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Four distinct proteins are regulated in the aging neuroretina and may be regulated in
the cerebral cortex, too: peroxiredoxin, beta-synuclein, PARK[Parkinson disease(autosomal
recessive, early onset)]7/DJ-1, and Stathmin. Thus, we performed a comparative analysis
of these proteins in the the primary somatosensory cortex (S1) and primary visual cortex
(V1) in rats, in order to detect putative common development-, maturation- and age-related
changes. The expressions of peroxiredoxin, beta-synuclein, PARK[Parkinson disease
(autosomal recessive, early onset)]7/DJ-1, and Stathmin were compared in the newborn,
juvenile, adult, and aged S1 and V1. Western blot (WB), quantitative reverse-transcription
polymerase chain reaction (qRT-PCR), and immunohistochemistry (IHC) analyses were
employed to determine whether the changes identified by proteomics were verifiable
at the cellular and molecular levels. All of the proteins were detected in both of the
investigated cortical areas. Changes in the expressions of the four proteins were found
throughout the life-time of the rats. Peroxiredoxin expression remained unchanged over
life-time. Beta-Synuclein expression was massively increased up to the adult stage of life
in both the S1 and V1. PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1
exhibited a massive up-regulation in both the S1 and V1 at all ages. Stathmin expression
was massively down regulated after the neonatal period in both the S1 and V1. The
detected protein alterations were analogous to their retinal profiles. This study is the first to
provide evidence that peroxiredoxin, beta-synuclein, PARK[Parkinson disease (autosomal
recessive, early onset)]7/DJ-1, and Stathmin are associated with postnatal maturation and
aging in both the S1 and V1 of rats. These changes may indicate their involvement in
key functional pathways and may account for the onset or progression of age-related
pathologies.
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INTRODUCTION
Cerebral maturation and aging is characterized by stereotypical
structural and neurophysiological changes that result in marked
variations in the dendritic morphology of pyramidal neurons
in different cortical areas (Elston, 2002; Jacobs and Scheibel,
2002). Topologically, the cortical development of the visual and
prefrontal cortex exhibit different time frames during the process
of generating the dense network of pyramidal cells (Elston and
Fujita, 2014). Moreover, there is a significant loss of synapses
in the post-exhuberant postnatal cortex (Huttenlocher, 1990;
Bourgeois and Rakic, 1993; Rakic et al., 1994; Huttenlocher and
Dabholkar, 1997). These regional differences in pyramidal cell
structure and synaptic density patterns may be the determinants
of cortical function and may be associated with the functional
and physiological aspects of learning processes for each cortical
region (Elston, 2003; Spruston, 2008). The extent and branching
complexity of dendrites, as well as the number and density

of the spines on those dendrites, increases from the primary
sensory area to higher-order processing areas, such as the
prefrontal cortex (Elston, 2000; Jacobs et al., 2001; Elston et al.,
2006a, 2009; Bianchi et al., 2013). In addition to neurons,
neuroglia cells and microglia constitute the most numerous cell
population in the mammalian brain (Mori and Leblond, 1969;
Ling, 1976; Imamoto and Leblond, 1978; Shu and Richards,
2001; Rochefort et al., 2002). Neuroglia plays important roles in
synapse formation during development, as well as in multiple
forms of synaptic plasticity (Liu et al., 1994; Prewitt et al., 1997;
Rochefort et al., 2002; López-Hidalgo and Schummers, 2014),
whereas dynamic physical and molecular interactions between
astrocytes and neurons control the morphology and structural
plasticity of the dendritic spines. Once the appropriate synaptic
connections are formed during the critical period of maturation
and refinement, the function of astrocytes is likely modulated
(Stevens, 2008).
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At molecular level, the evolutionary conservation of gene
expression in the aging brain includes increase in stress and
inflammatory responses, and loss of mitochondria, neural
plasticity, autophagy, and synaptic functions (Loerch et al., 2008;
Bishop et al., 2010).

The frontal cortex as brain region with high-order cognitive
functions, includes the motor and the somatosensory area.
It receives less-coordinated activation with aging, suggesting
global alterations in the integrative functions (Andrews-Hanna
et al., 2007). In neurodegenerative disorders such as Alzheimer’s
disease (AD), cognitive and mnestic alterations are predictors
of age-related cortical function. (Huttenlocher, 1990; Bishop
et al., 2010). This cognitive decline in frontal cortex is
rather associated with alterations in synaptic connectivity than
with neuronal loss and white-matter changes (Mattson and
Magnus, 2006; Balietti et al., 2012). Physiological and anatomical
alterations associated with aging are accompanied by changes
in vision-associated qualities, including visual acuity, perception
of contrast and wavelength, and impairment of binocular
capabilities (Weale, 1975; Kline et al., 1983; Ross et al., 1985;
Schefrin et al., 1999; Nomura et al., 2003; Mavroudis et al.,
2012).

Most morphological studies of postnatal development have
focused on the visual cortex due to its clearly demarcated
characteristic anatomy, such as its very large granular layer
(Huttenlocher et al., 1982; Huttenlocher, 1990). Timing and
magnitude of growth, branching, spinogenesis and pruning in
the basal dendritic trees of pyramidal cells differ dramatically
among sensory, association, and executive cortical areas (Elston
et al., 2009, 2010a,b, 2011b; Elston and Fujita, 2014). In
primary (V1) and secondary visual cortex (e.g., V2, V3, and
V4) the number of spines decreases in contrast to its increase
in cytoarchitectonic areas in the posterior portion of the
inferior temporal cortex (TEO) from early postnatal stages till
adulthood (Elston et al., 2010a). Moreover, prolonged growth
periods of dendritic trees in the primary auditory cortex
(A1), anterior ventral portion of the inferior temporal cortex
(TEav) and granular prefrontal cortex (Brodmann’s area 12)
has been found compared to V1 (Cupp and Uemura, 1980;
Anderson et al., 1995; Elston et al., 2009, 2011b). However,
different growth profiles may reflect the type neuronal complexity
and functional hierarchies in the adult brain (Jacobs and
Scheibel, 2002; Elston, 2007; Spruston, 2008; Elston et al.,
2009).

During aging a greater decline of complex pyramidal cells
compared to simple cells has been found in the primary and
secondary visual cortices of macaque monkeys (Liang et al., 2012).
At morphological level, cerebral imaging has demonstrated the
presence of atrophy of the visual cortex in aged humans (Park
et al., 2004); those changes in vision-related areas of the brain
include neurons (Satorre et al., 1985).

In addition to morphological alterations, the electrophysio-
logical profile of pyramidal neurons also varies during postnatal
development, maturation, and aging in different cortical layers,
cortical areas, and species (Benavides-Piccione et al., 2002,
2006; Ballesteros-Yáñez et al., 2006; Elston et al., 2006b).
Pyramidal cells in primary visual cortex (V1) show different

electrophysiological profiles compared to granular prefrontal
cortex and inferior temporal cortex (TE; Murayama et al., 1997;
Amatrudo et al., 2012; Luebke et al., 2013). Those developmental
differences in the electrophysiological signatures of pyramidal
cells suggest different, specialized, and functional signatures of
the adult cortex. Reflecting aging, measureable and significant
losses of electrophysiological responses have been detected in the
V1 of aged mammals (e.g., rats, cats, and New World monkeys)
compared to their younger counterparts (Schmolesky et al.,
2000; Hua et al., 2006; Wang et al., 2006). Moreover, different
electrophysiological profiles have been found in primates in
comparison to rodents during aging (McCormick and Prince,
1987; Kasper et al., 1994; Metherate and Aramakis, 1999; Zhang,
2004; Oswald and Reyes, 2008; Romand et al., 2011). The
postnatal pyramidal cell development, spinogenesis, dendritic
growth, and electrophysiological profiles varies considerably in
different species and different cortical areas associated with visual
processing (for review, see Elston and Fujita, 2014). However,
perceptual deficits could not be explained by morphological
alterations in the retina alone, and are probably only related to
cortical areas (Satorre et al., 1985; Ahmad and Spear, 1993; Kim
et al., 1996).

In a previous comparative proteomic analysis of the
neuroretinas of marmosets and rats, we found that peroxiredoxin
(Prx), beta-synuclein (SNCB), Parkinson’s disease (PD;
autosomal recessive, early onset) 7/DJ-1 (DJ-1), and stathmin
(STMN) were regulated in an age-related fashion in both
species (Böhm et al., 2013). The aim of the present study was
to explore the comparative expression characteristics of Prx,
SNCB, DJ-1, and STMN in the primary somatosensory cortex
(S1) and primary visual cortex (V1) of the rat. We presumed that
significant regional differences were present in the expressions of
the aforementioned proteins with respect to level of maturation
and age between both the frontal and visual cortical areas. The
rationale for using S1 and V1 was that these areas receive quite
different afferent input, serve distinctly different functions, are
topologically the most distant areas within the cortex, and show
high divergence of pyramidal neuron morphometry together
with the differential synaptic densities in the different cortical
regions (e.g., prefrontal and somatosensory) cortex compared
to the visual cortex (Geschwind and Rakic, 2013; Elston and
Fujita, 2014). The distribution profiles and cellular localizations
of the selected proteins are demonstrated herein, assigning them
a generalized role in the processes in which they are involved in
the brain.

