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Abstract 

Background:  Whole brain radiotherapy (WBRT) can impair patients’ cognitive function. Hippocampal avoidance dur-
ing WBRT can potentially prevent this side effect. However, manually delineating the target area is time-consuming 
and difficult. Here, we proposed a credible approach of automatic hippocampal delineation based on convolutional 
neural networks.

Methods:  Referring to the hippocampus contouring atlas proposed by RTOG 0933, we manually delineated (MD) 
the hippocampus on the MRI data sets (3-dimensional T1-weighted with slice thickness of 1 mm, n = 175), which 
were used to construct a three-dimensional convolutional neural network aiming for the hippocampus automatic 
delineation (AD). The performance of this AD tool was tested on three cohorts: (a) 3D T1 MRI with 1-mm slice thick-
ness (n = 30); (b) non-3D T1-weighted MRI with 3-mm slice thickness (n = 19); (c) non-3D T1-weighted MRI with 1-mm 
slice thickness (n = 11). All MRIs confirmed with normal hippocampus has not been violated by any disease. Virtual 
radiation plans were created for AD and MD hippocampi in cohort c to evaluate the clinical feasibility of the artificial 
intelligence approach. Statistical analyses were performed using SPSS version 23. P < 0.05 was considered significant.

Results:  The Dice similarity coefficient (DSC) and Average Hausdorff Distance (AVD) between the AD and MD hip-
pocampi are 0.86 ± 0.028 and 0.18 ± 0.050 cm in cohort a, 0.76 ± 0.035 and 0.31 ± 0.064 cm in cohort b, 0.80 ± 0.015 
and 0.24 ± 0.021 cm in cohort c, respectively. The DSC and AVD in cohort a were better than those in cohorts b 
and c (P < 0.01). There is no significant difference between the radiotherapy plans generated using the AD and MD 
hippocampi.

Conclusion:  The AD of the hippocampus based on a deep learning algorithm showed satisfying results, which could 
have a positive impact on improving delineation accuracy and reducing work load.
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Introduction
Brain metastases are an increasingly common complica-
tion of systemic cancers [1, 2]. Approximately 20–40% of 
the patients with primary extra-cranial cancer develop 
brain metastases during the course of their disease [3], 
which is usually associated with poor prognosis requir-
ing urgent treatment [4]. Currently, brain radiotherapy 
(RT), including whole brain radiotherapy (WBRT) and 
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stereotactic radiosurgery (SRS), is still one of the most 
important treatments [5].

However, patients receiving brain RT, especially WBRT, 
often experience radiation-related side effects. Eric L 
Chang reported that patients treated with SRS com-
bined with WBRT were at a greater risk of a significant 
decline in cognitive function compared with patients that 
received SRS alone [6]. The Radiation Therapy Oncology 
Group (RTOG) 0212 [7] and 0214 [8] trials have demon-
strated that WBRT without avoidance of the hippocam-
pus increased cognitive impairment by 3 times at 6 and 
12 months after WBRT, which is significantly higher than 
the placebo group.

The neural pluripotent stem cells are mainly distributed 
in the hippocampus, which has been increasingly recog-
nized as a common casualty of radiation-related damage 
in recent years [9]. Multiple studies have documented 
that WBRT could cause damage to the hippocampus 
and affect the formation of learning and memory asso-
ciated with cognitive disorders [10]. The RTOG 0933 
study revealed that avoidance of the hippocampus during 
WBRT resulted in preserving memory and quality of life 
as compared with historical series [11].

Accurate delineation of hippocampus is very important 
for the success of radiation treatment planning and hold 
the promise of reducing the radiation-related side effects 
[12, 13]. However, the delineation of the hippocampus 
is often a time-consuming and difficult task in clinical 
practice, due to its small volume and diffuse boundary. 
Furthermore, the individual experience of the radiation 
oncologists and the varied quality of the images com-
plicates the situation even further. Recently, deep learn-
ing approaches based on convolutional neural networks 
(CNNs) have been widely investigated in the procedures 
of target delineation and has showed promising results 
for gross tumour volume, organs at risk, etc.[14, 15]. 
Therefore, auto-delineation of the hippocampus could be 
advantageous with the development of an artificial intel-
ligence (AI) tool based on deep learning. It could not only 
meet the clinical needs of precise delineation, but also 
greatly reduce the time required for delineation.

