
the human immune system. Neutralizing
antibodies against SARS-CoV-2 RBD have been
found to belong to four major classes depending
on the mechanism of action and the location of
their epitopes on the RBD.48,49 SARS-CoV-2 spike
protein is a trimer in its native state and exists in
multiple conformations, mainly RBD in “up” position
that is accessible for binding to ACE2 or in “down”
position in which RBD is buried and not accessible
for ACE2 binding.50–52 Class 1 antibodies bind to
RBD in the up conformation and compete with
ACE2 binding. Class 2 antibodies bind to RBD both
in the up or down conformations, and their epitope
partially overlaps with the ACE2 binding site and
hence compete against ACE2 binding. Class 3 anti-
bodies bind to RBD in both up or down positions
with their epitope on RBD far away from ACE2 bind-
ing site, and hence can neutralize the RBD through
an uncompetitive mechanism. Class 4 antibodies
are relatively rare as their epitope is close to the
hinge region connecting RBD to the rest of the spike
protein, which is relatively buried compared to other
epitopes, and none of the VOCs contain mutations
in this region. Since the first step in neutralization
is binding of antibodies to RBD, we examined how
the Delta mutations affect RBD binding to the three
major classes of antibodies.
One of the first Class 1 antibodies that was

identified from patients recovered from WT SARS-
CoV-2 infection was CC12.1.53 Location of the two
Delta mutants L452 and T478 in RBD with respect
to the CC12.1 binding interface is shown in Figure 3
(B). Binding of WT RBD and its Delta mutants to
CC12.1 single chain variable fragment (ScFv) was
measured using ITC (Figure 5), and the average
thermodynamic parameters obtained from fitting
the data from three independent batches of protein
expression was included in Table 2. All proteins
showed similar exothermic binding profiles. WT
RBD binds to CC12.1 with a Kd of 23.9 ± 5.7 nM.
Both Delta singlemutants L452R and T478K as well
as the double mutant L452R/T478K either bind with



Figure 3. Structural analysis of the location of Delta mutants L452 and T478 (red colored) with respect to RBD (gray
colored) complexes with (A) ACE2 receptor (orange colored; PDB ID 6moj), (B) Class 1 antibody CC12.1 (blue
colored; PDB ID 6xc2), (C) FDA-approved Class I therapeutic antibody LY-CoV016 (blue colored; PDB ID 7c01), (D)
Class 2 antibody P2B-2F6 (teal colored; PDB ID: 7bwj), (E) FDA-approved Class 2 antibody LY-CoV555 (teal colored;
PDB ID: 7kmg) and (F) FDA-approved Class 3 antibody REGN10987 (green colored; PDB ID 6xdg). Left panels show
the complex structures and right panels show the location of the interacting residues in RBD with respect to the
binding interfaces.
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a similar affinity (similar Kd value for T478K) or with
a higher affinity (lower Kd values for L452R and
L452R/T478K), implying that the Delta variant
RBD does not escape from Class 1 antibodies.
ITC binding data is also consistent with the location
of these two residues L452 and T478with respect to
the epitope of CC12.1 on RBD (Figure 3(B)). The
two mutations in the Delta variant RBD are located
far from the CC12.1 epitope, and do not affect the
interactions between RBD and CC12.1.54,55

As of January 2022, FDA approved four
therapeutic antibodies for emergency use
authorization (EUA): Eli Lilly’s LY-CoV016
5

(Etesevimab) and LY-CoV555 (Bamlanivimab),
and Regeneron’s REGN10933 (Casirivimab) and
REGN10987 (Imdevimab). LY-CoV016 and
REGN10933 are Class 1 antibodies whose
epitopes are very similar on RBD.56,57 LY-CoV555
is a Class 2 antibody, whereas REGN10987 is a
Class 3 antibody. To determine whether Delta vari-
ant escapes FDA-approved Class 1 antibodies, we
testedWTRBD and its Delta mutants binding to LY-
CoV016 in ScFv format. Figure 3(C) shows the
location of the two residues L452 and T478 with
respect to the RBD interface with LY-CoV016.
Figure 6 shows the ITC binding data for the single



Figure 4. ITC analysis of WT RBD and its Delta mutants binding to ACE2. Top panels represent the raw differential
power vs. time thermographs, while bottom panels represent the integrated heat plots.

