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Abstract

Various models of the neural mechanisms of attentional modulation in the visual cortex have been proposed. In general,
these models assume that an ‘attention’ parameter is provided separately. Its value as well as the selection of neuron(s) to
which it applies are assumed, but its source and the selection mechanism are unspecified. Here we show how the Selective
Tuning model of visual attention can account for the modulation of the firing rate at the single neuron level, and for the
temporal pattern of attentional modulations in the visual cortex, in a self-contained formulation that simultaneously
determines the stimulus elements to be attended while modulating the relevant neural processes.
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Introduction

While visual scenes typically contain multiple objects, the

capacity of the visual system to process all these objects at the same

time is limited [1–4]. In experimental settings, when presented

with multiple objects, subjects’ performance decreases and typical

errors are present [5–8]. Stimuli are said to compete for neural

representation, and the mechanisms of this competition and their

modulatory effect on neural responses have been a subject of

intense investigation and modeling.

There have been several models of visual attentive neural

modulations, and all assume that an external ‘attention’ parameter

is provided by some other neural process. Its value as well as the

selection of neuron(s) to which it applies are assumed, but its

source and how all of this is determined are unspecified. Our

theory, Selective Tuning (ST), presents a novel formulation that

solves these problems [9]. In ST, neuron response is the result of

attentive modulation of its inputs across time from the whole

network involving feedforward, recurrent, and lateral interactions.

Although the Selective Tuning model has been presented

previously in several venues, in this paper we, for the first time,

take its basic equations, refine and deploy them for the task of

simulating single neuron responses in attentive and non-attentive

experimental situations, following classic single neuron recording

results in the literature. We show that not only does ST provide

very good comparisons to single neuron firing rates in attentive

tasks but also show how, given visual stimuli, the stimulus locus of

attention is computed and used throughout the network. The goal

of this paper is to show how this model captures the essence of

attentive modulation as well as its competitors, while additionally

adding the critically missing element of attentional computation.

Importantly, ST goes beyond other models in defining a

modulatory mechanism at a finer level of abstraction than

previously accomplished; other aspects of ST are described

elsewhere [9].

The paper starts with a brief overview of ST and a review of

computational models of attentional modulation. The microcir-

cuitry of ST and the equations that govern its behaviour are

described next, followed by two computational modeling exper-

iments. We describe the experiments that form the foundation for

the biased competition theory [10–11], followed by a simulation of

these experiments using ST. Additionally, the temporal latency of

selective attention modulation across areas in ST is presented and

compared to that of the macaque visual system [12]. These

experiments demonstrate the fact that ST can account for the

modulation of the firing rate at the single neuron level, and for the

temporal progression of attentional modulations in the visual

cortex in a self-contained formulation without the external

attentional parameter. The paper concludes with a comparison

of the specifics of the models considered, analyzing relative

strengths and weaknesses.

Models of Attentive Neural Modulation
A wide variety of models have been proposed to explain the

attentional modulation of neural activations, in this section we

briefly review a representative subset. The descriptions included

below and the equations provided in Appendix S1 are meant

mainly to illustrate the wide variety of solutions proposed, and to

highlight the way attentional modulation is implemented, rather

than being exhaustive descriptions of the models. For full details,

complete sets of equations and biological justification, the reader is

referred to the original sources. For each of the models, there is no

assessment of their actual results presented because each in its own

way shows good matches to data and/or behavior. As a result, the

point of this comparison is to clarify commonalities, differences,

gaps, and strengths. Here we will focus on how the different
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models present attentional neural modulation. For general reviews

of theories of attention see [13–15,9], and specifically for

computational modeling, see [16–18].

The biased competition theory [10,11] proposes that neurons

representing different features compete and that attention biases

this competition in favor of neurons that encode the attended

stimulus. The Biased Competition model [19] has been proposed

as a demonstration of the biased competition theory. Attention is

assumed to increase the strength of the signal coming from the

inputs activated by the attended stimulus, implemented by

increasing the associated synaptic weights. The model makes no

claims of biological plausibility – the equations are not good fits for

neural responses, no actual competition is implemented, and there

is no known mechanism for the multiplicative modulation of

synaptic weights [20].

A significant number of other models of biased competition

have tried to build upon the Biased Competition model, by filling

in the missing biologically-plausible mechanism, by including

additional neuron types, and by extending the model to full

networks.

The Neurodynamical model [21] is a large-scale implementa-

tion of biased competition that consists of several interconnected

network modules simulating different areas of the dorsal and

ventral path of the visual cortex. Each module consists of a

population of cortical neurons arranged in excitatory and

inhibitory pools. The inhibitory pool receives excitatory input

from all the excitatory pools and provides uniform inhibitory

feedback to each of the excitatory pools, thus mediating

competition between them. The temporal evolution of the system

is described within the framework of a mean-field approximation,

i.e. an ensemble average of the neural population is calculated in

order to obtain the corresponding activity. The model asserts that

feature attention biases intermodular competition along the

ventral pathway (simulated areas V4 and IT), and spatial attention

biases intermodular competition along the dorsal pathway

(simulated areas V1, V4 and PP).

The Feedback Model of Visual Attention [20] improves on the

Biased Competition model by providing a biologically-justified

mechanism and microcircuitry for input modulation. Compared

to most other implementations of biased competition, in which

neurons compete by inhibiting each other’s output, in the

Feedback Model of Visual Attention neurons compete by laterally

inhibiting other neurons’ inputs. The key observation that drives

the model is that feedforward connections seem to be primarily

made in basal dendrites, while feedback connections preferentially

target apical dendrites, thus appearing to have functionally

different roles.