MATERIALS AND METHODS
ANIMALS
All animal work was conducted under the guidelines of the
Animal Welfare Act and under the oversight and approval of
the University and Governmental Institutional Animal Care
and Use Committee (LANUV-NRW, Permission numbers 8-
87-50.10.46.09.018 and 8-87-50.10.36.09.068 for rats). Sprague-
Dawley rats were housed in standard animal rooms under a
12-/12-h light/dark cycle, with food and water provided ad
libitum. In total, 72 rats (24 neonatal and 48 adult and/or
elderly animals) were used, covering the following ages: postnatal

Frontiers in Neuroanatomy www.frontiersin.org March 2015 | Volume 9 | Article 16 | 2

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroanatomy/archive


Böhm et al. The aging cortex of rats

day (P0) (i.e., the day of birth) (n = 24 animals), the young-
adult stage (adolescence)—6 months after birth (6 m) (n = 12
animals), middle-age—12 and 18 months after birth (12 m
and 18 m, respectively) (n = 12 animals for each group),
and aged (elderly)—30 months after birth (30 m) (n = 12
animals).

BRAIN DISSECTION
Protein and RNA extraction were achieved following
microdissection of the selected cortical regions, according
to Palkovits et al. (Palkovits and Brownstein, 1988; Chiu
et al., 2007). In brief, the animals were euthanized and the
brain was removed from the skull and rinsed in ice-cold
diethylpyrocarbonate-treated Milli-Q water to remove any
surface blood. The brain was then placed onto a cold metal
plate and the right and left hemispheres were separated. The
olfactory bulb was dissected out and discarded. Both areas of
interest are well dissectible when the cortex is viewed from the
dorsal aspect. To ensure that in both cases and in relation to
different maturated brains the areas of interest are included, the
parietal part of the most anterior pole was dissected to include
S1 (respectively the primary somatosensory area), whereas the
cranial part of the most occipital pole was dissected to include
V1 (respectively the primary visual area). The barrel cortex was
not considered in preparation of S1 in this study (Woolsey and
Van der Loos, 1970; Woolsey et al., 1975). The selected region
was flash frozen in liquid nitrogen and stored at –80◦C until
use.

WESTERN BLOTTING
Probes (P0, n = 8, 6–30 m, n = 4 for each group) obtained
from either visual and frontal cortices were subsequently
lysed in RIPA buffer [containing 0.1% sodium dodecylsulfate
(SDS)] with additional protease inhibitor cocktail (Roche,
Mannheim, Germany) and 1mM phenylmethylsulfonyl fluoride
(Sigma-Aldrich), followed by further trituration and ultrasound
treatment. The samples were sonicated and heated, and then the
protein concentrations therein were determined using Bradford
reagents (Bio-Rad, München, Germany). The samples were then
transferred to SDS sample buffer containing 130 mM Tris-
HCl (Carl Roth, Karslruhe, Germany), 10% w/v SDS, 10%
mercaptophenol, 20% glycerol, and 0.06% w/v bromophenol
blue (all Sigma-Aldrich). Fifty micrograms of protein from
each sample were fractionated on 12% and 14% SDS–
polyacrylamide gels (depending on the molecular weight of the
target protein) with a protein marker (Bio-Rad, Hercules, CA,
USA). After electrophoresis, the proteins were transferred onto
a nitrocellulose membrane (Whatman, GE Healthcare Europe,
Freiburg, Germany). The blots were incubated in blocking
solution containing 5% fat-free dried milk (Carl Roth) and 0.1%
Tween-20 PBS (Sigma-Aldrich) for 1 h, followed by incubation
overnight at 4◦C with a primary antibody, as listed in Table 1.
The control antibody, anticalnexin, was used at a dilution of
1:10,000. The membrane was then incubated with a horseradish-
peroxidase-conjugated secondary antibody (Sigma-Aldrich) in
blocking solution for 1 h at room temperature. Antibodies were
detected by enhanced chemiluminescence (Amersham, Rockville,

MD, USA), and the relative densities of the protein spots
were analyzed using Alpha Ease (Alpha-Ease FC software 4.0,
Alpha Innotech, Biozym Scientific, Vienna, Austria). The protein
density of a fixed area was determined for each spot after
subtracting the specific background density in the surrounding
region. The spot density was correlated and corrected against
the relative density of the particular application control. The
spot density of the samples from the P0 group was defined
as the respective reference values, and the relative values at
the other ages were calculated. In cases of missing or sparsely
expression levels in neonatal ages, those obtained at 6 m were
defined as reference values. Means and standard deviations
of the relative relationships of the proteins were obtained
for gels of four individual samples, each run three times for
each individual group. The data are presented as mean ± SD
values. The primary and secondary antibodies used are listed in
Table 1.

QUANTITATIVE REVERSE-TRANSCRIPTION POLYMERASE CHAIN
REACTION
RNA isolation from probes (P0, n = 8, 6–30 m, n = 4 for each
group) was achieved using the RNeasy kit (Sigma-Aldrich)
according to the protocols provided by the manufacturer. The
results were quantified using a UV/visual spectral photometer
(NanoDrop ND-1000, Peqlab, Erlangen, Germany). cDNA was
synthesized from 1 µg of total RNA using the High-Capacity
cDNA Reverse Transcription Kit from Applied Biosystems
(Darmstadt, Germany). The quantitative polymerase chain
reaction (PCR) primer pairs were designed for SYBR-Green-
based real-time quantitative reverse-transcription polymerase
chain reaction (qRT-PCR). The following primers were used in
the PCR analysis:

Peroxiredoxin (Prx) 2: (NM_017169.1):
forward, CATGGCCTCCGGCAA;
reverse, AAAGGCACCATCCACCACGGC
Beta-Synuclein (SNCB): (NM_031686.1):
forward, GGGCCTTGTCCCATTCACGGC;
reverse, TGCCTGCTTCTATATCCCGGCTTGG
PARK [Parkinson disease (autosomal
recessive, early onset)]7/DJ-1
(DJ-1): (NM_057143.1):
forward, ACCGCGCAGGAAAAACACGC;
reverse, CTGCCAGACGGCTCTGCAC
Stathmin (STMN) 1: (NM_017166.1):
forward, TCCGAGCCGCCTGGCTTAGG;
reverse, GTCCCGTGTCCCCGGCTAGG

qRT-PCR was performed using the SYBR Green PCR kit
(Applied Biosystems) according to the protocols provided by
the manufacturer. Relative protein expressions were calculated
as 2–∆Ctspecific gene/2–∆Ctmean (housekeeping genes), using
glyceraldehyde phosphate dehydrogenase as an endogenous
housekeeping control gene. For relative quantification (RQ),
the comparative Ct (∆–∆Ct) method was employed; the results
are presented relative to the expression level at P0. The data are
presented as mean ± SD values.
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Table 1 | Primary and secondary antibodies used for Immunohistochemistry and Western-blot.

Immunohistochemistry

1st Antibody Species Solution Company

Peroxiredoxin (1–4) Rabbit polyclonal 1:100 Santa-Cruz
DJ-1/Park7 Rabbit polyclonal 1:100 Abcam
Beta-Synuclein Rabbit polyclonal 1:200 Abcam
Stathmin 1 Rabbit polyclonal 1:500 Abcam
NF-200 Mouse monoclonal 1:200 Sigma
GFAP Mouse monoclonal 1:250 Sigma
CD11b/c (OX-42) Mouse monoclonal 1:50 Serotec
2nd Antibody Species Solution Company
(Cy)-2 Goat—Anti-mouse 1:400 Jackson Immunoresearch
TRITC Goat—Anti-rabbit 1:400 Sigma

Western blot

1st Antibody Species Solution kDa Company
Peroxiredoxin (1–4) Rabbit polyclonal 1:4000 25 kDa Santa-Cruz
DJ-1/Park7 Rabbit polyclonal 1:6000 20/24 kDa Abcam
Beta-Synuclein Rabbit monoclonal 1:2000 14 kDa Abcam
Stathmin 1 Rabbit polyclonal 1:1000 17 kDa Abcam
2nd Antibody Species Solution kDa Company
Calnexin Rabbit polyclonal 1:10000 90 kDa Sigma

DJ-1, PARK [Parkinson disease (autosomal recessive, early onset)] 7/DJ-1; NF-200, high-molecular-weight neurofilament; GFAP, glial fibrillary acidic protein; CD11b/c,

cluster of differentiation molecule 11b/c; (Cy)-2, cyanine; TRITC, tetramethylrhodamine; kDa, kilodalton.

IMMUNOHISTOCHEMISTRY
The regional localization and cellular expression of Prx (1–4),
SNCB, DJ-1, and STMN in cortical cells was explored using
immunohistochemistry (IHC). The animals (P0, n = 8, 6–30 m,
n = 4 for each group) were given a lethal overdose of
anesthesia induced using a mixture of 10% ketamine (Ceva
Sanofi, Düsseldorf, Germany) and xylazine (Cefa Sanofi), and
then perfused transcardially with phosphate-buffered saline
(PBS; Sigma-Aldrich, Taufenkirchen, Germany) followed by
500 ml of a fixative containing 4% paraformaldehyde (PFA,
pH 7.4) in 10 mM PBS. The brain of each animal was
then extracted and postfixed in 4% PFA for 24 h. Fixed
samples were processed in an automated tissue processor
(Bavimed Histomaster 2062-DI 2L, Birkenau, Germany) and
then transferred directly into 70% ethanol for 8 h prior to
initiation of processing, followed by incubation for 15 min
in each of the following: 99% ethanol, 96% ethanol, xylene
(×2), and paraffin (×2). They were then infiltrated with low-
melting-point paraffin wax (Sasol Wax, Hamburg, Germany)
for 1 h at 56◦C three times, with each brain being embedded
separately. The paraffin-embedded brains were kept dry at 4◦C
until use.