Table 1 Thermodynamic parameters of WT RBD and its Delta mutants binding to ACE2 receptor.

RBD Variant Kd (nM) N DH (kcal/mol) DG (kcal/mol) �TDS (kcal/mol)

WT 10.0 ± 3.1 1.0 ± 0.0 �11.8 ± 0.2 �10.7 ± 0.2 1.0 ± 0.3

L452R 6.2 ± 3.7 1.0 ± 0.0 �11.3 ± 0.2 �11.1 ± 0.3 0.3 ± 0.4

T478K 17.1 ± 4.8 1.0 ± 0.1 �10.0 ± 0.2 �10.4 ± 0.2 � 0.4 ± 0.3

L452R/T478K 10.8 ± 3.3 0.9 ± 0.0 �10.1 ± 0.2 �10.7 ± 0.2 � 0.6 ± 0.3
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and double mutants. All interactions displayed
exothermic binding profiles. Table 3 lists the aver-
age parameters obtained from fitting the ITC data
from three independent batches of protein expres-
sion to a one-site binding model. WT RBD binds
6

to LY-CoV016 with a Kd of 49.3 ± 10.1 nM. Both sin-
gle mutants L452R and T478K and the double
mutant L452R/T478K bind to LY-CoV016 with a
stronger affinity, implying that none of the Delta
mutations escape LY-CoV016. This is consistent



Figure 5. ITC analysis of WT RBD and its Delta mutants binding to Class 1 antibody CC12.1 ScFv. Top panels
represent the raw differential power vs. time thermographs, while bottom panels represent the integrated heat plots.

Table 2 Thermodynamic parameters of WT RBD and its Delta mutants binding to Class 1 antibody CC12.1 ScFv.

RBD Variant Kd (nM) N DH (kcal/mol) DG (kcal/mol) �TDS (kcal/mol)

WT 23.9 ± 5.7 0.9 ± 0.1 �5.2 ± 0.5 �10.2 ± 0.1 �5.1 ± 0.4

L452R 13.0 ± 3.4 0.9 ± 0.0 �4.6 ± 0.1 �10.6 ± 0.2 �5.9 ± 0.2

T478K 23.1 ± 2.3 0.8 ± 0.1 �6.2 ± 0.1 �10.3 ± 0.1 �4.1 ± 0.1

L452R/T478K 12.4 ± 7.3 0.9 ± 0.0 �4.7 ± 0.2 �10.6 ± 0.3 �6.0 ± 0.4
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with the location of the two residues L452 and T478
with respect to the RBD binding interface with LY-
CoV016 (Figure 3(C)), and also consistent with
binding of Delta mutants to another Class 1 anti-
body CC12.1 described above (Figure 5 and
Table 2).
7

L452R mutation determines Delta variant
escape from Class 2 antibodies

While the Delta variant does not evade Class 1
antibodies, a large amount of clinical data
suggests that neutralizing antibodies discovered



Figure 6. ITC analysis of WT RBD and its Delta mutants binding to FDA-approved Class 1 therapeutic antibody LY-
CoV016 ScFv. Top panels represent the raw differential power vs. time thermographs, while bottom panels represent
the integrated heat plots.

Table 3 Thermodynamic parameters of WT RBD and its Delta mutants binding to FDA-approved Class 1 therapeutic
antibody LY-CoV016 ScFv.

RBD Variant Kd (nM) N DH (kcal/mol) DG (kcal/mol) �TDS (kcal/mol)

WT 49.3 ± 10.1 0.9 ± 0.0 �11.7 ± 0.1 �9.8 ± 0.1 1.9 ± 0.2

L452R 23.4 ± 2.8 0.8 ± 0.1 �11.9 ± 0.1 �10.2 ± 0.1 1.7 ± 0.1

T478K 15.4 ± 3.0 0.8 ± 0.1 �11.4 ± 0.1 �10.5 ± 0.1 0.9 ± 0.2

L452R/T478K 10.8 ± 1.4 0.8 ± 0.1 �12.0 ± 0.4 �10.7 ± 0.1 1.3 ± 0.4
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against WT SARS-CoV-2 are not effective in
neutralizing emerging VOCs.58 Similar to CC12.1,
P2B-2F6 is one of the first neutralizing antibodies
discovered in recovered COVID-19 patients.59,60
8