The reentry hypothesis [22] models top-down modulation as a

gain control mechanism on the input feedforward signal,

multiplicatively increasing activations that match top-down

predictions. The multiplicative gain allows for multiple forms of

attentional selection, by combining signals originating from

different areas (e.g. memory for stimulus-specific features, motor

maps for location specific feedback) that allow the system to

simulate a variety of experimental tasks.

An alternative account for attentional modulation comes in the

form of the Feature Similarity Gain theory [23,24], according to

which attention can both enhance and reduce neural activations in

proportion to the similarity between the attended stimulus and the

preferred stimulus of the neuron. The attentional gain effect on

neuronal responses is a graded function of the difference between

the attended feature and the preferred feature of the neuron,

independent of the stimulus. In the computational model of

feature similarity gain proposed by [25], the neural response is

described as a divisive contrast normalization process. A purely

feature-based gain factor is independent of the spatial focus of

attention and the properties of the visual stimulus.

Saliency based models [26] deal with the selection of stimuli,

focusing on modeling eye fixation patterns, and generally do not

address single neuron modulation. Attentional modulation is

investigated in a model combining saliency and object recognition

[27]. A modulation mask is obtained by rescaling the attentional

selection field to the resolution of the layer where attention is to be

applied (corresponding to visual areas V1 or V4), and neural

activity is modulated by applying this mask with a modulation

strength parameter, resulting in the suppression of neural activity

outside of the attended spatial region. The impact of changing the

modulation strength parameter on object recognition performance

is investigated in detail.

Yet another class of models start from the observation that the

neural representation of multiple concurrent stimuli is equivalent

to a normalization [28,29]. As normalization is viewed as a

fundamental, canonical neural computation, the authors hypoth-

esize that attention has an impact on neural activations by

influencing the normalization process.

The Normalization Model of Attention [30] is an attempt to

unify under a single computational model disparate results that are

consistent with attention as a multiplicative gain factor, as a

change in contrast gain, a sharpening of neural tuning, and various

forms of attenuation and enhancement. The proposed model

combines neural selectivity (termed ‘‘stimulus drive’’) with an

external ‘‘attention field’’ and a ‘‘suppressive field’’, that pools

activations corresponding to non-preferred stimulus and unat-

tended locations, which is used as in normalization. An attentional

gain applied before normalization accounts for the wide range of

behaviours exhibited by the model.

The Normalization Model of Attentional Modulation [31]

proposes that the primary effect of attention is to modulate the

strength of normalization mechanisms by using different nonlinear

summation regimens.

The attentional modulation of firing rate and synchrony in a

biophysical network of spiking neurons is the subject of the

Cortical Microcircuit for Attention model [32]. Attention was

modeled as a change in the driving current to the network

neurons. In addition to excitatory neurons, the investigation

focuses on the role of interneurons, and suggests that both

feedforward and top-down interneurons play a role. These are

differentially modulated by attention: the firing rate of the

feedforward interneurons increases with spatial attention and

decreases with feature-based attention, whereas the top-down

interneurons increase their firing rate with feature-based attention

and shift the network synchrony from the beta to the gamma

frequency range. Based on the model, the authors propose a

canonical circuit for attention, and present a number of concrete

and testable predictions.

An example of a modeling effort that tries to reconcile different

approaches is the integrated microcircuit model of attentional

processing [33]. The integrated microcircuit model is a biophy-

sically based network model of spiking neurons composed of a

reciprocally connected loop of two (sensory and working memory)

networks. A wide variety of physiological phenomena induced by

selective attention are shown to naturally arise in such a system.

The proposed neural circuit is an instantiation of feature-similarity

gain modulation [23,24].

Attention is modeled as a top-down signal originating in a

working memory area, and primed by a cue at the start of the

simulation.

Attentional Modulation and Selection
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Predictive coding [34] is reformulated as a form of biased

competition [35,36]. Every processing stage in the proposed model

consists of prediction and error detection nodes, with firing rate

dynamics defined by the prediction error. A nonlinear version of

these equations, that obtains better fits to experimental data, is also

presented.

Although all the models have good results, the source of the

‘attention’ parameter takes various forms, e.g.: ventral and dorsal

prefrontal areas provide the external top-down bias that specifies

the task [21], top-down signals corresponding to stimulus

expectations or feedback processes generated by recurrent

connectivity [20], prefrontal memory circuits [22,31], and

unspecified in some models.

The value of the attentional signal as well as the selection of

neuron(s) to which it applies are generally assumed, and its source

and the selection mechanism are unspecified. As a result, none of

these models can address issues related to temporal relationships

between stimuli and attentional modulation, and hierarchical

communication. Also, because each model exhibits good perfor-

mance, there is little that would allow one to decide which is

correct. By demonstrating ST performance on a larger exper-

imental set, we hope to resolve this problem.

The Selective Tuning Model of Visual Attention
Basics of Selective Tuning. The Selective Tuning (ST)

model of visual attention [37–39,9] starts from ‘first principles’ and

features a theoretical foundation of provable properties based on

the theory of computational complexity [4,40–42]. The ‘first

principles’ arise because vision is formulated as a search problem

(given a specific input, what is the subset of neurons that best

represent the content of the image?) and complexity theory is

concerned with the cost of achieving solutions to such problems.

This foundation suggests a specific biologically plausible architec-

ture as well as its processing stages. Research on ST has been

driven by the desire to create a theory with strong neurobiological

predictive power as well as utility in practice. The model has been

implemented and tested in several labs applying it to guide

computer vision and robotics tasks. It has also made a number of

true predictions in its early papers that now have substantial

behavioral and neurophysiologic experimental support (detailed in

[9]).