The paraffin-embedded brains were sectioned coronally at a
thickness of 4 µm using a microtome (CM 1500, Leica, Bremen,
Germany), and mounted onto glass slides. The procedure for
selecting slices of the region of interest is described briefly further
below in the method section.

Before immunohistochemical staining, the selected slides/
sections were warmed (at 60◦C for 30 min) and then
deparaffinized by soaking them twice in xylene for 10 min each
time (Panreac Appli-Chem, Darmstadt, Germany), followed by

two 3-min drenches in 99%, 96%, and 70% ethanol, followed by
distilled water. After rinsing the slides with PBS (2 × 5 min),
the sections were incubated for 30 min with blocking solution
containing 10% goat serum (Sigma-Aldrich) for 2 h at room
temperature, and then with primary antibodies overnight at
4◦C. After washing, the sections were incubated with secondary
antibodies (1 h at room temperature), washed in PBS, and then
coverslipped with antifade mounting medium (Mowiol, Hoechst,
Frankfurt, Germany) containing 4’,6-diamidino-2-phenylindole
to stain the cell nuclei. Primary and secondary antibodies are
provided in Table 1.

VERIFICATION AND IDENTIFICATION OF Prx, SNCB, DJ-1, AND STMN IN
VARIOUS CORTICAL CELL TYPES
Differences in the expressions of Prx, SNCB, DJ-1, and
STMN in different cortical cell types were analyzed by
immunohistochemical staining of both the frontal and
visual cortices. First, selected slices were routinely stained
with hematoxylin and eosin (H&E) for basic morphological
evaluation including comparison with the rat brain maps
illustrated by Swanson (1992). The primary somatosensory
cortex (S1) and primary visual cortex (V1) were correctly
localized on examination of selected H&E-stained slides with
bright-light microscopy (data not shown). Slices of selected
regions were then immunohistochemically stained as described
above.

Each section was stained with both an antibody detecting one
of the cortical cell types—high-molecular-weight neurofilament
(NF-200) for neuronal cells, glial fibrillary acidic protein (GFAP)
for glial cells, or cluster of differentiation molecule 11b/c (OX-42)
for brain microglia– and an antibody detecting Prx, SNCB, DJ-1,
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or STMN (Nadeau and Rivest, 2000). Colocalization of a cell-
type-specific antibody with a specific protein antibody indicates
expression of that particular protein in that particular cell type.
Negative controls comprised sections that were processed as
for the other sections but without the addition of a primary
antibody. Control and experimental sections were stained
simultaneously to avoid variations in immunohistochemical
staining. Primary and secondary antibodies are provided in
Table 1.

The slides were viewed with the appropriate filter on a
microscope equipped with epifluorescence (Apotome 2, Carl
Zeiss, Jena, Germany) and appropriate software (ZEN 2012,
Carl Zeiss). Z-stacks were applied and evaluated to identify the
cellular localization of the proteins. The regions of interest were
then analyzed qualitatively as follows. Digital images of three
microscopic fields (non-overlapping) in each hemisphere of at
least three independent samples were taken at a magnification of
×20 to enable quantification of the level of each of the selected
cortical cells within layer IV (for pyramidal neurons), layer I
(for glial cells, e.g., astrocytes), and layer I-V (for microglia)
were distinguished from other layers by the presence of larger
pyramidal neurons. The barrel cortex was not considered in
studying S1 (Woolsey and Van der Loos, 1970; Woolsey et al.,
1975). A counting box of dimensions 300 µm × 300 µm
(a buffer zone of 10 µm on either surface was employed
so as not to include cut surfaces and to spare out the
edges) was superimposed onto the image to aid counting. The
number of cortical cells obtained from DAPI merged images
within the region of interest was counted with the cell count
function of ImageJ software.1 Each of the automated counts
was double checked manually, and cells were assessed only if
the cell body was easily seen and had no secondary branches
obscured by background staining or by another cell. Any specific
cortical cell body that was immunopositive for the protein
under analysis, independent of its intensity, was then counted
manually.

The focus of these analyses was to reveal the relative number
of double-labeled cells. These data were used to calculate the rates
of costaining [% = (number of cell body positive for selected
protein/number of cortical cell type × 100)] in the cortex of each
age, as well as the means of the individual experimental groups.
The data are presented as mean ± SD values. The method of
counting and calculating the rates of costaining was performed
according to He et al. (2014). Although ideally we would like to
have estimated the total number of neurons, it was not possible
to demarcate these frontal and visual-associated brain areas in
order to estimate their entire volume, and so we relative neuron
cell count was used to represent neuronal densities, as described
previously.

DATA EVALUATION AND STATISTICS
All data regarding the means of specific costaining studies from
IHC, optical density from Western blot (WB) analyses, and
relative quantification from qRT-PCR studies were analyzed
with a test for two independent samples (IBM SPSS Statistics

1http://imagej.nih.gov/ij/

20.0) to examine conformity with the Gaussian distribution,
and processed using the ANOVA (for a Gaussian distribution)
and Friedman test (for a non-Gaussian distribution). Local p
values were corrected for multiple comparisons using the Holm-
Bonferroni method. p-Value < 0.05 were judged as statistical
significant. Figures were prepared with image-processing software
(Photoshop, Adobe Systems, San Jose, CA, USA), and the overall
brightness and contrast were adjusted without retouching.

RESULTS
First, the expressions of Prx, SNCB, DJ-1, and STMN in the S1
and V1 were verified at the protein and gene level using WB
and qRT-PCR. Then, the cellular localization of the four proteins
was examined immunohistochemically by double-staining S1 and
V1 sections with antibody markers for three different cortical
subsets of cells (neurons, glial elements, and microglial cells) and
antibodies to Prx, SNCB, DJ-1, and STMN.

PEROXIREDOXIN
Protein expression levels
WB analysis of Prx expression at 6 m (S1, 128.5 ± 8.1%, p = 0.07;
V1, 94.6 ± 15.5%, p = 0.6), 12 m (S1, 123.5 ± 13.8%, p = 0.3; V1,
156.0 ± 47.8%, p = 0.3), 18 m (S1, 123.1 ± 1.8%, p < 0.05; V1,
111.6 ± 23.6%, p = 0.5), and 30 m (S1, 116.1 ± 19.7%, p = 0.3;
V1, 80.3 ± 25.2%, p = 0.5) revealed comparable expressions
of Prx (25 kDa) in both cortical areas at all ages compared to
P0 (Figures 1A,B). These data indicate that although there was
a tendency toward changes in protein expression with age, the
differences were not statistically significant.

mRNA expression levels
Prx mRNA level was significantly decreased at 6 m (S1, RQ = 0.42
± 0.004, p < 0.05; V1, RQ = 0.43 ± 0.07, p < 0.05), 12 m (S1,
RQ = 0.53 ± 0.03, p< 0.05; V1, RQ = 0.47 ± 0.06, p< 0.05), 18 m
(S1, RQ = 0.54 ± 0.01, p< 0.05; V1, RQ = 0.41 ± 0.05, p< 0.05),
and 30 m (S1, RQ = 0.45 ± 0.03, p < 0.05; V1, RQ = 0.46 ±

0.12, p< 0.05) compared to P0 (Figure 1C). These data show that
Prx mRNA levels are decreased at all ages compared to P0, and
confirmed the data observed at the IHC level.

Immunohistochemistry
The colabeling study revealed that Prx is expressed in neurons,
glial cells, and microglia. Prx was localized mainly in the
cytoplasm and in close association with the nucleus in NF-200-
positive neuronal cells, GFAP-positive glial cells, and OX-42-
positive microglial cells in the newborn cortex (Figures 1D–G).
In the aged cortex, Prx was localized only in close association
with the nucleus of neuronal cells and microglial cells
(Figures 1H–K).