P2B-2F6 is a Class 2 antibody.48,49 We examined
whether Delta variant escapes from Class 2 anti-
bodies by determining the binding of WT RBD and
its Delta mutants to P2B-2F6 ScFv. Location of



Figure 7. ITC analysis of WT RBD and its Delta mutants binding Class 2 antibody P2B-2F6 ScFv. Top panels
represent the raw differential power vs. time thermographs, while bottom panels represent the integrated heat plots.
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the two residues L452 and T478 in RBD with
respect to its binding interface with P2B-2F6 is
shown in Figure 3(D). Figure 7 shows the ITC bind-
ing curves and Table 4 lists the thermodynamic
parameters obtained from fitting ITC data from
three independent batches of protein expression
to a one-site binding model. Both WT RBD and
T478K show similar Kd values of 81.4 ± 6.2 nM
and 80.5 ± 6.3 nM, respectively. However, L452R
resulted in a complete loss of binding (Figure 7).
Similar results were observed for the Delta double
mutant L452R/T478K. These results indicate that
the Delta variant escapes Class 2 antibodies, and
the escape is determined by the L452R mutation.
Our results on the effect of L452R mutation on
RBD binding to P2B-2F6 are also consistent with
a deep mutational scanning analysis that indicates
9

L452R as one of the possible immune-escaping
hotspots.61

We further examined whether Delta variant
escapes FDA-approved Class 2 antibody LY-
CoV555.62,63 Location of the two residues L452
and T478 in RBD with respect to its interface with
LY-CoV555 is shown in Figure 3(E). Figure 8 shows
the ITC binding curves for WT RBD and its Delta
mutants, and Table 5 lists the mean thermodynamic
parameters obtained from fitting ITC data from
three independent batches of protein expression
to one-site binding model. WT RBD binds to LY-
CoV555 ScFv with a Kd of 3.8 ± 1.9 nM. T478K
mutant shows a similar binding affinity to LY-
CoV555 with a Kd of 9.0 ± 4.6 nM. This was how-
ever not the case for the L452R mutation and the
Delta double mutant L452R/T478K. Both showed



Table 4 Thermodynamic parameters of WT RBD and its Delta mutants binding to Class 2 antibody P2B-2F6 ScFv.

RBD Variant Kd (nM) N DH (kcal/mol) DG (kcal/mol) �TDS (kcal/mol)

WT 81.4 ± 6.2 0.9 ± 0.0 �8.0 ± 0.5 �9.5 ± 0.1 �1.5 ± 0.5

L452R No binding – – – –

T478K 80.5 ± 6.3 0.9 ± 0.0 �8.7 ± 0.4 �9.5 ± 0.0 �0.8 ± 0.4

L452R/T478K No binding – – – –

Figure 8. ITC analysis of WT RBD and its Delta mutants binding to FDA-approved Class 2 therapeutic antibody LY-
CoV555 ScFv. Top panels represent the raw differential power vs. time thermographs, while bottom panels represent
the integrated heat plots.
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no binding to LY-CoV555 (Figure 8). These results
indicate that Delta variant escapes Class 2 antibod-
ies, and the escape is determined by the L452R
mutation, which is consistent with escape from
another Class 2 antibody P2B-2F6 described above
(Figure 7 and Table 4).
10
L452R mutation determines Delta variant
escape from Class 3 antibodies

We also examined whether Delta variant escapes
Class 3 antibodies. FDA-approved antibody
therapeutics contain a Class 3 antibody
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REGN10987. Location of the two residues L452
and T478 in RBD with respect to its interface with
REGN10987 is shown in Figure 3(F). Figure 9
shows the ITC binding curves of WT RBD and its
Delta mutants, and Table 6 lists the mean
thermodynamic parameters obtained from fitting
ITC data from three independent batches of
protein expression to a one-site binding model.
Both WT RBD and T478K mutant showed similar
binding affinity with Kd values of 34.3 ± 8.1 nM
and 15.9 ± 1.9 nM, respectively. This was not the
case for both the L452R mutant and the Delta
double mutant L452R/T478K. Both proteins
showed a �100 fold weaker binding affinity with
Kd values of 1,340 ± 100 nM for the L452R mutant
and 1,150 ± 100 nM for the Delta double mutant
Figure 9. ITC analysis of WT RBD variant and its Delta
antibody REGN987 ScFv. Top panels represent the raw
panels represent the integrated heat plots.