ST is characterized by the integration of feedforward and

feedback pathways into a network that is able to take high level

decisions, and, through a series of response-based decision

processes, identify the neurons that have participated in that

decision. The ST feedback process does not rely on a spatial

spotlight, so ST is able to select all parts of a stimulus, even if they

do not share a location (e.g. stimuli with discontinuities due to

overlap, or stimuli that are separated spatially due to the nature of

the cortical feature maps).

The visual processing architecture is pyramidal in structure, as

in other models (e.g. [43,44]) with units within this network

receiving both feed-forward and feedback connections. A pyrami-

dal representation is a layered representation characterized by

successively coarser spatial representations. When a stimulus is

presented to the input layer of the pyramid, it activates in a feed-

forward manner all of the units within the pyramid with receptive

fields (RFs) mapping to the stimulus location; the result is a

diverging cone of activity within the processing pyramid. It is

assumed that response strength of units in the network is a

measure of goodness-of-match of the stimulus within the receptive

field to the model that determines the selectivity of that unit.

Selection relies on a hierarchy of Branch-and-Bound decision

processes. Branch-and-Bound is a classic mechanism that is used

in optimization problems [45] and recursive pruning within the

branch-and-bound strategy is especially useful for a hierarchical

system, such as ours. Our decision processes are implemented as h-

WTA, a unique form of the common winner-take-all algorithm, a

parallel algorithm for finding the maximum value in a set. There is

no single winner; rather response values are partitioned into

ordered groups where partition bins have width h. All neurons that

have responses within the first bin (ie., largest responses within h of

each other in value) are selected as the winners. Winner-take-all

competitions are commonly used, and generally accepted as a

neurobiologically plausible component of visual attention models

[46,47]. To accomodate the needs of visual attention, models have

used different multi-winner variants of the basic WTA algorithm,

such as softMAX [48], h-WTA [39] and k-WTA [49], each

standing as a distinct prediction of its respective model.

In the first step of the algorithm, a h-WTA process operates

across the entire visual field at the top layer where it computes the

global winner, i.e., the set of units with largest response. The h-

WTA can accept guidance to favor areas or stimulus qualities if

that guidance is available but operates independently otherwise.

The search process then proceeds to the lower levels by activating

a hierarchy of h-WTA processes. The global winner activates a h-

WTA that operates only over its direct inputs to select the

strongest responding region within its receptive field. Next, all of

the connections in the visual pyramid that do not contribute to the

winner are pruned (inhibited). The top layer is not inhibited by this

mechanism. However, as a result, the input to the higher-level unit

changes and thus its output changes. This refinement of unit

responses is an important consequence because one of the

important goals of attention is to reduce or eliminate signal

interference [4]. By the end of this refinement process, the output

of the attended units at the top layer will be the same as if the

attended stimulus appeared on a blank field. This strategy of

finding the winners within successively smaller receptive fields,

layer by layer, in the pyramid and then pruning away irrelevant

connections through inhibition is applied recursively through the

pyramid. The end result is that from a globally strongest response,

the cause of that largest response is localized in the sensory field at

the earliest levels. The paths remaining may be considered the pass

zone of the attended stimulus while the pruned paths form the

inhibitory zone of an attentional beam. The h-WTA does not

violate biological connectivity or relative timing constraints. This

algorithm is hinted at by [50]: ‘‘[I]f the relevance of a stimulus

feature depends on its context, any influences that attention may

have on cells that respond to that feature will arrive to those cells

after analysis of the context that signals the relevance of the

feature. The time taken by that analysis will be reflected by a

relatively long latency of attention-modulated cell responses to the

relevant feature.’’

In more neural terms, ST uses recurrent tracing of connections

to achieve localization. The idea of tracing back connections in a

top-down fashion was present in Fukushima’s NeoCognitron

model [43] and suggested even earlier by Milner [51]. Within the

Selective Tuning model, whose earliest descriptions are found in

[52,37,38], with accompanying details and proofs in [39]. It also

appeared later in the Reverse Hierarchy Model [53,54]. Only

NeoCognitron and Selective Tuning provide realizations; other-

wise, the two differ in all details. Fukushima’s model included a

maximum detector at the top layer to select the highest responding

cell, and all other cells were set to their rest state. Only afferent

paths to this cell are facilitated by action from efferent signals from

this cell. In contrast, neural inhibition is the only action of ST, with

no facilitation. The NeoCognitron competitive mechanism is

lateral inhibition at the highest and intermediate levels. This

Attentional Modulation and Selection
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lateral inhibition enhances the strongest single neurons thus

assuming all spatial scales are represented explicitly, whereas ST

finds regions of neurons, removing this unrealistic assumption. For

ST, units losing the competition at the top are left alone and not

affected at all — the non-attended visual world does not disappear

as in NeoCognitron. ST’s inhibition is only within afferent sets to

winning units. This prediction of a space-limited suppressive

surround firmly distinguishes the two approaches.

The Selective Tuning Circuit. Several types of neurons are

required for ST to function. The connectivity among four classes

of neurons — interpretive, bias, gating and gating control — is

presented in Figure 1 (adapted from Figure 5.6 in [9]). The figure

shows a single assembly that computes a single visual quantity

(feature, object, etc.) at a single tuning profile. All elements of this

single assembly represent computations at the same spatial

location. At the same location, however, there are many such

competing assemblies spanning the tuning ranges of all visual

qualities.

