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Phase shift in skyrmion crystals

Satoru Hayami® "™ Tsuyoshi Okubo® 2 & Yukitoshi Motome® '

The magnetic skyrmion crystal is a periodic array of a swirling topological spin texture. Since
it is regarded as an interference pattern by multiple helical spin density waves, the texture
changes with the relative phase shifts among the constituent waves. Although such a phase
degree of freedom is relevant to not only magnetism but also transport properties, its effect
has not been elucidated thus far. We here theoretically show that a phase shift in the
skyrmion crystals leads to a tetra-axial vortex crystal and a meron-antimeron crystal, both of
which show a staggered pattern of the scalar spin chirality and give rise to nonreciprocal
transport phenomena without the spin-orbit coupling. We demonstrate that such a phase
shift can be driven by exchange interactions between the localized spins, thermal fluctua-
tions, and long-range chirality interactions in spin-charge coupled systems. Our results
provide a further diversity of topological spin textures and open a new field of emergent
electromagnetism by the phase shift engineering.
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field. Although it was originally proposed to explain

hadrons in the particle theory!2, it has turned out to be
realized in various forms in condensed matter physics®. One
possible realization was discovered in magnets, in the form of
skyrmion-like magnetic textures*8. The magnetic skyrmions
often exist in their stable form, the so-called skyrmion crystal
(SkX), which is a periodic array of the particle-like magnetic
skyrmions. Importantly, such a SkX is approximately expressed as
a superposition of multiple helical spin density waves, and hence,
it can be regarded as an interference pattern by the multiple
helices. It has attracted enormous attention since the swirling
magnetic texture generates an emergent magnetic field through
the Berry phase mechanism and results in peculiar transport
phenomena, such as the topological Hall effect3%19,

Similar to an isolated skyrmion, the SkX is characterized by three
quantities: skyrmion number, vorticity, and helicity>. However, as
the SkX is regarded as an interference pattern, it has another degree
of freedom, which has been overlooked in the previous researches,
the phases of the constituent waves. This is exemplified for three
scalar waves in Fig. la, b, where a phase shift in one of the three
waves leads to a different interference pattern with different sym-
metry. Such a phase degree of freedom exists in all the interference
phenomena, except for linearly independent waves in continuous
space for which a phase shift is equivalent to a spatial translation.
The SkX appears not in a continuous field but for spins on a discrete
lattice, which leads to a further variety of the interference patterns by
the discretization, even for the linearly independent waves. A shift of
the relative phases changes not only magnetic textures but also
emergent magnetic fields, and hence, transport properties, but such
an interesting possibility has not been elucidated thus far.

The skyrmion is a topological configuration of a continuous

¢ n =1 skyrmion crystal (SkX1)

In this study, we theoretically unveil the effect of phase shifts in
the SkX and propose how to control the phase degree of freedom.
Considering an itinerant electron model on a triangular lattice, we
show that the SkX turns into a tetra-axial vortex crystal (TVX) or
a meron-antimeron crystal (MAX) by a phase shift of 7/2. The
phase-shifted states have distinct properties from the SkX: The
SkX exhibits a net scalar chirality leading to the topological Hall
effect, while the TVX and MAX exhibit a staggered one that does
not lead to the topological Hall effect, but induces nonreciprocal
transport phenomena that do not require the spin-orbit coupling.
We find that such a phase shift can be caused by several different
mechanisms, such as exchange interactions between the localized
spins, thermal fluctuations, and long-range chirality interactions.
Our results open another route to a further variety of magnetic
textures which have been overlooked in skyrmion-hosting
materials.

Results

Let us start by classifying noncoplanar spin textures according to the
type of constituent waves and the relative phases. First, we consider a
superposition ~ of  spiral spin  textures represented by
S?lel = Zi;l (sin Q,cos¢,,sin Q, sin¢,, — cos QV), where 9, =
Q,-r;+ 6, and ¢, = 27(v — 1); Q, and 6, are the wave vector and
the phase of the vth spiral, respectively, and r; is the position vector
for site i. In the following analyses, as an archetype, we consider a
two-dimensional triangular lattice system with threefold rotationally
symmetric wave vectors with spiral pitch Q Q;=(Q,0),
Q2 = (_Q/27 \/gQ/z)’ and . Q3 = (_Q/27 —ﬂQ/Z) satisfying
5°,Q, = 0. The spin texture S"™ is modulated by shifting the phases
0,. We demonstrate the situation for 6, = 8, = 6; by changing the

e n =2 skyrmion crystal (SkX2)