11
(Table 6). These results indicate that the Delta
variant escapes Class 3 antibodies, and the
escape is determined by the L452R mutation.

Discussion

SARS-CoV-2 Delta variant has adapted unlike
any other previous VOCs (Alpha, Beta, and
Gamma). It is the VOC which is responsible for
more severe symptoms and the maximum
mortality among infected patients compared to
other VOCs including Omicron. Deep mutational
scanning has been able to predict that the
previous VOCs had a high probability of becoming
dominant strains, yet these studies were unable to
predict the two novel mutations in the Delta
mutants binding to FDA-approved Class 3 therapeutic
differential power vs. time thermographs, while bottom



Table 5 Thermodynamic parameters of WT RBD and its Delta mutants binding to FDA-approved Class 2 therapeutic
antibody LY-CoV555 ScFv.

RBD Variant Kd (nM) N DH (kcal/mol) DG (kcal/mol) �TDS (kcal/mol)

WT 3.8 ± 1.9 0.8 ± 0.1 �2.0 ± 0.1 �11.3 ± 0.3 �9.3 ± 0.3

L452R No binding – – – –

T478K 9.0 ± 4.6 0.8 ± 0.0 �2.7 ± 0.1 �10.8 ± 0.3 �8.1 ± 0.3

L452R/T478K No binding – – – –

Table 6 Thermodynamic parameters of WT RBD and its Delta mutants binding to FDA-approved Class 3 therapeutic
antibody REGN10987 ScFv.

RBD Variant Kd (nM) N DH (kcal/mol) DG (kcal/mol) -TDS (kcal/mol)

WT 34.3 ± 8.1 0.8 ± 0.1 �5.0 ± 0.1 �10.0 ± 0.1 �5.1 ± 0.2

L452R 1,340 ± 100 0.8 ± 0.1 �8.7 ± 1.3 �7.6 ± 0.3 1.1 ± 1.3

T478K 15.9 ± 1.9 0.9 ± 0.0 �5.1 ± 0.1 �10.5 ± 0.1 �5.4 ± 0.1

L452R/T478K 1,150 ± 100 0.8 ± 0.1 �7.2 ± 0.5 �7.8 ± 0.2 �0.7 ± 0.5
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variant with high probability. None of the two
mutations L452R and T478K were part of Alpha,
Beta, and Gamma VOCs, and only T478K (and
not L452R) is present in the recently discovered
Omicron VOC. In this manuscript, we examined
the effect of these two novel mutations on the
biophysical fitness landscape of Delta variant RBD.
Delta VOC displays unique biophysical

characteristics unlike the previous VOCs Alpha,
Beta, and Gamma. Biophysical data on Omicron
VOC is not yet available, and hence we will be
comparing the results on Delta VOC with other
VOCs discovered prior to Delta. Table 7 lists the
summary of biophysical parameters we have
examined. Delta mutations do not significantly
alter the binding affinity of RBD towards the ACE2
receptor (Figure 4 and Table 1). While a common
belief is that VOCs should result in increased
binding to ACE2, which would correlate with
increased viral entry, data on Delta variant shows
that this cannot be a ubiquitous thought. VOC
having no effect on ACE2 binding affinity is unique
to the Delta variant, as all previous VOCs showed
increased affinity to ACE2.10,34 This is primarily
because of the presence of N501Y mutation in pre-
vious VOCs that is responsible for increased ACE2
binding.35,64,65 Delta VOC does not contain N501Y
mutation, whereas all other VOCs including Omi-
cron contains the N501Y mutation. In addition, nei-
ther L452 nor T478 have a direct interaction with
ACE2 (Figure 3(A)). ACE2 binding has been one
of the most common factors when attempting to
predict emerging VOCs,12 which would explain
why the two novel RBD mutations that resulted in
the Delta variant have not been predicted by earlier
studies. Thus, it is important to consider a more
robust system for predicting variants that is not so
12
heavily weighted towards ACE2 binding, as our
results show that immune escape rather than
increased receptor binding compared to the WT
RBD determines the fitness of Delta VOC. Since
the full-length spike protein exists in multiple confor-
mations with RBDs in up or down positions,13,66