Interpretive neurons are the classical feature-detecting neurons.

They will be represented by E, and their activation by e. They

receive feed-forward input from other areas that arrives in lamina

4 and provide an output to other areas from laminae 5 and 6.

Task information can be provided to the network by bias

neurons. These provide top-down guidance for visual processing,

whether the selection is for locations or regions in space, sub-

ranges of visual features, objects, events, or whole scenes to attend

to.

The gating sub-network, composed of gating and gating control

neurons, is the major mechanism by which selection of attended

neurons is accomplished and by which those neural activations are

traced back down to their source, forming the path of the

attentional beam. Their specific roles are described below.

We will use the following notation to represent connections

between neurons:

£ represents the set of feed-forward connections to a neuron

from all sources.

~ represents the set of recurrent connections to a neuron from

all sources.

J represents the set of local connections to a neuron; that is, the

neurons to which it is connected within the same visual area.

All these will be specialized by means of superscripts to

distinguish the different kinds of connections. In order to keep the

equations simple, we will assume that all activations and

parameters correspond to a given assembly, and forgo indices

that localize the neurons within the full network (but see [9] for the

full formulation).

Given that our goal here is to understand how neural inputs and

activations are modulated by attention, we will use a simple

weighted sum of inputs formulation for the activation of neurons:

P(t)~
X
k[ �̂̂

gkek(t)

where gk are weights specifying the strength of contribution from

neuron k to the current neuron E and ek is the activation of neuron

k.

The neuron’s firing rate S is defined by:

S P tð Þð Þ~ ZPz tð Þj

sjzPz tð Þ

where Z is the maximum firing rate, P+ the positive half-rectified

value of P, the exponent j determines the maximum slope of the

function (i.e., how sharp the transition is between threshold and

saturation), and s, the semi-saturation constant, determines the

point at which S reaches half of its maximum. The value s is

determined by the base semi-saturation constant s0 plus fast and

slow after-hyperpolarizing potentials:

s~s0zFfastHfastzFslowHslow:

The fast (Hfast) and slow (Hslow) after-hyperpolarizing potentials

are defined by:

dHfast

dt
~

1

tfast

{Hfastze
� �

and
dHslow

dt
~

1

tslow

{Hslowzeð Þ

respectively. The effect of these variables is to slowly decrease the

value of the neuron’s activation e when the neuron is active.

The temporal variation of a neuron’s response is governed by:

de

dt
~

1

t
{ezS P tð Þð Þ½ �

where t is a decay time constant.

Bias inputs act by suppressing the input to task-irrelevant

interpretive neurons. For any given neuron, the bias input is

determined as the minimum value of all converging bias signals:

B(t)~ min
b[_b

Bb tð Þ, 0:0ƒB tð Þƒ1:0

where ~b is the set of bias units making feedback connections to E.

The default value of each bias unit is 1.0. Adding this bias to the

neural response equation yields:

Figure 1. Selective Tuning microcircuit. Several types of neurons
are required for ST to function. The connectivity among four classes of
neurons — interpretive, bias, gating and gating control — is presented.
The figure shows a single assembly that computes a single visual
quantity (feature, object, etc.) at a single tuning profile.
doi:10.1371/journal.pone.0099681.g001
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de

dt
~

1

t
{ezB tð Þ:S P tð Þð Þ½ �

In ST, the input signals reaching a neuron are modulated by

gating control signals that are a result of the winner-take-all

competitions between activations. The gating sub-network is

charged with determining the winning subset of the inputs to the

pyramidal neuron E, suppressing feed-forward connections to E

that correspond with the losers of the competition and transmitting

the values of the gating neurons down to the next layer, to become

the gating control signals for the next layer neurons.

The winner-take-all process creates an implicit partial ordering

of the set of neural responses. The ordering arises because

inhibition between units is not based on the value of a single

neuron but rather on the difference between pairs of neural

responses, where the difference must be at least as great as a task-

specific parameter h, h$0.0. This process is not restricted to

converging to single values as it is in all other formulations; rather

regions of neurons are found as winners. Competition depends on

the difference between neuron response strengths: neuron A will

inhibit B in the competition if eA(t) – eB(t).h. Otherwise, eA will not

inhibit eB. Each input to the competition must be weighted by its

role for the interpretive units that it feeds to reflect the importance

of each input to the interpretive computation in the competition,

Thus, the inputs to the gating network must be postsynaptic as

shown in Figure 1. The h-WTA process is defined by the

recurrence relation:

e’f t’z1ð Þ~e’f t’ð Þ-z
X
l[JS

D f,lð Þ

where e9 and t9 represent activation and time during the

competition (i.e. competition starts at t9 = 0), and

D f ,lð Þ~gle’l t’ð Þ{gf e’f t’ð Þ if 0vhv gle’l t’ð Þ{gf e’f t’ð Þ
� �

and otherwise 0:0:

The gating control signals z are defined as:

z~
1

P
a[_c

zaw0

0 otherwise

8<
:

where vc is the set of gating control signals converging onto E.

There is also one gating neuron, cf, f M£, for each of the feed-

forward inputs to E, 0#cf #1.0. This results in gating signals:

cf tztfc

� �
~

e’f tfc

� �
ef tztfc

� �

Integrating the gating signals into the ST equation, and

dropping the time parameter ‘(t)’ for convenience, we obtain:

de

dt
~

1

t
{ezB:S

X
k[ �̂̂

ck
:gk
:ek

 !" #
:

The complete ST equation also includes lateral cooperation

signals, leading to the complete equation:

de

dt
~

1

t
{ezB:S

X
k[ �̂̂

ck
:gk
:ekz

X
h[Ja

gh
:eh

 !" #

where 21.0#gh#1.0 is the weight of the connection from neuron

Eh to E, and Ja represent the connections horizontally across

columns for neuron E. As these lateral signals are not relevant to

the results presented here, the reader is referred to [9] for a full

description. The performance of this model will be presented after

the experimental setup is described.