Neuronal staining
Prx was detected in neurons at all ages examined, and its
distribution changed slightly with aging in both the S1 and V1.
At the cellular level, at P0 Prx was costained with NF-200-positive
neurons in both cortical areas (S1, 90.7 ± 8.1%; V1, 82.6 ± 10.6%;
p = 0,2; Figure 1L). A decrease of these Prx-positive neuronal
cells compared to P0 was found for both the S1 and V1 in the
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FIGURE 1 | Age-related expression and regulation of peroxiredoxins
1–4 (Prx) in the rat primary somatosensory cortex (S1) and primary
visual cortex (V1). (A) Western-blot analyses of cortex and (B)
corresponding densitometric analyses of the Western-blot results
relative to those measured at P0 (in %). Lysates of cortex treated as
described in the main text were prepared and tested for Prx (25 kDa)
expression. Calnexin expression verified the amount of protein loaded
per lane. Protein bands are given in kilodaltons (kDa). (C) Quantitative
reverse-transcription polymerase chain reaction (qRT-PCR) results for Prx

mRNA levels relative to those measured at P0. Expression of cortical
Prx (red) and several cortical cell types (green) revealed by
immunohistochemical staining of 4-µm-thick sections of brain samples.
(D–K) The intra- and extracellular localizations of Prx in neonatal (P0)
and 30 months aged (30 m) V1 were detected in high-molecular-weight
neurofilament (NF-200)-positive neuronal cells at higher magnification
(×63). The rate of costained cells [%=(# of Prx+/cortical cell type+)/(#
of cortical cell type+) × 100] (He et al., 2014) is shown with

(Continued )
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FIGURE 1 | Continued
(L–T) NF-200 for neuronal cells in S1 and V1 at 12 m, (U–Y) glial fibrillary
acidic protein (GFAP) for glial cells in S1 at P0, and (Z,AA–AD) cluster of
differentiation molecule 11b/c (OX-42) for microglial cells in S1 at 30 m. The
negative control was performed with cyanine (Cy)-2 and
tetramethylrhodamine (TRITC) as secondary antibodies (data not shown).
4’,6’-Diamidino-2-phenylindole (DAPI) was used to stain the cell nuclei.
Scale bars: (D-K), 10 µm; (M–P), (Q–T), (V–Y), and (AA–AD), 20 µm.
*Statistically significant difference at p < 0.05; *standing by itself mean
statistically significant differences in relation to P0.

adult stages (e.g., 12 m: S1, 47.4 ± 12.9%, p < 0.05; V1, 35.9 ±

2.9%, p < 0.05; 18 m: S1, 62.4 ± 14.2%, p < 0.05; V1, 38.9 ±

4.6%, p < 0.05) compared to P0 (Figures 1L–T). The proportion
of Prx-positive neurons continued to decline between the adult
(e.g., 18 m) and elderly stages (30 m, 54.6 ± 16.3%, p = 0.57),
and remained decreased compared to P0 (p < 0.05) in the S1.
The proportion of Prx-positive neuronal cells was comparable
between S1 and V1 in adult stages of age (12 m, p = 0.4; 18 m,
p = 0.1). There was a tendency toward an increase in Prx-positive
neurons at P30m in the V1 (63.4 ± 11.8%, p < 0.05) compared
to adult stages (e.g., 18 m). No differences within the V1 between
the ages 30 m and P0 were observed (p = 0.1) (Figure 1L).

Glial staining
At P0, comparable colabeling of Prx with GFAP-positive gial cells
was found in both the S1 (65.3 ± 10.7%) and V1 (68.4 ± 2%,
p = 0.8) (Figures 1U–Y). In the adult stages there was a decrease in
glial Prx expression in both the S1 (18 m, 41.9% ± 4.9%, p< 0.05)
and V1 (18 m, 17.5% ± 0.1%, p < 0.05) compared to P0. At
30 m (20.1 ± 3.4%), the proportion of Prx-positive glial cells had
decreased further in the S1 compared to both the neonatal (20.1
± 3.4%, p < 0.05) and the adult stages (12 m, 55.2% ± 8.4%,
p< 0.05; 18 m, p< 0.05). In contrast, there was an increase in the
proportion of Prx-positive glial cells in the V1 at 30 m (44.6 ±

4.0%,) compared to adult rats (12 m, 41.0% ± 3.7%, p = 0.3; 18 m,
p < 0.05). There was a statistically significant difference between
the S1 and V1 at 18 m (p< 0.05) and 30 m (p< 0.05) (Figure 1U).

Microglial staining
There was an increase in the proportion of OX-42-positive
microglial cells colabeld with Prx in both cortical regions,
with only slight differences between S1 and V1, beginning
at P0 (S1, 51.0 ± 15.3%; V1, 75.2 ± 4.5%, p = 0.1)
(Figure 1Z). Prx-positive staining of microglia increased with
age, with intense staining being detected at 30 m in both
cortical areas (S1, 84.7% ± 1.7%, p < 0.05; V1, 92.3 ± 1.4%,
p < 0.05) compared to P0. There was a strong correlation of
Prx staining in microglial cells and age in both cortical areas.
An increased proportion of colabeled cells was present in the
S1 at 12 m, 18 m and 30 m. A high colabeling rate of Prx
and microglia was observed in the V1 in all stages of age
(Figures 1AA–AD).

BETA-SYNUCLEIN
Protein expression levels
Since SNCB was only sparsely detected in the S1 at P0, the
expression at 6 m was used as a reference for optical density at

later stages. The expression of SNCB was lower at P0 (S1, 1.33
± 0.07%, p < 0.05; V1, 38.3 ± 13.3%, p < 0.05) than at 6 m.
An increase in SNCB expression was detected in both the S1
(146.5 ± 4.4%, p < 0.05) and V1 (104.4 ± 19.4%, p < 0.05)
at 12 m. There was no significant increase in SNCB expression
in the S1 at 18 m (189.0 ± 61.0%, p = 0.06), while there
was a significant increase in the V1 (115.5 ± 14.5, p < 0.05).
Although no significant alterations in SNCB expression were
detected in the aged S1 (209.5 ± 133.3%, p = 0.08), there was
a significant increase in the aged V1 (175.3 ± 14.4%, p < 0.05;
Figures 2A,B).

mRNA expression levels
SNCB mRNA levels were slightly up-regulated at 6 m in the S1
(RQ = 1.1 ± 0.04, p < 0.05), but remained unchanged in the V1
(RQ = 0.96 ± 0.4, p = 0.4). The greatest degree of SNCB mRNA
up-regulation was found at 12 m in the V1 (RQ = 1.2 ± 0.09,
p < 0.05); the slight up-regulation of SNCB mRNA detected in
the S1 was not statistically significant (RQ = 1.4 ± 0.24, p = 0.07).
The expression of this protein’s mRNA remained unchanged at
18 m (S1, RQ = 1.15 ± 0.16, p = 0.2; V1, RQ = 1.2 ± 0.2, p = 0.5)
and 30 m (S1, RQ = 1.1 ± 0.25, p = 0.4; V1, RQ = 1.1 ± 0.23,
p = 0.2) compared to P0 (Figure 2C).

These data show that the expression of SNCB increased
significantly at both the protein and mRNA levels during
maturation of the brain, and then remained stable after 6 m in
the V1, and increased slightly after 18 m in the S1.

Immunohistochemistry
A faint staining for SNCB was observed in both the S1 and V1 in
the neonate, with an overall increase with age. SNCB was localized
to the cytoplasm of neuronal cells at younger ages, while in aged
cortical glial cells SNCB was found in close association with the
nucleus (Figures 2D–K).

Neuronal staining
Comparable SNCB-positive neuronal cells were found in neonatal
rat cortices (S1, 95.9 ± 7.2%; V1, 93.9 ± 10.6%; p = 0.8;
Figures 2L–P). Its proportion of costained cells decreased with
age and remained stable until the adult ages in both the S1 (e.g.,
6 m: 52.6 ± 20.4%, p < 0.05) and V1 (e.g., 6 m 35 ± 7.5%;
p < 0.05). An increase of SNCB colabeled neuronal cells was
detected in the V1 beginning at 18 m (87.5 ± 4.6%, p < 0.05;
30 m, 58.9 ± 1.9%, p < 0.05) compared to 12 m (40.3 ± 5.9%).
The analyses revealed no change in neuronal SNCB staining in
the S1 at this same stage (12 m, 47.3% ± 9%, p = 0.7; 18 m, 41 ±

12.5%, p = 0.4) compared to 6 m. This pattern changed after 18 m,
with an increase in the proportion of SNCB-positive neurons with
age up to 30 m (67.3 ± 20.8%), resulting in a distinct, but not
significant increase of NF-200- and SNCB-positive cells in the S1
compared to adult stages of age (e.g., 18 m, p = 0.11; Figure 2L).

Glial staining
There was a direct correlation between SNCB and GFAP-positive
cells at P0 in both the S1 (65.2 ± 14.9%) and V1 (70.9 ± 13.7%;
p = 0.6; Figures 2Q–U). However, this close relationship between
SNCB and glial cells decreased at 6 m (S1, 20.4 ± 11.1%, p< 0.05;
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FIGURE 2 | Age-related expression and regulation of beta-synuclein
(SNCB) in the rat S1 and V1. (A) Western-blot analyses of cortex and
(B) corresponding densitometric analyses of the Western-blot results
relative to those measured at 6 months (6 m) of age (in %). Lysates of
retinas treated as described in the main text were prepared and tested
for SNCB (14 kDa) expression. Calnexin expression verified the amount
of protein loaded per lane. Protein bands are given in kilodaltons. (C)
Quantitative reverse-transcription polymerase chain reaction (qRT-PCR)

results for SNCB mRNA levels relative to those measured at P0.
Expression of cortical SNCB (red) and several cortical cell types (green)
revealed by immunohistochemical staining of 4-µm-thick sections of
brain samples. (D–K) Intra- and extracellular localizations of SNCB in
aged (30 m) S1 and V1 were detected in GFAP-positive glial cells at
higher magnification (63x). Rate of costained cells is shown in different
cortical cell types: (L–P) Association between SNCB and

(Continued )

Frontiers in Neuroanatomy www.frontiersin.org March 2015 | Volume 9 | Article 16 | 8

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroanatomy/archive


Böhm et al. The aging cortex of rats

FIGURE 2 | Continued
NF-200-positive neuronal cells is demonstrated in S1 at P0. (Q–U)
Colabeling of SNCB and GFAP-positive glial cells is shown in S1 at neonatal
level. (V–Z) Costaining of SNCB and OX-42 was performed in V1 at 30 m.
The negative control was performed with Cy-2 and TRITC as secondary
antibodies (data not shown). DAPI was used to stain the cell nuclei. Scale
bars: (D–K), 10 µm; (M–P), (R–U), and (W–Z), 20 µm. *Statistically
significant difference at p < 0.05. *standing by itself mean statistically
significant differences in relation to (B) 6 m and (C,L,Q,V) P0.