measured binding affinity for isolated RBD towards
ACE2 represents the upper value of the binding
affinity. Any conformation with RBD in down posi-
tion in equilibrium will only decrease the relative
population of RBDs in up conformation, and hence
will result in decreased affinity of the complete spike
protein towards ACE2.
Compared to other VOCs, patients contracted

with Delta have increased viral titers.15,67 Results
show that the two Delta mutations did not affect
either the secondary (far-UVCD; Figure 2(B)) or ter-
tiary structure (intrinsic protein fluorescence of aro-
matic sidechains; Figure 2(C)) of the RBD. This is
consistent with the three-dimensional structural
alignment of the two RBDs using the Multiprot pro-
gram.68 Delta RBD (PDB ID: 7v8b) has similar
structure as that of WT RBD (PDB ID: 6m0j) with
an RMSD of 0.82�A. Additionally, the two mutations
L452R and T478K did not alter the stability of the
RBD when measured by both thermal denaturation
(Figure S1 and Table S1) or urea denaturation (Fig-
ure S2 and Table S2) experiments. However, Delta
RBD showed �70% higher expression in human
Expi293 (modified HEK293) cells compared to the
WT RBD (Figure 1). Similar high expression of
RBD was not seen in the case of Alpha, Beta, and
Gamma VOCs.10 Increased expression of RBD is
determined by the L452R mutation (Figure 1 and
Table 7), and this mutation is not present in other
VOCs. One single mutation increasing the native
protein expression by 70% is very rare in protein lit-
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erature in general. Increased expression of viral
proteins can lead to increased viral titers, although
whether L452R results in increased expression of
the complete spike protein needs to be examined.
If that is the case, relative expression levels of viral
protein mutants need to be considered as a criterion
in predicting the emergence of future VOCs.
Another crucial factor to consider when

evaluating viral fitness is the ability of mutations to
escape neutralizing antibodies generated by
human immune system in response to WT SARS-
CoV-2 infection or vaccination, or those authorized
by FDA for treating infected patients. Determining
whether the variants escape FDA-approved
antibodies, which are derived either from patients
recovered from WT SARS-CoV-2 infection (Eli
Lilly) or from humanized mice models
(Regeneron), will tell us whether the current
therapies work against the emerging variants or
new antibody therapies need to be developed.
Neutralizing antibodies have been broadly
classified into different classes depending on the
location of their epitopes on RBD.48,49 Identifying
mutations in the structures of RBD-antibody com-
plexes (Figure 3) and analyzing the stabilizing inter-
actions in which they participate can sometimes
predict which antibodies the VOCs can escape.
However, experiments have to confirm such predic-
tions based on protein structure because long-
range mutation effects and the dynamics of various
protein regions can play a critical role in protein
function. The two mutations L452R and T478K are
far away from the binding interface of two Class 1
antibodies we examined (CC12.1 (Figure 3(B))
and FDA-approved Eli Lilly Class 1 antibody LY-
CoV016 (Figure 3(C))), and both mutations are
not part of the RBD interface with Class 1 antibod-
ies. Consistently, Delta mutants did not escape
Class 1 antibodies (Figure 5, Figure 6, Table 2,
Table 3 and Table 7). In contrast, L452 stabilizes
the RBD interactions with Class 2 antibodies by
forming a hydrophobic cluster with I103 and V105
of the variable heavy chain of P2B-2F6 and I54
and L55 residues of the variable heavy chain of
LY-CoV555. Replacing the hydrophobic residue
leucine with a positively charged arginine in themid-
dle of these hydrophobic clusters is expected to
destabilize the RBD interactions with Class 2 anti-
bodies. Accordingly, after L452R mutation, RBD
did not bind toClass 2 antibodies (Figure 7, Figure 8,
Table 4, Table 5 and Table 7). In the case of RBD
binding to Class 3 antibodies (Figure 3(F)), L452
does not form any direct contacts with the antibody
REGN10987, but neighbors the epitope composed
of residue N450 in RBD.69,70 Change of a hydropho-
bic amino acid leucine with a positively charged
residue arginine next to the epitope is expected to
change the electrostatic nature of RBD interface
with REGN10987, and thus might explain the
decrease in binding affinity by �100-fold upon
L452R mutation (Figure 9, Table 6 and Table 7).
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T478 residue in RBD is far away from any of the
binding interfaces with neutralizing antibodies and
do not participate in any stabilizing inter-molecular
interactions, and hence do not contribute to the
immune escape potential of the Delta variant
(Table 7).
Our results indicate that L452R mutation