Results and Discussion

Single-Neuron Attentional Modulation in the Macaque
The basic attentional modulation effects, a necessary starting

point for any model, are presented by Reynolds et al. [19] and

summarized in Figure 2. The experiment consists of the

presentation of one or two stimuli within a neuron’s receptive

field (RF), with attention directed to the area covered by the RF or

away from it. When presented alone, one of the stimuli (the

reference stimulus) elicits a strong response from the neuron –

black line in Figure 2, while the other (the probe stimulus) elicits a

weak response – blue line. When both stimuli are shown, and in

the absence of attention, the presence of the probe results in a

reduction of the neuron’s response relative to the response to the

reference stimulus alone – green line. With attention engaged and

directed towards the reference stimulus, the response recovers,

being similar to the response to the reference stimulus presented

alone – red line.

Figure 2. A summary of the Reynolds et al. experimental
results. The experiment illustrates the basic attentional modulation
effects, and consists of the presentation of one or two stimuli within a
neuron’s receptive field (RF), with attention directed to the area covered
by the RF or away from it. When presented alone, one of the stimuli (the
reference stimulus) elicits a strong response from the neuron – black
line – while the other (the probe stimulus) elicits a weak response –
blue line. When both stimuli are shown, and in the absence of attention,
the presence of the probe results in a reduction of the neuron’s
response relative to the response to the reference stimulus alone –
green line. With attention engaged and directed towards the reference
stimulus, the response recovers, being similar to the response to the
reference stimulus presented alone – red line.
doi:10.1371/journal.pone.0099681.g002
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Single-Neuron Attentional Modulation in ST
To investigate the modulation of neural activations due to ST

attentional selection we used the simple circuit illustrated in

Figure 3. The responses of the model neurons are defined by the

ST equations presented above, the same equations are used for all

4 excitatory neurons, while the inhibitory interneurons are

described by the same equations, omitting the gating components.

Simulating the Reynolds and Desimone experiments [11], the two

neurons at the bottom of the figure correspond to the reference

(left, labeled E1,1) and probe (right, labeled E2,1) stimuli. The two

neurons at the top of the figure represent neurons that have the

reference (left, labeled E1,2) and the probe (right, labeled E2,2) as

preferred stimulus. Their inputs and outputs correspond to the

connections labeled A and B, respectively, in Figure 1. The

excitatory input to the output units, represented by arrows is the

sum of the activations of the input units multiplied by their

respective weights (larger for the preferred stimulus, smaller for the

non-preferred). Similarly, the inhibitory input is the weighted sum

of the activations of two inhibitory units, one corresponding to

each input. The h-WTA competition between the two output units

is represented as mutual inhibition. The model network also

includes ST bias, gating and gating control units (with the

associated connections, labeled C, D, G and H in Figure 1), for

simplicity these are not represented in Figure 3. Bias units are only

used in one experiment, as indicated.

The model network is tested in the same four conditions as the

Reynolds et al. experiment, and the results are presented using the

same color-coding as that used in Figure 2. Figure 4 represents the

output of neuron E1,2 in these four experimental conditions. The

‘‘Pair attend reference’’ (red) line represents the condition when

the reference stimulus is attended (i.e. neuron E1,2 wins the top-

level h-WTA). The attentional selection process is triggered

100 ms after the presentation of the stimulus, indicated by a

vertical line. It can be observed that the response for the

unattended pair of stimuli is lower than the response for the

reference stimulus alone, and that attending to the reference

stimulus in the pair enhances the neuron’s response. The relative

responses in the different conditions can be changed by

manipulating the weights of the different connections, as illustrated

in Appendix S2.

Certain characteristics of the response, such as the amount of

attentional modulation and the timing of the effect, can be

manipulated to provide further insight into the various modes of

operation possible in ST.

Experiments show that the amount of attentional modulation

depends on a number of factors, including area studied and target-

distractor similarity (see [27] for a summary). Figure 4 has been

obtained by restricting the gating signal ck to the values of 0

(unattended) and 1 (attended), resulting in maximum attentional

modulation, but by reducing the range of the gating signal, the ST

equations can provide control over the modulation. For example,

in Figure 5, the amount of inhibition for the unattended stimulus is

only 0.5, resulting in an attended response that more closely

matches the reference alone condition.

The control of this variable gating effect is not included in the

equations, but since gating is controlled by the h-WTA, and the h-

WTA depends of target-distractor similarity, it is not implausible

to hypothesize that the h-WTA process also controls the

magnitude of the gating, but the mechanism is unknown.

One significant difference between the simulation results

presented above and the Reynolds et al. experiment is that the

location of the target has been cued in the experiments, but not in

the model. Including a spatial bias towards the reference stimulus

in the ST model, which is the equivalent of spatial cueing prior to

stimulus presentation, shows another mode of operation made

possible by the ST equations. The response of the model in the

four conditions with pre-cueing of the reference stimulus is shown

in Figure 6. The effect of cueing in ST has been described in detail

and experimentally investigated [55].