S
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Fig. 1 Phase shift and interference patterns. a, b Superpositions of three density waves with the wave vectors Q;, Q,, and Qs. b is the figure generated
from a with the phase shift of z/2 in Q;, which breaks sixfold rotational symmetry in a. ¢, d superpositions of three spirals waves: the ng =1 skyrmion
crystal (SkX1) (¢) and the meron-antimeron crystal (MAX) (d). e, f Superpositions of three sinusoidal waves: the ng, = 2 skyrmion crystal (SkX2) (e) and
the tetra-axial vortex crystal (TVX) (f). d, f are generated from (c) and (e), respectively, with the phase shift of ® = z/2, and both of them break sixfold
rotational symmetry similar to b. In c-f, the upper and lower planes show the spin S; = (5}, 5!, S7) [the color scale indicates S7, and the arrows indicate

(Sf,S)1 and the scalar chirality yg, respectively. The spin textures in the magnetic unit cell are shown in the insets of ¢-f.
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total phase ® =>_.6,. Figure lc, d displays the spin textures with
® =0 and 7/2. In each figure, the upper and lower planes show the
textures of spin and scalar spin chirality, respectively; the latter is
defined by yr =S;- (S; x Sx), where R represents the position vector
at the center of a triangle with sites 4,j,k in the counterclockwise
order. The case with ® =0 in Fig. 1c is a periodic array of skyrmions
with the skyrmion number of one (ng. = 1), which we call the SkX1.
It retains sixfold rotational symmetry in both spin and chirality, and
has a nonzero net chirality leading to the topological Hall effect.
Meanwhile, the case with @ =n/2 in Fig. 1d is a staggered
arrangement of merons and antimerions (half skyrmions and
antiskyrmions!!), which we call the MAX. In this state, the rotational
symmetry is reduced to threefold. Moreover, the meron and anti-
meron carry the skyrmion number of +1/2 and —1/2, respectively,
and hence, the total skyrmion number is zero in the MAX; accord-
ingly, the net value of yg, ¥'** = L >y where N is the number of
lattice sites, also vanishes and the MAX does not show the topological
Hall effect. We note that the MAX was proposed as a candidate for
the unidentified magnetic state next to the SkX1 found in a
triangular-lattice magnet Gd,PdSis!1.

Next, we consider a superposition of sinusoidal waves!2-14,
which is represented by Si" = (cos Q;, cos Q,, cos Q;). Similar
to S different © gives different spin and chirality textures, as
shown in Fig. le, f (the spin frame is rotated for better visibility).
The spin texture with ® = 0 in Fig. le is the other SkX called the
SkX2, in which each skyrmion has the skyrmion number of two
(ng.=2). In this state, while the spin texture has threefold rota-
tional symmetry, the chirality yg is sixfold and the net value ytota!
is nonzero, similar to the SkX1 in Fig. 1c. The phase shift by /2
lowers the symmetry from sixfold to threefold, as shown in
Fig. 1f; yr has a staggered configuration with no net scalar chir-
ality, similar to the MAX in Fig. 1d. In this state, the spin texture
is given by a periodic array of four types of vortices; the
vortex axes, which are defined by the vorticity for xy, yz, and
zx components of spins point to four corners of the tetra-
hedron (see Supplementary Information). Hence, we call the
© = 71/2 state the TVX.

Thus, in both cases, the phase shift changes not only the spin
texture but also the symmetry and topology. In particular, the net
value of the scalar chirality yt®l is sensitively dependent on ®;
the two types of SkXs at ® = 0 have nonzero values and cause the
topological Hall effect, while the MAX and TVX at ® = 71/2 have
no net value and do not show the topological Hall effect. Inter-
estingly, however, the breaking of sixfold rotational symmetry in
Ar in the MAX and TVX leads to Fermi surface deformations as
discussed below, which can induce direction-dependent non-
reciprocal transport phenomena without the spin-orbit coupling.

The optimal values of the phases 8, will be determined by
multiple factors, such as lattice geometry and interactions
between the spins. In the previous studies, the SkXs with ® =0
are stabilized, e.g., by the Dzyaloshinskii—Moriya (DM)%1>, four-
spin'6-19, frustrated?9-22, and spin-charge interactions!423-25 on
various lattices. The key question addressed here is what is the
relevant parameter to cause a phase shift that leads to switching of
magnetic, topological, and transport properties. In the following,
we unveil three different mechanisms for such a phase shift, by
taking an archetypal model for itinerant magnets hosting SkXs,
the Kondo lattice model on a triangular lattice where both the
SkX1 and SkX2 appear in the ground state (see “Methods”).