The purpose of our study is to construct an AI tool to 
auto-delineate the hippocampus and validate the delin-
eating accuracy and clinical feasibility.

Materials and methods
The entire study includes the selection of MR images, 
construction and optimization of the auto-delineate tool, 
and verification of the AD results (Fig. 1).

Magnetic resonance images
We retrospectively collected 205 three-dimensional 
T1-weighted (3D-T1) sequence non-gadolinium 

contrast-enhanced MR images with an axial slice thick-
ness of 1 mm from the First People’s Hospital of Hang-
zhou between January 2019 and June 2019. The data set 
was then randomly assigned to two cohorts: 140 cases 
were used to construct the AD tool and 35 cases were 
used to optimize its hyperparameters, and the remaining 
30 cases were assigned to a testing cohort a. Considering 
that 3D-T1 MRI is not routinely used in clinical practice, 
we also collected external cases with non-3D-T1 MRI to 
test the performance of this AD tool. This includes 19 
non-3D T1-weighted non-gadolinium contrast-enhanced 
MRIs with an axial slice thickness of 3 mm from Shanghai 
Chest Hospital between July 2019 and September 2019 
(testing cohort b) and 11 non-3D T1-weighted gadolin-
ium contrast-enhanced MRIs with an axial slice thickness 
of 1  mm from Hangzhou Cancer Hospital between July 
2019 and September 2019 (testing cohort c). All the cases 
were > 18 years old, and the MRIs confirmed with normal 
hippocampus has not been violated by any disease. The 
MRI Machine Vendor in train cohort and testing cohort 
a is GE 3.0 T Signa. In testing cohort b and c is Siemens 
1.5T Aera.

Manual delineate (MD)
A total of 235 cases were manually delineated on the axial 
MRI slice by slice. The process of delineation referred to 
the hippocampus atlas contouring proposed by RTOG 
[16]. The delineation of the hippocampus was performed 
by one radiation oncologist (K.C.P), who was well-
trained, especially in hippocampal delineation. Then, the 
results of delineation were reviewed and modified by an 
expert radiation oncologist (B.X) and a radiologist spe-
cializing in MRI imaging (Z.X.D).

Network architecture
We used the 175 3D-T1 MRI data sets to construct a 
three-dimensional (3D) CNN architecture to AD the 
hippocampus. The 3D CNN architecture we used is 
illustrated in Fig.  2. Before that, we will pre-process 
the images. The original axial pixel is 256 × 192, using 
those for algorithm training will occupy a large amount 
of graphics card memory, which is not conducive to 
algorithm training so we resized the whole slice pixel 
to 96 × 96, then subtracted the average value from the 
image and divided by the variance, the corresponding 
labeled image is divided by 255 and transformed to the 
0–1 interval.

This 3D CNN contains 2 networks; a Loc-Net was used 
to locate the position of the hippocampus and a Seg-Net 
was used to delineate the hippocampus accurately. Both 
Loc-Net and Seg-Net were based on the 3D variants of 
U-Net [17], combined with Residual [18] and Attention 
gate blocks [19] without modification. The training and 
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optimizing procedure of Loc-Net and Seg-Net is shown 
in Additional file  1: Fig. S1. After the training is com-
pleted, the image was also post-processed. We multiply 
the obtained result by 255 and binarize threshold pro-
cessing, then we scale to the size of the original image, 
finally the contour line was extracted.

Analysis of variation in contouring
We used the Dice similarity coefficient (DSC) and Aver-
age Hausdorff Distance (AVD) to evaluate the perfor-
mance of our constructed AD tool in the three testing 
cohorts.

The DSC is the most used metric in measuring the 
overlap between two contours. The larger the DSC value 
is, the higher the similarity is between two contours. The 
DSC is defined as

where Sg is the ground truth delineation and St is the 
delineation being evaluated [20].