An interesting characteristic of the ST response in Figures 4 and

5 is the strong rebound of the neural response to the pair of stimuli

when the selection process is triggered. The rebound is (at least in

Figure 3. The network structure. Input neurons are at the bottom.
Similar to the Reynolds and Desimone model [11], we include both
excitatory and inhibitory inputs in all combinations. Excitatory and
inhibitory connections are represented by arrows and circles, respec-
tively. Connection size correlates with connection weight, i.e. E1,2

receives large inputs from E1,1 (excitatory) and E2,1 (inhibitory), and
small inputs from E1,1 (inhibitory) and E2,1 (excitatory).
doi:10.1371/journal.pone.0099681.g003

Figure 4. The output of neuron E1,2 in the four experimental
conditions. The ‘‘Pair attend reference’’ (red) line represents the
condition when the reference stimulus is attended (i.e. neuron E1,2 wins
the top-level h-WTA).
doi:10.1371/journal.pone.0099681.g004
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part) due to the fact that in the model gating is applied

instantaneously, resulting in a transient in the input signal to the

neuron. This transient produces a strong change in the response,

similar to the one corresponding to the stimulus onset. It is possible

to control the transient, and thus the rebound, by applying gating

gradually, which is realistic, as it is the result of the activation of

the gating neurons.

Assuming that the rebound corresponds to a real phenomenon,

can we predict the kinds of experiments that will show a similar

effect? The Reynolds et al. experiment does not show any obvious

equivalent, possibly due to the spatial cueing, as discussed above.

The network discussed so far contains a single layer of neurons. In

more realistic multi-layer networks, the results of top-level

competitions take time to propagate back through the network,

resulting in the attentional modulation being applied at different

times in different layers. This means that under the right

conditions, not only will attentional modulation show the rebound,

but since at each different layer the corresponding rebound will be

produced at a different time, the modulation at higher levels of the

network will show a pattern of attentional modulation consistent

with the accumulation of lower level rebounds.

Latency of Attentional Modulation in a Processing
Hierarchy

One of the early predictions of ST is that of a temporal ordering

and thus a time course of hierarchical modulation effects.

Specifically, modulation will be seen at the highest levels first

and at the lowest levels last, the opposite of what all other models

would suggest. This is a strong differentiator between ST and the

other models described above. Selection of the strongest response

at the top of a hierarchical network triggers a recurrent

localization process. At each successive layer of recurrence, part

of the input to the selected neurons is suppressed, leading to a

change in response for all neurons upstream. The changes in

response thus occur in time steps defined by the number of layers

in the pathway downward, plus the time it would take for the effect

of suppression at one layer to ripple up to the neuron being

examined. Significant experimental evidence for this prediction

has been presented - e.g. [12,56–60]. This model allows us to

strengthen STs suppressive surround prediction – the imposition

of the suppressive surround also has the same latency pattern.

That is, a spatial suppressive surround due to the recurrent

localization component of ST, will be observed layer by layer in a

top-down order. To date, the surround has only been observed in

area V1 [59] at the expected time (250 ms after stimulus onset)

and experiments that test the existence of the surround in higher

order areas have not been yet performed.

One of the earliest experiments to study the timing of selective

attention modulation across areas of the macaque visual system

[12], was performed by simultaneous recordings from different

areas, thus allowing direct comparison of the magnitude and

timing of the responses and modulation. Recordings of laminar

event-related potential and current source density response profiles

were sampled with linear array multicontact electrodes. The

subjects were required to perform alternative discrimination tasks

on auditory and visual stimuli, while ignoring the stimuli in the

other modality. The visual stimuli were diffuse light flashes

differing in intensity or color presented at the fixation point, and

the effect of attention was evaluated by comparing responses to the

visual stimuli when attended vs. when ignored.

Responses were summed over all contacts at each time point to

obtain a sum average rectified current flow (sAVREC), while the

difference between the ignored and attended conditions was

summed to obtain the difference average rectified current flow

(dAVREC). The temporal evolution of the responses and of the

attentional modulation was determined by comparing sAVREC

and dAVREC in each of the investigated areas. Of interest in this

context is the finding that the earliest attentional modulation (i.e.

the earliest significant dAVREC) was observed in the highest

areas, and progressively later towards the lower areas.

Latency of Attentional Modulation in ST
To investigate the timing of the effects in a ST hierarchy, the

circuit described in Figure 3 was replicated to form four layers, as

shown in Figure 7, with the output of one processing layer driving

the input of the next. To illustrate the top-down nature of the ST

process, gating control units are shown on the left side of the

hierarchy. The circuit is symmetrical, and gating control units exist

for each connection, but are omitted for clarity (same for the

Figure 5. Gating is reduced to 50%. Experiments show that the
amount of attentional modulation depends on a number of factors.
Here we illustrate the effect of reducing the range of the gating signal,
resulting in an attended response that more closely matches the
reference alone condition.
doi:10.1371/journal.pone.0099681.g005

Figure 6. The effect of spatial cueing. Including a spatial bias
towards the reference stimulus in the ST model (the equivalent of
spatial cueing prior to stimulus presentation), shows another mode of
operation made possible by the ST equations.
doi:10.1371/journal.pone.0099681.g006
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inhibitory interneurons). The neurons are characterized by the

same differential equations introduced above. Stimuli are

presented at the bottom and the activations propagate through

the network – the black curves in Figure 8. The top-level h-WTA

process determines a winner, and the corresponding gating signals

are propagated down the network, triggering local h-WTA

processes within each winning neuron’s afferents. This results in

the modulation of the neural responses, as described above.