V1, 9.7 ± 5.8%, p < 0.05) till elderly stages of age. A further
decline in colabeling of SNCB in glial cells were found in both
the S1 and V1 at 18 m (S1, 19 ± 1.7%, p < 0.05; V1, 3.4 ± 2.2%,
p< 0.05) and in V1 at 30 m (10.2 ± 6.0%, p< 0.05) compared to
12 m (S1, 19% ± 1.7%; V1, 21.3 ± 2.3%) (Figure 2Q).

Microglial staining
In agreement with the finding of slight immunostaining for SNCB
in microglial cells in both cortices at P0 (S1, 34.1 ± 4.5%; V1,
53.2 ± 14.3%; p = 0.08), there was an increase in the proportion
of microglial cells positive for SNCB in both the S1 and V1 in
the adult ages (e.g., 6 m: S1, 64.9%17.3%, p < 0.05; V1, 83.9 ±

9.4%, p < 0.05) (Figure 2V). This proportion then decreased in
both cortices in elderly rats (30 m: S1, 43.9 ± 2.2%; V1, 42.7 ±

14.8%) compared to adult age stages (e.g., 12 m: S1, 64.1 ± 6.2%;
p< 0.05; V1, 84.4 ± 4%; p< 0.05) (Figures 2V–Z).

DJ-1
Protein expression levels
WB analysis revealed expression of DJ-1 in the V1 at all age stages.
However, expression of DJ-1 was only sparsely detected in the
neonatal S1. Compared to 6 m, there was a reduced expression of
DJ-1 in both the S1 (1.4 ± 0.5%, p< 0.05) and V1 (34.8 ± 29.5%,
p < 0.05). With increased age, significantly more DJ-1 was found
in both cortices at 12 m (S1, 140.8 ± 27.3%, p < 0.05; V1, 137.4
± 15.7%, p < 0.05). However, at 18 m increased DJ-1 expression
was detected in the V1 (143.8 ± 39.1%, p < 0.05), but not in the
S1 (155.5 ± 88.2%, p = 0.07). Increased expression of DJ-1 was
detected in the aged (30 m) S1 (148.1 ± 58.6%, p< 0.05), but not
in the V1 at the same age (76.1 ± 45.9%, p = 0.2; Figures 3A,B).

mRNA expression levels
DJ-1 mRNA levels were significantly decreased in both the S1 and
V1 at 6 m (S1, RQ = 0.42 ± 0.01, p< 0.05; V1, RQ = 0.44 ± 0.02,
p< 0.05), 12 m (S1, RQ = 0.69 ± 0.02, p< 0.05; V1, RQ = 0.64 ±

0.1, p< 0.05), 18 m (S1, RQ = 0.45 ± 0.2, p< 0.05; V1, RQ = 0.49
± 0.004, p < 0.05), and 30 m (S1, RQ = 0.52 ± 0.5, p < 0.05; V1,
RQ = 0.66 ± 0.09, p < 0.05) compared to P0 (Figure 3C). These
data reveal a slight up-regulation of DJ-1 protein, but an overall
reduction in its mRNA.

Immunohistochemistry
IHC for DJ-1 revealed stained cells in the S1 and V1 at all ages
(Figures 3D–K). DJ-1 was localized to the cytoplasm of all cell
types examined, including NF-200-positive neuronal cells, GFAP-
positive glial cells, and OX-42-positive microglial cells in both the
S1 and V1.

Neuronal staining
Colabeling of DJ-1 and NF-200-positive neurons was found at all
ages (Figure 3L). Different costaining of DJ-1 and NF-200 was
found in newborn rats in S1 (91.1 ± 3.6%) compared to V1 (82.1
± 2.6%; p < 0.05; Figure 3L). There was a subsequent reduction
in the proportion of DJ-1-positive neurons with increasing age
(e.g., 18 m; S1, 45.1 ± 19.8%, p < 0.05; V1, 52.2 ± 12.4%,
p < 0.05) compared to P0. There were no differences in the
proportions of DJ-1-positive neurons between the adult ages (i.e.,
6 m, 12 m) and cortical regions. The costaining of DJ-1 and NF-
200-positive neurons was then unchanged between the adult ages
(e.g., 18 m) and P30m in the S1 (34.4 ± 10.6%, p = 0.3), while
an increase in the proportion of colabeled cells was found in the
V1 (75.9 ± 9.7%, p < 0.05) compared to adult stages of age (e.g.,
18 m) (Figures 3M–T).

Glial staining
Noticeable costaining of DJ-1 and GFAP-positive glial cells was
detected in both the S1 (81.9 ± 7.4%) and V1 (67.6 ± 3.9%,
p < 0.05) at P0 (Figures 3U–Y). However, there was a reduction
in this association in both cortical areas at 6 m (S1, 23.7 ± 10.1%,
p < 0.05; V1, 12.8 ± 7.5%, p < 0.05), followed by an increase,
beginning in the S1 at P30m (18 m: 19.8 ± 10%, p< 0.05; P30m:
70.4 ± 0.1, p = 0.11) and in the V1 at 12 m (12 m: 28.8 ± 6.4%,
p< 0.05; 18 m: 54 ± 6.8%, p< 0.05; P30m: 77.8 ± 7.9%, p = 0.07)
compared to P0 (Figures 3U–Y).

Microglial staining
In contrast to the rare colabeling of DJ-1 and OX-42-positive
microglial cells in both the S1 (24.5 ± 6.4%) and V1 (31.4 ±

6.4%) observed at P0 (Figure 3Z), a strong increase was detected
at advanced ages, such as 30 m (S1, 85.2 ± 3%, p< 0.05; V1, 90.9
± 7.3%, p< 0.05) (Figures 3Z,AA–AD).

STATHMIN
Protein expression levels
WB analysis revealed expression of STMN in both cortical regions
at P0, with a massive decrease at 6 m (S1, 2.5 ± 0.7%, p < 0.05;
V1, 2.5 ± 3.5%, p < 0.05), 12 m (S1, 3.9 ± 1.3%, p < 0.05; V1,
2.8 ± 3.9%, p < 0.05), 18 m (S1, 3.8 ± 1.3%, p < 0.05; V1, 3.6 ±

5.1%, p < 0.05), and 30 m (S1, 3.5 ± 0.5%, p < 0.05; V1, 5.0 ±

7.1%, p< 0.05) (Figures 4A,B).

mRNA expression levels
mRNA was significantly down-regulated at 6 m (S1, RQ = 0.11
± 0.02, p < 0.05; V1, RQ = 0.10 ± 0.04, p < 0.05), 12 m (S1,
RQ = 0.14 ± 0.01, p < 0.05; V1, RQ = 0.11 ± 0.0001, p < 0.05),
18 m (S1, RQ = 0.12 ± 0.002, p < 0.05; V1, RQ = 0.07 ± 0.02,
p < 0.05), and 30 m (S1, RQ = 0.11 ± 0.004, p < 0.05; V1,
RQ = 0.10 ± 0.01, p< 0.05) compared to P0 in both the S1 and V1
(Figure 4C). The data show a comparable age-related alterations
in both the protein expression and mRNA levels of STMN in the
S1 and V1.

Immunohistochemistry
The focus of STMN expression was in neuronal cells at the
neonatal stage of age and in mircoglial cells at elderly stage of age.
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FIGURE 3 | Age-related expression and regulation of PARK[Parkinson
disease (autosomal recessive, early onset)]7/DJ-1 (DJ-1) in the rat S1
and V1. (A) Western-blot analyses of cortex and (B) corresponding
densitometric analyses of the Western-blot results relative to those
measured at 6 m (in %). Lysates of cortex treated as described in the main
text were prepared and tested for DJ-1 (20/24 kDa) expression. Calnexin
expression verified the amount of protein loaded per lane. Protein bands are
given in kilodaltons. (C) Quantitative reverse-transcription polymerase chain
reaction (qRT-PCR) results for DJ-1 mRNA levels relative to those measured at

P0. Expression of cortical DJ-1 (red) and several cortical cell types (green)
revealed by immunohistochemical staining of 4-µm-thick sections of brain
samples. (D–K) The intra- and extracellular localizations of DJ-1 in neonatal
(P0) and 30 months (30 m) aged V1 is shown in OX-42-positive microglial cells
at higher magnification (×63). Costaining rate of DJ-1 is shown in different
cortical cell types: (L–T) Association between DJ-1 and NF-200-positive
neuronal cells is demonstrated at 30 m in S1 and V1. (U–Y) Costaining of DJ-1
and GFAP-positive glial cells was performed in S1 at P0. (Z,AA–AD)

(Continued )
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FIGURE 3 | Continued
Colabeling of DJ-1 and OX-42-positive microglial cells is shown in S1 at
P30m. The negative control was performed with Cy-2 and TRITC as
secondary antibodies (data not shown). DAPI was used to stain the cell
nuclei. Scale bars: (D–K), 10 µm; (M–P), (Q–T), (V–Y), and (AA–AD),
20 µm. *Statistically significant difference at p < 0.05; *standing by itself
mean statistically significant differences in relation to (B) 6 m and (C,L,U,Z)
P0.