determines the antigenic drift of the Delta VOC
against Class 2 and Class 3 antibodies. Since
L452R also occurs in other variants such as
Epsilon, Iota, and Kappa,71 we expect these vari-
ants also escape Class 2 and Class 3 antibodies.
Despite the number of infected cases with T478K
mutation are increasing,72,73 its role in the viral fit-
ness is quite elusive. Our results indicate that it
does not offer any fitness advantage to SARS-
CoV-2 RBD in terms of receptor binding or immune
escape from neutralizing antibodies compared to
the WT. Some studies have suggested that
T478K mutation might have evolved from previ-
ously infected Beta VOC patients, since it escapes
an antibody specific to the Beta VOC.74 In addition,
the newest Omicron VOC contains S477Nmutation
in addition to T478K mutation, and whether T478K
mutation enhances the antibody escape deter-
mined by S477N needs to be examined. Further,
our study has examined the role of T478K mutation
on the biophysical properties of RBD, and its speci-
fic role needs to be examined in the context of the
full-length spike protein, particularly in controlling
the up/down conformations of the spike protein
and long-range allosteric effects on other important
structural regions of the spike protein.
Results presented here indicate that the Delta

variant has evolved towards escape from Class 2
and Class 3 antibodies, rather than enhancing the
receptor binding or escape from Class 1
antibodies. Class 1 antibodies bind to RBD only in
up conformation where RBD is accessible to
ACE2 binding, whereas Class 2 and Class 3
antibodies bind to RBD irrespective of whether it is
in up conformation (accessible to ACE2) or down
conformation (inaccessible to ACE2).49 Escape
from Class 2 antibodies mainly contributes to
escape from polyclonal plasma,56 which might be
more important for virus survival than escape from
Class 1 antibodies that target only a sub-
population of the spike protein trimers with their
RBDs in up conformation. Further, since Class 2
and Class 3 antibodies can bind to RBD irrespective
of whether it is in up (ACE2 accessible) or down
(ACE2 inaccessible) conformation, these antibod-
ies can recognize adjacent RBDs in the spike trimer
and once bound they can lock RBDs in down con-
formation thereby restricting binding to ACE2;75

hence, the virus escaping from Class 2 and Class
3 antibodies might be more relevant for the spike
protein of the variants to bind to ACE2 leading to
increased infection. In terms of the efficacy of the
current FDA-approved antibody therapies, both Eli
Lilly’s Class 1 antibody LY-CoV016 and Regen-
14
eron’s Class 1 antibody REGN10933 should be
effective in neutralizing the Delta variant, since the
Delta mutations did not affect RBD binding to Class
1 antibodies (Table 7). However, Eli Lilly’s Class 2
antibody LY-CoV555 will be completely ineffective
in neutralizing the Delta variant as L452R com-
pletely abolished RBD binding to Class 2 antibod-
ies, whereas Regeneron’s Class 3 antibody
REGN10987 will be much less effective and
requires much higher concentration to neutralize
the virus as the RBD binding affinity is reduced by
�100 fold upon Delta mutations (Table 7).
The immune escape and high expression