We first demonstrate that a phase shift can be caused by intro-
ducing the exchange interactions between the localized spins
described by Ho = Z,»j] jSi . Sj to the original Kondo lattice
Hamiltonian . Considering the first-, second-, and third-neighbor
interactions, Ji, J>, and J; for J;; respectively, we perform a varia-
tional calculation to determine the ground-state phase diagram of
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Fig. 2 Variational ground states of the Kondo lattice model with the
exchange interactions between the localized spins up to third neighbors,
J1, J2, and Js. Variational phase diagrams on the J;—J, (@) and J;—J3 (b)
planes. ¢ Spin (left) and chirality (right) structure factors for the SkX2 (top),
TVX (middle), and SkX1 (bottom). The circles represent the peak positions
at Q;, Q,, and Qj3, and the arrows indicate the subdominant (dominant)
peak positions in the spin (chirality).

the Hamiltonian H + H'° at zero field (see “Methods”). Figure 2a,
b shows the results on the J;—J, and J;—/; planes. While the SkX2 is
stable in the wide range of parameters, we find two topological
phase transitions: One is to the TVX while increasing J; and
decreasing J, (increasing J5) and the other is to the SkX1 while
decreasing J; and decreasing J, (increasing J3), as shown in Fig. 2a
(Fig. 2b). The former transition from the SkX2 to the TVX is
accompanied by the phase shift with ® = 7/2.

The phase transitions among these three states are understood
from the higher harmonics in the spin structure. We show the
spin structure factors in momentum (q) space for the SkX2, TVX,
and SkXI in the left panels of Fig. 2c (see “Methods”). Although
the dominant peaks appear at Q;, Q,, and Q3 commonly in the
three phases, subdominant peaks are found at different q among
them: q =Q, — Q, (v#/) in the SkX2, q=3Q, in the TVX,
and q=0 in the SkX1. Thus, considering that the Fourier
transform of H'°° is written as >aJeSq * S_g> the (anti)ferromag-
netic interactions giving J, <0 (]3QV< 0) tend to prefer the
SkX1 (TVX).

It is noteworthy that the different superpositions of the con-
stituent waves also give rise to the different peak positions in the
q-resolved scalar chirality shown in the right panels of Fig. 2c (see
“Methods”). As mentioned above, both the SkX2 and SkX1 have
the dominant peak at q =0 reflecting nonzero y'°t2l, while the
TVX has the dominant peaks at 2Q,, with equal intensities and no
weight at q=0.

The second mechanism to cause the phase shift is thermal fluc-
tuations. We study the finite-temperature behavior of the Kondo
lattice Hamiltonian H by performing the Langevin dynamics simu-
lations with the kernel polynomial method (see “Methods”)20-28,
Figure 3a shows the results at zero magnetic fielld H=0 where the
ground state is the SkX2!4, We find two phase transitions at
T; 2~ 0.0055 and T, ~0.009. The transition at T} is characterized by
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Fig. 3 Finite-temperature behaviors of the Kondo lattice model.
a,b Temperature dependences of the scalar chirality, X% and Xﬁo,, at zero
magnetic field H=0 (a) and H=0.004 (b). The dashed (dash-dotted)
line represents the transition temperature T; (T,) in a and T (T5) in b.
c-e Real-space spin configurations in the SkX2 at T=0 and H=0 (c), the
TVX at T=0.006 and H= 0 (d), and the SkX1 at T=0 and H=0.004 (e).
The color scale indicates S;, while the arrows indicate (5!, S)). The insets
display the Fermi surfaces in each state; the sixfold rotational symmetry is
broken in all the three states. See the main text.

the onset of yo, suggesting that the SkX2 remains stable up to T).
Note that the true magnetic long-range order is limited to zero
temperature in the present two-dimensional system due to the
Mermin—Wagner theorem?’; the state for 0 < T< T; is a chiral spin
liquid having the SkX2 spin texture with a finite correlation length
(but much longer than the system size). The real-space spin con-
figuration at T'= 0 is shown in Fig. 3¢, which corresponds to that in
Fig. le. Meanwhile, the transition at T, appears to be signaled by the
onset of the higher harmonics y,, as plotted in Fig. 3a. A snapshot
of the real-space spin configuration at T'= 0.006 is shown in Fig. 3d,
which well reproduces the spin texture for the TVX in Fig. 1f. From
these results, we conclude that the low- and intermediate-
temperature phases are chiral spin liquids with the SkX2 and TVX
spin textures, respectively, and the transition at T} is associated with
the phase shift of 77/2 between them.