Figure 8 compares the model spiking rates on the right with

average transmembrane currents recorded from neurons in

different visual areas in the attention experiment described in

the previous section on the left, for the neurons corresponding to

the attended stimulus. The figures compare the relative timing of

the initial response (in black) and the attentional modulation (in

gray) across visual areas. The attentional modulation for the

experiment is dAVREC, and similarly, for the model it is

difference between the responses of the interpretive units in the

ignored and attended conditions.

A detailed representation of the relevant 130–200 ms time

interval is presented in Figure 9. The neural activation (in black)

shows the responses being generated progressively later in more

superior areas, while the attentional modulation (grey) appears

earlier in superior areas and later in early areas. In the model, the

propagation time between visual areas has been set to 15 ms, for

both the feedforward and the feedback stage. Mehta et al. do not

provide a quantitative evaluation of the delays, but this could

easily be integrated into the model. Note that the modeling is

qualitative, meant to show only the general timings and shape of

the response and modulation, as the details of the real network are

unknown, however, the similarity to the macaque data [12] is

striking, and a key characteristic of attention not found in other

models.

Discussion

We have shown through computational modeling that ST

produces qualitatively equivalent modulatory effects for single

neurons, similar to other models, but in addition qualitatively

correct results for a hierarchy of neurons in contrast to other

models, without the need for external attentional or bias inputs.

Other models encode attention by modifying contrast, bias or gain

parameters whose value changes from attended to unattended

values. These models are all silent on how this value is set or how

selections may occur whereas ST has an integrated selection

mechanism. All except for ST are data-fitting models and unable

to accept image input and produce the required behavior as ST

can. The most immediate first impression of comparison is how

different all the formulations appear. ST, the biased competition

model [19], reentry hypothesis [22] and predictive coding/biased

competition [35,36] are based on the firing rate neuron

formulation; feature similarity gain [23–25], normalization model

of attention [30], normalization model of attentional modulation

[31] are divisive contrast normalization models; the cortical

microcircuit for attention model [32] and the integrated micro-

circuit model of attentional processing [33] are spiking neuron

models; the neurodynamical model [21] employs mean-field

approximation. The biased competition model [19], feature

similarity gain [23–25], normalization model of attention [30],

and normalization model of attentional modulation [31] are

single-neuron models. The normalization model of attention [30]

goes beyond a single neuron in that it takes larger visual fields into

account. The Cortical Microcircuit for Attention model [32], the

neurodynamical model [21], the reentry hypothesis [22], predic-

tive coding/biased competition [35,36] and ST employ networks

of several types neurons. The neurodynamical model [21], the

reentry hypothesis [22], predictive coding/biased competition

[35,36] and ST operate over complex network architectures. But

this seems to be more of a feature of the model scope and starting

assumptions than of substance.

As a first point of comparison, all of the models except for ST

are data-fitting models. Each would take existing data and

determine parameter values of a set of equations that provide

the closest fit to the data. As such, equations with high degrees of

freedom (most variables) and nonlinearities have the greatest

potential to capture the data presented. They also are the least

specific or have the least scientific value because a high-enough

number of variables and nonlinearities may capture just about any

data set. ST takes input images and determines responses to that

input, a completely different approach because the data and/or

behavior must be produced for specific input. Again, a computer

program may behave in any manner its programmer sees fit; it too

may have suspect scientific value unless it has been developed on a

sound and principled theoretical foundation. The development of

Figure 7. Full network for detailed timing analysis. To investigate
the timing of the effects in a ST hierarchy, the circuit described in
Figure 3 was replicated to form four layers, with the output of one
processing layer driving the input of the next. To illustrate the top-
down nature of the ST process, gating control units are shown on the
left side of the hierarchy. The circuit is symmetrical, and gating control
units exist for each connection, but are omitted for clarity (same for the
inhibitory interneurons). The top-level h-WTA process (indicated by the
mutually inhibitory connections at the top level of the network)
determines a winner, and the corresponding gating signals are
propagated down the network, triggering local h-WTA processes within
each winning neuron’s afferents.
doi:10.1371/journal.pone.0099681.g007
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ST has been conducted on such a sound theoretical foundation,

and all aspects of its realization have been guided by it [9].

The next dimension along which these models may be

compared is the manner in which attention is incorporated. The

cortical microcircuit for attention model [32] encodes attention by

modifying a linear contrast parameter. Similarly, the biased

competition model [19], feature similarity gain [23–25], the

normalization model of attention [30], and the normalization

model of attentional modulation [31] all provide a single

parameter that controls attention; this is a bias or gain whose

value changes from ‘attended’ to ‘unattended’ values. For

example, in the biased competition model [19], attention is

implemented by increasing by a factor of 5 both excitatory and

inhibitory synaptic weights projecting from the input neuron

population responding to the attended stimulus. In the normal-

ization model of attentional modulation [30] there is a parameter

that takes values equal to 1 for unattended stimuli and larger for

attended ones. Its effect is multiplicative; it multiplies the product

of slope of normalization and contrast in the exponent of the

response function. These models are all silent on how this value is

set or how selections may occur. The cortical microcircuit for

attention model [32] is also silent in this regard. In the integrated

microcircuit model of attentional processing [33] the self-sustained

activity of an additive gating signal is triggered by the presentation

of the stimulus to be attended during a cueing interval. This

allowed the investigation of the effect of attention on the baseline

activity of neurons. In the neurodynamical model [21], processing

can be controlled by external task signals that select either neuron

pools associated with an object to be searched, or a location, in

order to identify the object at that location. In the reentry

hypothesis [22], object recognition neurons with RFs covering the

visual area of interest have their sensitivity and gain increased by

reentrant signals from movement areas, thus having an advantage

in the competition process. Predictive coding/biased competition

Figure 8. Attentional modulation of responses. Black indicates the neural response to the stimulus, while the attentional modulation is
represented in grey. (a) Temporal pattern of activations and attentional modulation in single-unit recordings in primates performing attentional tasks.
Adapted from Fig. 9b in [12]. The neural activation (in black) shows the responses being generated progressively later in more superior areas, while
the attentional modulation (grey) appears earlier in superior areas and later in early areas. (b) Model results showing a similar activation and
modulation temporal pattern.
doi:10.1371/journal.pone.0099681.g008