capabilities of the SARS-CoV-2 Delta variant
requires a necessity for robust therapeutic
options. As the virus adapts, every successive
VOC has shown increased immune escape
potential. Thus, new vaccines need to be
developed and administered based on the variant
sequences existing at the time of vaccination, and
it is necessary for the vaccination rates to
continue to rise in order to combat the emergence
of future VOCs. Simultaneously, it is necessary for
improved monoclonal antibody therapeutics to be
developed against future variants. Delta VOC is
clearly distinct from other VOCs. Our previous
work has shown that other VOCs can escape
Class 1 antibodies, while expression is not
significantly different from that of the unmutated
WT.10 Delta does not escape Class 1 antibodies
and shows higher protein expression. In addition,
all previously studied variants showed enhanced
ACE2 binding which is not the case for the Delta
variant. These results also point to the fact that
the virus is still under continuous evolution, as none
of the VOCs is still able to escape all classes of neu-
tralizing antibodies. Any combination of mutations
that confer immune escape potential to SARS-
CoV-2 against all classes of neutralizing antibodies
will be of a major concern. In terms of applicability of
our results to the new Omicron variant, Omicron
might still show higher ACE2 binding because of
the presence of N501Y mutation. Since Omicron
lacks L452R mutation, it might not escape Class 2
and Class 3 antibodies, unless a separate set of
amino acid mutations confer the ability to escape
these neutralizing antibodies. Since Omicron is
themost transmissible and Delta is themost virulent
out of the five known VOCs, if Omicron picks up the
critical Delta mutations resulting in a Deltacron vari-
ant, it could turn out to be amore dangerous variant.
Note added during Revision: As predicted

above, recent results show that Omicron VOC has
higher ACE2 binding.76 It escapes Class 2 and
Class 3 neutralizing antibodies,74,77 and the escape
has to be due to a different set of mutations since
initial Omicron variants lacked L452R mutation.
Recent Omicron subvariants BA.4 and BA.5 have
picked up the L452R mutation that was specific to
Delta VOC, and the number of infected cases are
increasing again.
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Materials and Methods

Cloning

Sequences for RBD and human ACE2 were
obtained from Uniprot (RBD ID: P0DTC2; hACE2
ID: Q9BYF1). Sequences for neutralizing
antibodies were obtained from Research
Collaboratory for Structural Bioinformatics (RCSB)
Protein Data Bank (PDB). CC12.1, LY-CoV016,
P2B-2F6, LY-CoV555, and REGN 10987 had
PDB IDs of 6XC2, 7C01, 7BWJ, 7KMG, and
6XDG respectively. Antibody constructs were
designed in ScFv format, linking the heavy chain
(VH) and light chain (VL) via a glycine serine linker.
Final ScFv constructs were VH – (GGGGS)3–VL.

All sequences were codon optimized for
expression in mammalian cells by Twist
Biosciences. Final constructs included the protein
of interest, SUMOstar protein attached to a His-
tag, and a human immunoglobulin heavy chain
secretory sequence from 50 to 30 position. RBD
variants were created by site-directed
mutagenesis. Sequences were cloned into a
pcDNA3.4-TOPO vector. Expi293 HEK cells were
transfected at a concentration of 3 � 106 cells/mL
with polyethyleneimine. Proteins were expressed
over a 5-day period, and the culture media was
centrifuged and the supernatant was filter
sterilized with a 0.22 mm PVDF filter. The
expression levels for individual mutants were
compared after running the culture supernatants
on SDS-PAGE, staining with Coomassie blue R-
250 dye, and quantifying the band intensities
corresponding to the target protein normalized to
cell density using the ImageLab software from
Bio-Rad.
Purification

All proteins were purified using a Ni-NTA column,
and the protein was eluted with 200 mM imidazole.
The eluted protein was dialyzed to remove
imidazole and stored in a buffer consisting of
50 mM Tris, 200 mM NaCl, pH 8.0. The proteins
were cleaved using SUMOstar protease at 4 �C
overnight. Proteins were once again passed
through a Ni-NTA column, and the digested
proteins were collected in the flow-through and
wash. Proteins were dialyzed into a buffer solution
of 50 mM sodium phosphate, 20 mM NaCl, pH
7.0. Purity was confirmed by SDS-PAGE.
CD spectroscopy