Because the volume of the hippocampus is small, 
even small differences in delineation will have a signifi-
cant impact on the DSC values [21]; we used AVD to 
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Fig. 1  Outline of the study methodology. Here, MD represents manual delineation, 3D-T1 represents three-dimensional gadolinium 
contrast-enhanced T1-weighted, MRI represents magnetic resonance images, AD represents automatic delineation, Plan (AD) represents the 
generated radiotherapy plans using the AD hippocampus, and Plan (MD) represents the generated radiotherapy plans using the MD hippocampus
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compensate for this deficiency. AVD is the average dis-
tance between contours. The smaller the AVD value is, 
the higher the similarity is between two contours. AVD 
is defined as

where A and B are two finite point set and d(A,B) is the 
directed AVD that is given by 
d(A,B) = 1

N

∑

a∈A

min
b∈B

∥

∥a− b
∥

∥ [20].

Generating radiotherapy plans
To evaluate whether the results of the AD hippocampus 
could be applied to clinical practice directly, we used 11 
cases in testing cohort c to generate radiotherapy plans. 
All of the 11 cases had CT images scanned in the same 
position as MR images with a 1 mm slice thickness. The 
MR images were fused with the CT images and the hip-
pocampus and HC-PRV on the MRI were copied to the 
CT images to generate radiotherapy plans. We defined 
the target volumes (TVs) as follows: the hippocampus 
was expanded by 5 mm in all three dimensions to form 
the planning risk volume (HC-PRV), the clinical tar-
get volume (CTV) was defined as the whole-brain, and 
the planning target volume (PTV) was defined as CTV 
expanded by 5  mm in three dimensions excluding the 
HC-PRV.

Radiotherapy plans were made on Varian Eclipse 
Treatment Planning (Varian Medical System, USA) 
using the Intensity Modulated Radiation Therapy 

AVD(A,B) = max (d(A,B), d(B,A))

(IMRT) technique. The radiation field distribution 
is listed in detail in Additional file  1: Table  S1, and a 
7-coplanar field and 4-non-coplanar field arrangement 
was used for the IMRT plan (Fig.  3). The radiation 
dose of 10 × 3  Gy was prescribed to 95% of the PTV 
(V30Gy ≥ 95%) and the optimization parameters are 
listed in Additional file 1: Table S2. Dose constraints of 
normal tissue were referred to the RTOG 0933 proto-
col. Briefly, the mean dose of the hippocampus could 
not exceed 9  Gy, and the maximal hippocampal dose 
could not exceed 16  Gy. Both the AD and MD hip-
pocampus were used to generate radiotherapy plans 
recorded as Plan (AD) and Plan (MD), respectively.

Evaluation of radiotherapy plan
We used the MD hippocampus as the reference stand-
ard to evaluate the accuracy of the AD hippocampus, 
so we compared the differences of dose distribution 
between Plan (AD) and Plan (MD) based on the MD 
hippocampus. For PTV, we evaluated the dose received 
at 2% (D2%), D98%, V30Gy, and maximum dose (Dmax). 
For hippocampus, we evaluated the Dmax, mean dose 
(Dmean), and V16Gy. For the lens we evaluated Dmax.

Time consuming analysis
The time spend in the AD and MD delineation of the 
hippocampus was recorded and compared in testing 
cohort a.

Fig. 2  Network architecture in our work
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Statistical analysis
Paired Student’s t tests were used to compare the volume 
of the hippocampus, DSC and AVD of the hippocampus 
and HC-PRV between AD and MD and the dose-volume 
parameter variation between Plan (AD) and Plan (MD). 
Independent sample t tests were used to compare DSC 
and AVD between the three testing cohorts. All analy-
ses were performed using SPSS version 23 (SPSS, New 
York 10504-1722 United States). P < 0.05 was considered 
significant.

Results
Patient characteristics
The characteristics of the training cohort and testing 
cohort are shown in Table 1.

There was no statistical difference between the MD and 
AD hippocampal volume in testing cohort a (P = 0.791) 
and cohort c (P = 0.430). However, the AD hippocampus 
is larger compared with that of MD in the testing cohort 
b (P < 0.01). The age and sex were well balanced in these 
cohorts.

Delineation consistency
The values of DSC and AVD of the three cohorts are 
shown in Fig. 4.