STMN was detected in close association with the nucleus in NF-
200-positive neuronal cells in both cortical regions (Figures 4D–
K). In contrast, colabeling of STMN was found in the cytoplasm
in both GFAP-positive cortical glial cells and OX-42-positive
microglia.

Neuronal staining
STMN-positive neuronal cells were in found in neonatal rat
cortices (S1, 89.1 ± 7%; V1, 88 ± 6.6%; Figures 4L–P). Its
colabeling rate decreased massively over life-time until late
adulthood (e.g., 18 m; S1, 13.7 ± 3%, p < 0.05; V1, 13.7 ± 4.5%,
p < 0.05) compared to P0. A decrease of these STMN-positive
cells compared to P0 and adult stages (12 m, 18 m) was found
in the S1 also in elderly stages (30 m: 4.9 ± 2%, p < 0.05). An
increase in STMN staining in neuronal cells was detected in the V1
at P30m (35.8 ± 7.8%) compared to 18 m (40.2 ± 6.2%, p< 0.05)
(Figure 4L).

Glial staining
A significant difference in colabeling of STMN and GFAP-positive
glial cells was found in S1 (30.1 ± 8%) compared to V1 (88 ±

6.6%, p < 0.05) at neonatal stages (Figures 4Q–U). A decrease
in the proportion of the cells in which STMN and GFAP were
costained in both the S1 (9.5 ± 4.5%, p < 0.05) and V1 (6.6
± 1.8%, p < 0.0.05) in the adult stages (18 m) compared to
P0. At P30m, the proportion of STMN-positive glia cells show a
tendency to increase in the S1 (24.7 ± 10%, p = 0.5) compared
to P0 (Figures 4Q,V–Y). A further decrease in the colabeling rate
of STMN with GFAP-positive glial cells was found in the V1 (6 ±

1.9%, p< 0.05) compared to P0.

Microglial staining
Noticeable colabeling of STMN and OX-42-positive microcglial
cells was detected in both S1 (46.6 ± 10.9%) and V1 (23.1 ± 5.2%,
p < 0.05) at P0 (Figure 4Z). The proportion of STMN-positive
microglial cells remained unchanged in the S1 until the elderly
stage of age (e.g., 30 m: 54.5 ± 9.5%, p = 0.4), with exception
of early adulthood (12 m: 62.6 ± 11.6%) compared to advanced
adult stages of age (18 m: 37.6 ± 13.7%, p< 0.05) (Figures 4AA–
AD). In contrast, an increase of proportion of costaining was
observed in the V1 (6 m: 43.4 ± 6%, p < 0.05; 18 m: 40.2 ±

6.1%, p < 0.05; 30 m: 62.1 ± 11.7%, p < 0.05) compared to P0
(Figure 4Z).

DISCUSSION
We examined the expression of Prx, SNCB, DJ-1 and STMN
during the postnatal maturation and aging in two areas (S1 and
V1) of the cerebral cortex in rats (Böhm et al., 2013). Although

the work presented here, including quantitative approaches
toward the protein expression has limitations, to the best of our
knowledge this has not been done previously and this is the first
study to describe the expression of these age-related proteins in
morphologically and functionally different cortical regions. The
principal findings of the study are as follows:

1. The S1 and V1 share in common the postnatal maturation and
age-related proteins Prx, SNCB, DJ-1, and STMN, which have
previously been described in the retina.

2. Pyramidal neurons and glial cells exhibit a decrease in Prx
expression in both the S1 and V1 in an age-related context.

3. SNCB expression increased in V1 pyramidal neurons during
adulthood, whereas it remained unchanged over life-time in
the S1.

4. DJ-1 expression decreased continuously in the S1 pyramidal
neurons during the measured life-time, whereas its expression
increased to neonatal levels in the elderly V1.

5. A massive reduction in STMN expression has been found in
neuronal cells and glial cells in both the S1 and V1.

Studies in the last decades regarding cortical development
and aging have been performed mainly with tissue obtained
from human and nonhuman primates (Huttenlocher, 1990; Rakic
et al., 1994; Elston and Rosa, 2006; Bianchi et al., 2013; Oga
et al., 2013). Few of these studies have revealed differences in the
cortical development of rodents compared to primates, although
marked differences have been demonstrated in pyramidal cell
structure in homologous cortical areas between primates and
rodents (Elston and Manger, 2014). Studies comparing mouse,
rhesus macaque monkey, and human brains have revealed
divergence in the expression patterns of major genes (Loerch
et al., 2008). For example, up-regulation of genes participating
in neuronal functions was found during aging in mice, but
these genes were down-regulated during aging in humans. Given
the assumption of an evolutionary shift between the lineage
of rodents and humans, this finding may be attributed to
specific human neurodegenerative disorders such as AD. The
data presented in this study were assessed using the brains of
Sprague-Dawley rats. These laboratory animals are easy to access
and provide “comparable” life events due to their short lifespan
relative to humans. Moreover, the quantification of the subset of
cortical cells was performed with semi quantitative methods and
not with high-performance stereological methods. Nevertheless,
interesting alterations in the protein expression in rats due to
development and aging were detected in the selected cortical
regions. We will briefly review what is already known in rodents,
humans and nonhumans. Then, we will discuss in detail the
selected proteins and regional differences in their patterns of
expression in the two cortical areas of interest.

Genetic and epigenetic assumptions, area-specific factors, and
the function of its projections influence pyramidal cell structure
and create regional variations in pyramidal cell phenotypes in
the primate cerebral cortex (Vercelli and Innocenti, 1993; Elston
et al., 1996, 2011a; Matsubara et al., 1996; Elston and Rosa,
1997, 1998, 2006; Elston, 2000; Jacobs et al., 2001; Elston and
Rockland, 2002; Benavides-Piccione et al., 2006; Bianchi et al.,
2013; Oga et al., 2013; Sasaki et al., 2014). A physiological
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FIGURE 4 | Age-related expression and regulation of stathmin (STMN) in
the rat S1 and V1. (A) Western-blot analyses of retinas and
(B) corresponding densitometric analyses of the Western-blot results relative
to those measured at P0 (in %). Lysates of cortex treated as described in the
main text were prepared and tested for STMN (17 kDa) expression. Calnexin
expression verified the amount of protein loaded per lane. Protein bands are
given in kilodaltons. (C) qRT-PCR results of STMN mRNA levels relative to
those measured at P0. Expression of cortical STMN (red) and several cortical

cell types (green) revealed by immunohistochemical staining of 4-µm-thick
sections of brain samples. (D–K) Intra- and extracellular localizations of STMN
(red) were detected in aged S1 and V1 in NF-200-positive cells (green) at
higher magnification (×63). Costaining rate of STMN is shown in different
cortical cell types: (L–P) Costaining of STMN is shown at P0 with
NF-200-positive neuronal cells in the V1. (Q–Y) Association of STMN with
GFAP-positive glial cells is demonstrated in V1 at P0 and S1 at P30.

(Continued )
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FIGURE 4 | Continued
(Z,AA–AD) Colabeling of STMN with OX-42 is shown in S1 at 30 m. The
negative control was performed with Cy-2 and TRITC as secondary
antibodies (data not shown). DAPI was used to stain the cell nuclei. Scale
bars: (D–K), 10 µm; (M–P), (R–U), (V–Y), and (AA–AD), 20 µm.
*Statistically significant difference at p < 0.05; *standing by itself mean
statistically significant differences in relation to P0.

loss of neuronal cells and synapses is likely caused by a failure
of developing neurons to find targets for innervation. This
observation is missing in complex neuronal systems such as the
human neocortex, whereas a 30% loss of cortical neurons has
been observed in rodents (e.g., in the mouse) (Heumann et al.,
1978; Heumann and Leuba, 1983). There is also little evidence for
overproduction of synapses in rodents, and the synaptic density
in the rat brain reaches a maximum at about postnatal day 35,
which is less than 10% greater than in the adult (Aghajanian
and Bloom, 1967). During the first postnatal month in cats,
glial cells may influence the development of axons, and both
microglial and astrocytes participate in the shaping of the callosal
cortical maps to the level of the V1 in mammals (Rochefort et al.,
2002).

Physiological aging in the mammalian brain is characterized
by several interrelated morphological and metabolic changes.
Recent morphological studies have revealed considerable
variations in different parts of the brain, including the human
cerebellum and the cerebral cortex of rhesus monkeys (Nandy,
1981). Physiological aging is not associated with significant
neuronal loss in the human or macaque neocortex (Peters
et al., 1994; Pakkenberg and Gundersen, 1997). Instead, age-
related cognitive decline is thought to result from more subtle
synaptic alterations (Morrison and Hof, 1997). Qualitative
observations of dendritic spine reduction have been made
in the aging cortex of humans, nonhuman primates, mice
and rats, which are consistent with reports of age-related
decreases in synapses in different cortical regions (Lee et al.,
2000; Fraser et al., 2005; Yankner et al., 2008; Stranahan et al.,
2012).