Figure 9. Model results - detail on the 130–200 ms interval. The
temporal pattern of attentional modulation, with earlier modulation of
superior visual areas, is visible.
doi:10.1371/journal.pone.0099681.g009
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[35,36] relies on feedback signals that can originate from node

activations calculated at higher-levels in the hierarchy and/or

external inputs, and attentional feedback is treated exactly the

same as feedback from higher stages in the hierarchy. Although

these models all give the expected, non-attentive, results without

this attention parameter, they cannot demonstrate attentive effects

without some external setting of this parameter. However, in the

natural evolution of attentional modeling, it is clearly of interest to

provide a solution to this setting as well, thus removing what is

otherwise a serious model limitation. ST does exactly that,

providing an explicit algorithm for how this parameter is derived,

a method that is applicable to any model without such an explicit

computation.

Different forms of competition have been employed by different

authors. Most models implement competition through the mutual

inhibition between neural outputs, e.g. the biased competition

model [19], the neurodynamic model [21], and the reentry

hypothesis [22]. In a few cases the competition involves the inputs,

in the form of output neurons suppressing the input of other

neurons, e.g. predictive coding/biased competition [35,36], or a

direct competition between the inputs in ST.

Conclusions

In this paper we have shown that ST generates patterns of

attentional modulation and its temporal progression. The selection

mechanism employed is completely integrated within the basic

equations, without the need for external attentional signals. The

selection can be aided by feature and location task biases, but these

are not necessary. Further, it is consistent with the conclusions that

attention can be best considered as modulating inputs to neurons,

both spatial and feature [61]: ST’s equations do exactly this,

manipulating neural inputs to achieve the required attentive

effectat a qualitative level of description. Most of the other models

described are quantitative, that is, they can be quantitatively

compared to actual neural recordings in terms of time and firing

rates, whereas ST cannot. On the other hand, they cannot explain

the top down latency of attentional modulation just like they

cannot explain how attentional focus is determined. The transition

of ST into a quantitative model is not an intellectual challenge;

parameters derived from real data can be easily obtained and ST’s

basic equations modified appropriately. For the other models, easy

transitions to deal with determination of focus and timing are not

possible without whole-scale changes to the model. The reason for

these differences is that ST was designed as first-principles model

not relying on data as a starting point whereas the other models all

are data-fitting models.

The Selective Tuning theory requires that neural connections

from higher to lower order visual areas, usually not differentiated

in other models, comprise several different functionalities. Within

the model, connections that convey bias signals, gating control

signals and suppressive feedback signals are explicit. Bias is what is

seen in most other models as the attention parameter but in ST

these provide suppressive signals to task-irrelevant neurons, the

benefit being that those neurons would respond less to any input

signals thus not creating strong interfering signals for the stimuli of

interest (i.e., assist in improving signal to noise between stimuli of

interest and background). The gating control signals provide a

timing signal that initiates the overall recurrent process in the

correct order. In an important sense, these may be considered as a

possible source of low frequency oscillation because attention has a

cyclic behaviour in the ST context (as reported by [62] and

predicted by [39]). The suppressive feedback signals, which we

also can term attentive recurrence, implement the bound

component of the Branch-and-Bound algorithm responsible for

the top-down tracing of neural connections from high level

attended neurons to stimulus source. In the broader visual

processing context within which ST operates, other forms of

non-feedforward connectivity are also included (see [9]), such as

lateral inhibition within a visual area as well as between visual

areas, local feedback between hierarchically adjacent areas, and

more. Although the existence of winner-take-all circuits has been

previously shown as mentioned earlier, our particular variant, with

the inclusion of a threshold on competition, seems a natural

extension but still requires verification. In order to further refine

these predictions both theory and experiment are critical as only

close collaborations between theory and experiment will reveal the

ways in which to further develop our models.

Supporting Information

Figure S1 The effect of changing the weight of the excitatory

input for the preferred stimulus. Excitatory input for preferred

stimulus changed between 0.8 and 0.5, while the others are fixed

at the default value.

(TIF)

Figure S2 The effect of changing the weight of the inhibitory

input for the preferred stimulus values. Inhibitory input for

preferred stimulus changed between 20.3 and 20.6, while the

others are fixed at the default value.

(TIF)

Figure S3 The effect of changing the weight of the excitatory

input for the preferred stimulus. Excitatory input for non-preferred

stimulus changed between 0.1 and 0.4, while the others are fixed

at the default value.

(TIF)

Figure S4 The effect of changing the weight of the excitatory

input for the preferred stimulus. Inhibitory input for non-preferred

stimulus changed between 20.2 and 20.5, while the others are

fixed at the default value.

(TIF)

Appendix S1 Computational details of the models of attentive

neural modulation presented in the paper.

(DOCX)

Appendix S2 Parameters used in the simulations presented in

the paper. A discussion of the effect of changing these parameters

on the behavior of the model.

(DOCX)
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