The mean DSC of the hippocampus and HC-PRV 
were 0.86 ± 0.028 and 0.91 ± 0.021 in testing cohort a; 
0.76 ± 0.035 and 0.88 ± 0.022 in cohort b; 0.80 ± 0.015 
and 0.90 ± 0.012 in cohort c, respectively. The DSC of the 
hippocampus in cohort a was higher than those in cohort 
b and cohort c (P < 0.01). The DSC of the hippocampus 
in cohort c is higher than that in cohort b (P = 0.005). 
However, there was no statistical difference in DSC of the 
HC-PRV (P = 0.11) in these cohorts. In addition, DSC of 
HC-PRV was higher than that of the hippocampus in all 
three cohorts (P < 0.01).

The mean AVD of the hippocampus and HC-PRV 
were 1.8 ± 0.50  mm and 1.1 ± 0.62  mm in testing 
cohort a; 3.1 ± 0.64  mm and 2.5 ± 2.2  mm in cohort b; 
2.4 ± 0.21  mm and 1.3 ± 0.22  mm in testing cohorts c, 
respectively. The AVD of the hippocampus and HC-
PRV in testing cohort a were smaller than those in 
cohort c (P < 0.01). Both are smaller than in cohort b 
(P < 0.05). The AVD of HC-PRV is smaller than the AVD 

Fig. 3  Distribution of the radiation field. Hippocampus (yellow line); Hippocampus planning risk volume (red line). 7-coplanar field (beam 1–7) and 
4-non-coplanar field (beam 8–11) arrangement was used

Table 1  Basic characteristics of the 235 patients

Testing cohort a: 3D T1 MRI with 1-mm slice thickness; testing cohort b: T1-weighted MRI with 3-mm slice thickness; testing cohort c: T1-weighted MRI with 1-mm slice 
thickness

Training 
cohort 
(n = 175)

Testing cohort a (n = 30) Testing cohort b (n = 19) Testing cohort c (n = 11)

AD MD AD MD AD MD

Number of male patients (percentage) 79 (45.1) 14 (46.7) 17 (89.5) 7 (63.6)

Median age(range) 68 (36–98) 69.5 (35–88) 63 (46–77) 64 (55–82)

Volume of hippocampus (mean ± SD cm3) 4.71 ± 1.03 4.82 ± 0.91 4.85 ± 0.97 6.87 ± 0.81 4.95 ± 0.55 4.85 ± 0.80 4.64 ± 0.76

P value > 0.05 < 0.05 > 0.05
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of hippocampus (P < 0.01) except in testing cohort b 
(P = 0.15).

Dosimetric results
The dose parameters of Plan (AD) and Plan (MD) are 
listed in Table  2. Figure  5 presents the dose distribu-
tion of Plan (AD) and Plan (MD) for a case. For the hip-
pocampus, the average Dmean was 906.9 ± 17.2  cGy in 
Plan (AD) and 898.8 ± 14.1 cGy in Plan (MD). Although 
the difference was statistically significant, it was not 
considered clinically significant. There are 6 cases in 
Plan (AD) which had a Dmax of the hippocampal exceed-
ing 1600  cGy (range 1624.2–2196.2  cGy), the V16Gy of 
the hippocampus in these 6 cases ranged from 0.002 to 
0.187%. For all the cases, Dmax of the hippocampal in Plan 
(MD) did not exceed 1600 cGy. For PTV and lens in these 
11 cases, the differences were not statistically significant 
and all RT plans met the dose constraints.

Analysis of delineation time
The median time required to AD the hippocampus on 
both sides of these 30 cases is 9.35 s (range 8.49–10.0 s). 

This result is significantly less than the time required for 
MD (P < 0.001), which is 480 s (range: 436–542 s).

Discussion
Automatic delineation of TVs based on AI has become 
a hot research area in recent years, including semiauto-
matic tool like atlas-based auto-segmentation (ABAS) 
and fully automated based contouring. ABAS refers 
to the propagation of segmented structures from atlas 
images onto a patient image data set using deformable 
image registration (DIR). It is susceptible to topological 
errors which result in lower accuracy than MD for small 
TVs. Considering that the volume of the hippocampus 
is very small, large errors may occur when using ABAS. 
However, the AI-based AD technology uses deep neural 
network architectures with multiple (2 or more) hidden 
layers (those between input and output layers) to learn 
features from a dataset by modeling complex nonlinear 
relationships. When delineating hippocampus, AI-based 
AD technology has advantages over ABAS.