Age-related metabolic changes include a global reduction in
the brain’s energy requirements and decreases in cerebral blood
flow and glucose utilization (Chugani et al., 1991). Recent studies
exploring age-related changes in dendrites and dendritic spines
in the frontopolar and occipital regions of the human neocortex
indicate that different cortical areas in primates do not age in a
uniform manner. For example, the prefrontal cortex appears to
be more susceptible to aging than sensory regions such as the
occipital cortex (Azari et al., 1992; Eberling et al., 1995; Jacobs
et al., 1997). The prefrontal cortex exhibits a higher metabolism
and regional cerebral blood flow in the normal (resting) state
than other cortical areas (Roland, 1984). Life-time changes in
cortical metabolism parallel the age-related variations in synaptic
densities observed in the frontal cortex (e.g., S1), but they
correlate less with changes in synaptic density in the V1 (Jacobs
et al., 1997). Aging is also a risk factor for progressive brain
disorders in which neuroinflammation plays a prominent role.
Coordinated changes in gene transcription cascades underlie

changes in synaptic, neurotrophic, and inflammatory phenotypic
networks during brain development, maturation and aging. Early
postnatal changes in gene expression are related to neuronal, glial,
and myelin growth, and synaptic pruning events, while late aging
is associated with proinflammatory and synaptic loss (Primiani
et al., 2014). Thus, the distribution and morphology of astrocytes
and microglial cells changes with age (Rochefort et al., 2002).

PEROXIREDOXIN
Prx was expressed in both the rat S1 and V1 throughout the
ages examined. In the present study, the protein levels of Prx
did not change significantly in the rat cortex during aging,
although a slight decrease in its mRNA was observed in both
cortical regions. The expression of Prx have been recently studied
in the human, murine, and (in the case of Prx-1) rat brain
(Sarafian et al., 1999; Mizusawa et al., 2000; Wang et al.,
2003). Prx are presumably involved in various cellular reactions,
such as cellular defense against reactive oxygen species (ROS),
receptor signaling, gene regulation, and apoptosis (Jim and Jeang,
1999; Singh and Shichi, 2001). They are functioning mainly
to support cells, including oligodendrocytes and Schwann cells,
probably protecting them against oxidative stress (Mizusawa
et al., 2000). Prx-1 is associated with glial cells, and particularly
with oligodendrocytes and neurons (Mizusawa et al., 2000; Aon-
Bertolino et al., 2011). Prx-2, -3, -4, and -5 have been detected in
projection neurons in the human brain (Sarafian et al., 1999; Aon-
Bertolino et al., 2011). Loss of mitochondria in CA1 pyramidal
neurons has been detected in Prx-2-defcient mice due to the
functioning of the extracellular signaling kinases pathway (Kim
et al., 2011). Neuroglial localization of Prx-6 has been detected
in mouse and human brains (Wang et al., 2003; Aon-Bertolino
et al., 2011), with a high degree of specificity for this cell
type.

An age-dependent diversification of the cell types expressing
Prx was detected. An association between Prx and neuronal,
glial, and microglial cells was found in both the S1 and V1
of the neonatal rat brain. A reduction in Prx labeling of
both neuronal and glial cells during aging suggests a loss of
mechanisms for responding to oxidative stress in major cell
types in the cortex. The age-related changes in the expression
of Prx and the associated cell types detected in the present
study are probably associated with changes in the vulnerability
of cortical neurons to oxidative stress. Brain samples from
elderly individuals have revealed decreased Prx-2 protein levels,
which may induce increased oxidative stress in the aging brain
(Chen et al., 2003; Aon-Bertolino et al., 2011). Decreased Prx-3
expression was detected in regions known to be specially affected
in AD, Down’s syndrome, and PD (Kim et al., 2001; Krapfenbauer
et al., 2003). We observed a decrease in Prx expression in
pyramidal cortical cells in the V1 after 6 months of life, compared
to a decrease after 12 months in the S1. This finding could
be associated with the reported slower progress of dendritic
development and increase in synaptic density in the S1 compared
to the V1 (Huttenlocher and Dabholkar, 1997; Jacobs et al.,
1997).

The increase of microglial cells positive stained for Prx during
aging suggests an increased activation of immunoassociated cell
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types in the cortical regions. This observation concurs with
the reported neuronal loss of up to 30% and overproduction
of synapses during rodent brain maturation between birth
and adulthood. These changes roughly parallel the age-related
variations in synaptic densities observed in the S1, but are less
well correlated with changes in synaptic density in the primary V1
(Heumann et al., 1978; Heumann and Leuba, 1983; Huttenlocher
and Dabholkar, 1997). Moreover, an earlier increase in the
proportion of Prx-positive microglial cells was found in the V1
compared to the S1, where this increase in microglial Prx staining
began in the adult ages. The diversity of Prx-positive pyramidal
cells and microglia in different cortical areas may reflect this
difference in metabolic demand, including metabolic and oxygen
stress in the S1 and V1.

Comparison of Prx expression relative to subsets of brain
cells revealed a shift from neurons and glia toward microglia.
However, comparison between the areas examined revealed that
the expression and colabeling profiles were not comparable
between the two, suggesting that the proteins show aspects of
known cortical development steps reflecting regional features.
A sole association with visual processing cannot be concluded.
The uniform expression of Prx over the frontal and occipital
lobes may be associated with the vulnerability of the brain to
oxidative stress in comparison to other organs due to its high
oxygen utilization, high iron content, presence of unsaturated
fatty acids, and reduced activities of detoxifying enzymes such
as superoxide dismutase, catalase, and glutaredoxins (Dringen,
2000; Capani et al., 2001; Rodríguez et al., 2005). The disturbance
of redox homeostasis, low levels of glutathione, and increased
production of ROS and peroxynitrite have been described for
several CNS disorders, such as perinatal asphyxia (Capani et al.,
2001), stroke (Eliasson et al., 1999), focal traumatic brain
injury (Singh et al., 2006), and numerous neurodegenerative
disorders including AD, PD, multiple sclerosis, and amyotrophic
lateral sclerosis (Bains and Shaw, 1997; Torreilles et al., 1999).
Lastly, the localization of Prx in neuronal cells in neonatal,
and microglial cells in aged cortical regions concurs with
the localization reported in the aging retina (Böhm et al.,
2013).

BETA-SYNUCLEIN
We detected an increase expression of SNCB within both
the S1 and V1 over the life-time of rats. The family of
cytoplasmic synuclein proteins that comprises SNCA, SNCB,
and gamma-synuclein (SNCG) is thought to function in
synaptic vesicles and neurotransmission, and neuronal plasticity.
SNCA and SNCB are highly homologous proteins, and are
colocalized in presynaptic nerve terminals in the CNS. In
contrast, SNCG is expressed primarily in the PNS (Hashimoto
et al., 2001; Sung and Eliezer, 2007). SNCB may elicit
neuroprotective functions, e.g., the neurotoxic response in 6-
hydroxydopmaine-affected TSM-1 (twin sensillum of margin 1)
neurons (Hashimoto et al., 2001, 2004; Park and Lansbury,
2003; Tsigelny et al., 2007). It has been shown that SNCB
decreases the proapoptotic gene p53 (da Costa et al., 2003).
Furthermore, SNCB activates the Akt signaling pathway in
rotenone-affected tissue culture B103 cells (Hashimoto et al.,

2004). Hashimoto suggested that the SNCB activation of
Akt resulted in Mdm2 (mouse double minute 2 homolog)
phosphorylation, which in turn inactivates p53. This mechanism
may promote neuroprotection against toxins (Hashimoto et al.,
2004). Finally, SNCB protects the CNS against the toxic
effects of SNCA overexpression in tg mice (Spillantini et al.,
1997), in which SNCB overexpression results in increased Akt
pathway activity, suggesting that the phosphatidylinositide-3-
kinase signaling pathway is a potential therapeutic target for PD
via SNCA aggregation.

The expression pattern of SNCB varied considerably in the
rat cortices throughout the life-time. It was expressed in both
the V1 and S1, beginning at 6 m. In contrast to S1, early
expression of SNCB was detected in the neonatal V1. In neonatal
cortices, SNCB was detected in close association with neuronal
and glial cells; it was less clearly correlated with microglial cells.
The increased SNCB expression after birth may reflect the fact
that the synaptic density in the rat brain reaches a maximum
at about postnatal day 35, which is only less than 10% greater
than the adult value (Aghajanian and Bloom, 1967). As yet we
have no direct explanation for the early expression of SNCB in
the V1. It may be associated with the increased requirements for
early postnatal maturation in the S1 in contrast to the sparsely
developed neonatal visual system of rats.

An age-related divergence in the increase in SNCB-positive
pyramidal cells was found in both adult rat cortices in this study
(i.e., S1 and V1). An increased association between SNCB and
pyramidal neurons was found in V1 beginning at the adult stage
of life. In contrast, the S1 exhibited mainly SNCB colocalized with
NF-200-positive neuronal cells in the elderly rats. We presume
that the earlier increase in SNCB expression by pyramidal neurons
could reflect the lower vulnerability of the V1 to aging in contrast
to the sensory cortex, possibly due to the reported association
with a higher metabolic rate and regional blood flow in the S1.