An Applied Photophysics Chirascan Plus
spectrometer was used to record the CD spectra
and thermal denaturation melts for all variants. CD
Spectra were obtained for each RBD variant from
190 nm to 260 nm. Protein spectra were recorded
with a 0.5 mm cuvette at 5 mM protein
concentration in a buffer consisting of 10 mM
15
sodium phosphate, 4 mM NaCl, pH 7.0. Spectra
were recorded every 1 nm wavelength and
averaged over 2 seconds. Runs were repeated 5
times and averaged.
Thermal denaturation melts were performed

using an Applied Photophysics Chirascan Plus
spectrometer. All experiments were performed in
a 0.5 mm cuvette at a protein concentration of
20 mM in buffer containing 50 mM sodium
phosphate, 20 mM NaCl, pH 7.0. Temperature
scan rate was 1 �C/min, sample was equilibrated
for 30 sec at each temperature increment, and the
CD signal at 222 nm was averaged over 2
seconds. Data was plotted and analyzed using the
equation.47

ST ¼ ðSN þmNT Þ þ ðSU þmUT Þe�ðDHm
R

1
T
� 1
Tm

ð ÞÞ

1þ e�ðDHm
R

1
T
� 1

Tm
ð ÞÞ ð1Þ

where ST is the measured signal as a function of
temperature T, SN and SU are the signals
corresponding to the native and unfolded baselines, mN

and mU are the slopes of linear dependence of SN and
SU with temperature, Tm is the midpoint melting
temperature, DHm is the enthalpy change at the Tm, R
is the universal gas constant, and T is the absolute
temperature in Kelvin, respectively.

Fluorescence spectroscopy

A CCD detector was used with the Applied
Photophysics Chirascan Plus spectrometer to
record the fluorescence spectra and chemical
denaturation for all variants. An excitation
wavelength of 280 nm was used, and
fluorescence emission was recorded in a 1 cm
cuvette at 2 mM protein concentration in a buffer
containing 50 mM sodium phosphate, 20 mM
NaCl, pH 7.0. Urea was utilized as the denaturant
for equilibrium protein unfolding measurements,
and was dissolved in 50 mM sodium phosphate,
20 mM NaCl, pH 7.0 buffer. The concentration of
the urea solution was determined using refractive
index measurements.78,79 Two end solutions were
made (protein in buffer with no denaturant and in
�9 M urea), equilibrated for 1 hour, and were mixed
at urea concentration intervals of 0.2 M using a
Hamilton dual syringe automated titrator attached
to the spectrometer. Samples were equilibrated
for 10 min in between titrations, and the change in
spectral data was analyzed using the equation.80

SD ¼ ðSN þmN D½ �Þ þ ðSU þmU D½ �Þe�ðDG�
unfþm D½ �Þ=RT

1þ e�ðDG�
unfþm D½ �Þ=RT ð2Þ

where SD is the signal at a denaturant concentration [D],
SN and SU are the signals corresponding to the native
and unfolded proteins without denaturant, mN and mU

are the slopes of linear dependence of SN and SU with
[D], DG�unf is the Gibbs free energy change of
unfolding, and m is the slope of linear dependence of
DGunf with [D], R is the universal gas constant, and T is
the absolute temperature in Kelvin, respectively.
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ITC binding analysis

ITC was performed on the Malvern Microcal
PEAQ-ITC. All experiments were performed in a
buffer solution of 50 mM sodium phosphate,
20 mM NaCl, pH 7.0 at 20 �C and consisted of
eighteen 2 mL injections spaced every 150
seconds. For RBD-ACE2 interactions, ACE2 was
used at a concentration of 15 mM in the cell, while
RBD and all variants were injected from a stock
solution of 150 mM in the syringe. For RBD-
CC12.1 ScFv interactions, RBD was used at a
concentration of 25 mM while CC12.1 was injected
from a stock solution of 250 mM. RBD-LY-CoV016
interactions were studied at a concentration of
30 mM RBD and LY-CoV016 was injected from a
stock solution of 250 mM. RBD-LY-CoV555, RBD-
P2B-2F6, and RBD-REGN10987 ScFv
interactions were studied using a RBD
concentration of 30 mM, while LY-CoV555, P2B-
2F6, and REGN10987 ScFvs were injected from a
syringe stock concentration of 300 mM. All data
was collected and analyzed using the Microcal
PEAQ-ITC Data Analysis Software. Errors on DG
and -TDS were calculated using error propagation
formulae.81

Statistical analyses

In order to determine the significance of
differences between the biophysical properties of
WT RBD and mutant proteins, an unpaired t-test
was used. Statistical analyses were performed
using GraphPad Prism (Version 9.3.1).
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