However, few studies have investigated the ability 
of AI-based AD hippocampus based on MRI. In this 
study, we constructed a hippocampal AD tool based 

Fig. 4  Mean AVD and DSC values with error bars for hippocampus and HC-PRV in the three testing cohorts. Note: testing cohort a: 3D T1 MRI with 
1-mm slice thickness; testing cohort b: T1-weighted MRI with 3-mm slice thickness; testing cohort c: T1-weighted MRI with 1-mm slice thickness; 
HC: hippocampus; HC-PRV: planning risk volume of the hippocampus

Table 2  Dosimetric comparison between Plan (AD) and Plan (MD)

Plan deviation = Dose in Plan (AD)-Dose in Plan (MD); V30: the volume of PTV getting 30 Gy; D98: the dose received at 98% of PTV; D2: the dose received at 2% of PTV; 
V16: the volume of hippocampus getting 16 Gy

Plan (AD) (mean ± SD) Plan (MD) (mean ± SD) Plan deviation 
(mean ± SD)

P value

PTV Dmax (cGy) 3528.3 ± 24.4 3531.8 ± 21.9 − 3.55 ± 16.6 0.513

V30 (%) 94.96 ± 0.14 95 ± 0 − 0.04 ± 0.14 0.423

D98 (cGy) 2519.1 ± 61.2 2540.9 ± 24.2 − 21.9 ± 53.2 0.223

D2 (cGy) 3386.2 ± 11.4 3390.7 ± 9.7 − 4.4 ± 7.2 0.079

Hippocampus Dmean (cGy) 906.9 ± 17.2 898.8 ± 14.1 8.1 ± 11.2 0.046

Dmax (cGy) 1671.5 ± 264.7 1450.3 ± 62.1 221.2 ± 257.9 0.022

V16(%) 0.046 ± 0.070 0 ± 0 0.046 ± 0.070 0.064

Lens Dmax (cGy) 567.5 ± 42.0 568.5 ± 47.0 − 1.03 ± 8.56 0.712
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on 3D T1 MRI images using 3D CNN, the performance 
of which was tested in three independent cohorts. The 
final results showed that the consistency between AD 
and MD hippocampus was acceptable, and that the 
difference in the treatment planning based on HC-
PRV could be negligible, which indicates that the AD 

approach has the potential of clinical application for 
hippocampus segmentation. In addition, unlike ABAS, 
which mostly needs to be manually modified after the 
AD is completed, the hippocampus AD by this tool can 
be applied without manual modification, which greatly 
reduces the time spend for delineation. The delineating 

Fig. 5  Variations of dose distributions between plan (MD) and Plan (AD). a Plan (MD), b Plan (AD). Manually delineated hippocampus (yellow line), 
automatically delineated hippocampus (red line), and PTV (blue line). Radiotherapy plan generated by a manually and b automatically delineated 
hippocampus. Both plans were evaluated using the AD hippocampus. In Plan (AD), a small area of the manually delineated hippocampus received a 
dose of more than 1600 cGy
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time has been reduced from nearly 4  min for MD to 
less than 10 s for AD.

3D-T1 MRI has been recommended as the standard 
modality for use in hippocampal delineation according 
to the RTOG 0933 protocol. Considering that 3D-T1 
MRI is not regularly used in clinical practice, we also 
included non-3D T1-weighted MRI images when testing 
the cohorts to evaluate the expansibility of the tool. As 
expected, cohort a showed the best consistency between 
the AD and MD hippocampi, and the results of cohort b 
were the worst. Additionally, the volume of the AD hip-
pocampus in cohort b was the largest in all of the delin-
eated hippocampi. Since only the 3D-T1 cases were 
selected as the training cohort, this may be one of the 
reasons. If we trained our model with images acquired 
as in cohort b and c, the results of cohorts b and c may 
improve. But the more important reason for such a dis-
parity might be related to the axial slice thickness of MRI; 
improving the slice thickness of 3  mm in cohort b will 
cause blurring in the 2D slice because of the partial vol-
ume effect and the decreased spatial resolution, which 
leads to inferior consistency between the AD and MD 
hippocampi and the large error bar in cohort b. In terms 
of the gadolinium enhancement, since it will not have 
any impact on the hippocampus and its surrounding tis-
sues [22], it will not affect the results of the delineation. 
In addition, although the same slice thickness of 1  mm 
was used in cohorts a and c, the DSC and AVD in cohort 
a were improved compared to those of cohort c, which 
might be explained by the different image quality due 
to the scan sequence. With 3D acquisition, due to their 
higher signal to noise ratio and isotropic voxel size, maxi-
mal intensity projection (MIP) reformation is allowed in 
arbitrary planes, which contributes to good discrimina-
tion between grey and white matter [23]. Actually, the 
hippocampus was most easily identified in the 3D T1 
image. According to this study, our AI tool performed 
better in 3D-T1 MRI, and we are enthusiastic to maxi-
mize its utility.