We found comparable levels of SNCB expression in the S1 and
V1 and in the aging retina (Böhm et al., 2013). In contrast to the
strong association with the synapse-rich retinal layers, SNCB in
the cortex appeared to be associated with neonatal neuronal cells
and aged glial cells.

DJ-1
DJ-1 is expressed in many tissues, including the brain without
any preference to a single functional system or anatomical area
(Nagakubo et al., 1997; Bader et al., 2005). In this study, DJ-1
expression was found in both the V1 and S1 throughout the
life-time of rats. In the V1 DJ-1 expression increased up to
the late adult age and then regressed to neonatal levels, that
in the S1 increased continuously from P0 to the senile age
stages. DJ-1 plays a cardinal role in maintaining mitochondrial
function and is reported to possess neuroprotective properties by
limiting oxidative damage (Moore et al., 2005). DJ-1 can enhance
antioxidant systems and promote antioxidant mechanisms
(Liu et al., 2008; Blackinton et al., 2009). Moreover, it is
involved in the functioning of the ubiquitin-proteasome system,
which reduces the accumulation of toxic protein substrates.
Mitochondrial dysfunction (and the associated oxidative stress)
and altered functioning of the ubiquitin-proteasome system are
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considered important factors in familial and sporadic forms
of PD. Importantly, it is widely accepted that impairments of
these mechanisms are common denominators of neurological
disorders in general, and in particular AD and multiple sclerosis,
and may already have occurred in the early stages of these diseases
(Moreira et al., 2005; Lassmann and van Horssen, 2011; van
Horssen et al., 2011; Wilhelmus et al., 2012). Neverless, DJ-1 may
operate at the intersection of environmental stressors and aging
(Chen et al., 2014).

DJ-1 is expressed in neurons with different neurotransmitters
and in all glial cell types, such as astrocytes, microglia and
oligodendrocytes. In a number of cell lines, DJ-1 is associated with
microtubules and localizes to both the nucleus and the cytoplasm
(Hod et al., 1999; Bader et al., 2005). The neuronal and synaptic
expressions of DJ-1 in primate subcortical brain regions suggest
a physiological role for DJ-1 in the survival and/or function
of nigrostriatal neurons (Olzmann et al., 2007). The expression
characteristics of DJ-1 in pyramidal neurons reported herein for
the S1 and V1 are comparable to other examined stress-related
proteins, like Prx. The proportion of DJ-1 in NF-200 positive
neurons decreased gradually from the day of birth with aging
in the S1, whereas it increased to adulthood in the V1. The
loss of associated DJ-1 in neuronal cells may indicate a loss of
protective factors in the aging brain. A reduced expression of DJ-
1 in glial cells was found in both of the cortical areas examined
in young adulthood compared to older brains. Recent studies
described the abundantly-expression of DJ-1 in PD astrocytes
(Bandopadhyay et al., 2004; Neumann et al., 2004; Rizzu et al.,
2004; Mullett et al., 2009). This may represent an attempt
by astrocytes to protect themselves, and surrounding neurons,
against disease progression. DJ-1 is over-expressed in astrocytes
enhancing their neuroprotective capacity against rotenone and
other pesticides in vitro. DJ-1 knock-down astrocytes were
impaired in this capacity. DJ-1 modulate the release of soluble
factors by astrocytes (Mullett and Hinkle, 2009, 2011). The
prevalence of DJ-1 expression in microglia increased with aging
in both the S1 and V1. DJ-1-deficient microglia had increased
monoamine oxidase (MAO) activity that resulted in elevation
levels of neurotoxic secreted factors, including intracellular ROS,
nitric oxide, and pro-inflammatory cytokines (Trudler et al.,
2014). These findings suggest an increased association between
DJ-1 expression and cells associated with the innate immune
system in the cortex.

The localization of DJ-1 in the retina also varies over life-time.
In newborn rats, DJ-1 has been found in the germinative ganglion
cell layer, and after P16 and marginally at P23 and P60 in the inner
plexiform layer (Böhm et al., 2013). Although the exact role of
DJ-1 in the retina is not clear, its main role may be in the early
retinal maturation (Haniu et al., 2006; Finnegan et al., 2008).
However, these data indicate comparable expressions of DJ-1 in
visual-specific neuronal regions during aging.

Given the role of DJ-1 in maintaining mitochondrial function
and reducing oxidative stress, this pattern of expression may
reflect the lower vulnerability of the V1 to aging and oxidative
stress compared to the S1. The presented findings reveal a
difference in the expression of DJ-1 in various cortical regions and
cortical cell types show over the life-time in rats.

STATHMIN
Our data show a dramatic decrease in STMN in both the S1
and V1 beginning at 6 m; thereafter, the expression of STMN
remained stably low until 30 m. These observations are in
general agreement with previous studies, which have found
STMN in the late embryonic and early postnatal phase of cerebral
development. During rat development, the highest expression
of stathmin family proteins is from late embryogenesis until
a week after birth, when dendrite formation, axon guidance
and synaptic in the developing CNS are most dynamic and
has mainly found in the cortex and nucleus accumbens (Ozon
et al., 1999; Hayashi et al., 2006). Proteins of the stathmin family
proteins are expressed in different cell populations, including
neurons and glial cells (Ozon et al., 1999; Charbaut et al., 2001).
Stathmin has been implicated in growth, differentiation and
cell cycle control (Sobel, 1991; Schubart et al., 1996). Stathmin
is involved in neural development, differentiation, plasticity,
learning, degeneration and aging (Mori and Morii, 2002; Nelson
et al., 2004). These studies are in agreement with the neonatal
findings of this study, that STMN was mainly found in NF-
200-positive neuronal cells. Protein and mRNA levels of STMN
have also been found in the developing, maturating, and adult
CNS in several species, including chicken, mouse, rat and in
post-mortem human brains from schizophrenia and AD patients
(Ozon et al., 1999; Hayashi et al., 2006; Finnegan et al., 2008). A
decrease of forced expression of stathmin in response to lesioning
of the adult rat cortex has been found with age (Hayashi et al.,
2006). This may be in accordance to the findings of a massive
decreased association between STMN and pyramidal neurons
in both the S1 and V1 together with a decrease of neuronal
plasticity during life-time until elderly stages of age (Hayashi et al.,
2006).

Recent studies indicate a regulatory role of STMN during
inflammtation and repair in the adult CNS (Bsibsi et al., 2010).
Shen et al. reported about a activated serine–threonine kinase
interacting stathmin (KIS) due to spinal cord injury, which
interact and posporylate stathmin inducing cell cycle progression
of glial cells, especially microglia and astrocytes (Petrovic et al.,
2008; Shen et al., 2008). Further studies found a colocalization
of stathmin with TLR3 on astrocytes, microglia, and neurons
in multiple sclerosis-affected human brains (Bsibsi et al., 2010).
Nigrostrial dopimergic neurodegeneration and the expression
levels of STMN were significantly depentend on microglial
activation (Singh et al., 2011). In the present study, an increase
in STMN-positive microglial cells in V1 was found in contrast to
unchanged costainings in the S1 over life-time. Taken together,
the observations in the present study are probably in accordance
with the less vulnerability of the V1 compared to S1 regarding
to oxidative stress and aging. We recently described a strong
expression of STMN in the neonatal rat retina, with a subsequent
decrease during retinal maturation, and no expression after
2 months of life. During embryonic development and early
maturation of the retina, STMN was found in both the IPL and
OPL (Böhm et al., 2013). The expression profile of STMN appears
to be correlated with neuronal differentiation and plasticity
in the younger retina; its detection in the retinal plexiform
layers in the mature retina might be correlated with ongoing
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synaptic plasticity in the adult tissue (Nakazawa et al., 2000).
STMN expression in the aging S1 and V1 in the present study
exhibited patterns that were comparable with that of the aging
neuroretina. It appears that there is an almost identical age-
related regulation of STMN in the cortex and retina. To the
best of our knowledge, the present study is the first to reveal
an association between STMN and visual associated areas in the
CNS.

CONCLUSIONS
The alterations of the detected proteins in both the retina
and cortex may be associated with generalized mechanisms in
postnatal development, maturation and aging. Distinct cortical
areas were found in this study to exhibit differential patterns of
expression of Prx, SNCB, DJ-1, and STMN. The alterations in
Prx and DJ-1 with aging are likely associated with impairment
of the oxidative-stress-regulating process. If a similar increase in
SNCB expression also occurs over the life-time in the human
brain, it may be related to neurodegenerative diseases such
as AD. The massive reduction in STMN may be associated
with loss of neuronal plasticity during CNS aging. Summarized
in a comparative context, the age-related expression profile
of proteins within the V1 appears to be similar to that in
the retina. The results support the hypothesis of Elston, that
developmental and maturation mechanisms and area-specific
factors have a significant effect on the cell morphology of
pyramidal neurons, the process of forming a neuronal network,
and synaptic densities in different cortical areas (Elston, 2002,
2007). More over, the observed alterations in protein expression
over life-time concurs with developmental, maturational and
age-related changes in oxidative stress response, metaboblic
impairments and loss of the neuronal network. Further studies are
needed to confirm the protein changes reported herein in other
species, and would contribute to a better understanding of the
mechanisms underlying the senescence that may predict potential
neurodegeneration.
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