Although there were geometric differences between 
the AD and MD hippocampi, those differences may not 
reflect on the following formation of the HC-PRV and 
radiation treatment plans. The mean DSC and AVD 
of hippocampus in those 60 MRI data sets are 0.82 
and 2.3 mm (in 3D-T1 MRI they are 0.86 and 1.8 mm), 
respectively. For HC-PRV, the mean DSC and AVD 
are 0.90 and 1.6  mm (in 3D-T1 MRI they are 0.91 and 
1.1 mm), respectively. It can be seen that the volume of 
the hippocampus is small and therefore more sensitive to 
the overlap of location. Since the HC-PRV was formed by 
expanding the hippocampus by 5 mm in all three dimen-
sions, the performance of the HC-PRV was better than 
that of the hippocampus because of the relatively large 

volume. Furthermore, we compared the dosimetric dif-
ferences between Plan (AD) and Plan (MD) to evaluate 
the clinical feasibility. Since the dose received by the MD 
hippocampus represents the dose that the patient’s hip-
pocampus may receive during the actual application, we 
compared the differences of dose distribution between 
Plan (AD) and Plan (MD) based on the MD hippocam-
pus. As shown in Table 2, the dose volume constraints of 
hippocampus in Plan (AD) did not agree well with those 
in in Plan (MD), mainly because the evaluation of plan 
(AD) was based on the manually delineated hippocam-
pus. However, as is shown in Fig. 5, all the V16Gy of the 
hippocampus in Plan (AD) were very small, so that only 
0.0082 cm3 were at maximum. According to the study of 
Paul D. Brown, it is considered clinically acceptable when 
the V16Gy of the hippocampus is less than 0.03 cc [24]. 
In terms of Dmean, according to the RTOG 0933 protocol, 
it is still within the acceptable range when the Dmean of 
the hippocampi does not exceed 10 Gy. And all RT plans 
were within this acceptable range, although there was 
some difference in Plan (AD) and Plan (MD). For PTV, 
since the volume was much larger than that of the hip-
pocampus, the geometric differences of the hippocampal 
volume have little effect on the dose coverage of PTV, 
and there was no significant difference in the dosimetric 
parameters of PTV between Plan (AD) and Plan (MD).

There are limitations to this study, including those that 
are inherent to retrospective studies, such as unknown 
selection bias. The images used to construct the hip-
pocampal AD tool were from a uniform dataset with high 
quality and good contrast which, to some extent, limited 
the tool’s extensibility. Although there was a geographical 
loss in inferior images in the validation process, dosimet-
ric analysis did not differ significantly in terms of treat-
ment planning, indicating that the AD tool has potential 
for clinical application. Another issue that needs to be 
mention is the question of the MD hippocampus set as 
the golden standard. It has been reported that even for 
the same target delineated by different radiotherapists, 
DSC may reach 0.6–0.8 [25]. In this study, the delineation 
of the hippocampus was performed by only one radia-
tion oncologist to minimize differences between differ-
ent radiotherapists. In light of this, for the delineation of 
hippocampus that could not be easily distinguished on 
images, the AD tool based on deep learning has natural 
advantages over manual delineation, which is more con-
ducive to maintaining consistency in clinical practice or 
prospective trials.

Conclusions
The automatic delineation of the hippocampus based 
on a deep learning algorithm achieved satisfactory 
results, which could have a positive impact on improving 
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delineation consistency without significantly impacting 
dose parameter and reducing work load in clinical practice.
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