The appearance of the TVX at finite temperature is explained by
an effective chirality interaction as follows. At the mean-field level,
the entropic contributions are in general given in the form of n th-
order magnetic interactions as Tqu‘_,qn(sql “Sg,):(Sq,  Sq)
3(q, + -+ q,)°*3L. Among them, the lowest-order contribution
to the phase shift appears in the sixth order. By considering S;™, the
dominant entropic contribution is given as TRe[(Sq, - Sq )(Sq, -
80,)(Sq, - So,)] = TRe[{Sq, - (Sq, * Sq,)}’] o T cos 2@. Thus, the
sixth-order entropic term, which has the form of chirality-chirality
interactions, depends on @ and tends to stabilize the TVX at finite
temperature.

Next, let us discuss the case of SkX1. Figure 3b represents the
results under a magnetic field, where the ground state is the
SkX1. Similar to the zero-field case in Fig. 3a, two phase tran-
sitions occur at T, ~0.0045 and T, =~ 0.0085. The low-
temperature state below T is the SkX1 (with quasi-long-range
order in the xy components), whose spin configuration is shown
in Fig. 3e!4. Recalling the phase shift of 7/2 from the SkX2 to the
TVX in the zero-field case, one may expect that the SkX1
changes into the MAX by raising temperature, but we find that
the intermediate phase for T)<T<T, is a different super-
position of three sinusoidal waves which has ytotal = 0. This is
because the Zeeman energy gain in the MAX is not sufficient to
overcome the obtained state. We note that the threefold rota-
tional symmetry is broken in the intermediate phase; hence, we
call this phase the anisotropic 3Q state (see Supplementary
Information). This phase transition from the SkX1 to the ani-
sotropic 3Q state is also accounted for by the sixth-order
entropic contribution, similar to that from the SkX2 to the TVX
at zero field, as will be shown below.

We display the Fermi surfaces in the SkX2, TVX, and SkX1 in
the inset of Fig. 3c—e, respectively. The Fermi surface in the TVX
in Fig. 3d is threefold rotationally symmetric, meaning the
breaking of the sixfold rotational symmetry of the triangular
lattice, as expected from the above discussion. This leads to a
nonreciprocal transport in itinerant electrons. Notably, there
appear threefold rotationally symmetric Fermi surfaces even in
the SkX2 in Fig. 3¢ (very weakly broken) and SkXI1 in Fig. 3e. This
is not due to the shift of ® but by phase-locking at (6,65,
03) = (n/3, —n/3,0) (any permutation is allowed) so that the
skyrmion cores avoid the lattice sites (the values of 6, depend on
Q; see Supplementary Information). Thus, the results indicate
that the individual phase 0,, as well as the total phase ®, are
relevant in the actual discrete lattice systems.

The third mechanism is higher-order spin interactions,
inferred from the above entropic mechanism. In general, the
kinetic motion of itinerant electrons induces effective spin
interactions, which can be explicitly derived by perturbation
expansion in terms of the spin-charge coupling in the Kondo
lattice model. The lowest-order contribution is a bilinear
interaction called the Ruderman—Kittel-Kasuya—Yosida
interaction32-34, and the next fourth-order biquadratic inter-
action was shown to be relevant to stabilize the SkXs3>. We here
consider a higher-order six-spin contribution given by
L[{SQl . (SQZ X SQz)}Z + H.c.] (see “Methods” and Supplemen-
tary Information). It is worthy to note that this has a similar
form to the above six-spin entropic term, and it is the lowest-
order contribution whose energy depends on © under
>-,Q, =0 in the perturbation expansion. This chirality inter-
action is different from those discussed in the previous studies
that stabilize noncoplanar spin states but appear to be irrelevant
to the phase shift36:37,

To clarify the effect of the chirality interaction, we investigate the
ground-state phase diagram of the effective spin Hamiltonian %
by variational calculations and the simulated annealing (see
“Methods”). We find that the SkX2 gives the lowest energy for
0 <L <1, while the TVX does for larger L, as shown in Fig. 4a. The
optimal 6, are obtained as (0, 6,, 65) = (n/3, —n/3, 0) for the for-
mer and (71/3, 71/6,0) for the latter (any permutation is allowed),
both of which are consistent with those in the Kondo lattice model
above. Thus, the chirality interaction prefers the ® = 71/2 states to
the ® = 0 ones, namely, it brings about the phase shift in SkXs.

Furthermore, we find that the value of L necessary for the
phase shift can be largely reduced by combining the first
mechanism by the exchange interactions for the localized spins.
Figure 4b shows the ground-state phase diagram of the Hamil-
tonian HT 4 4 with J; only obtained by the simulated
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Fig. 4 Ground states of the effective spin model. a | dependence of the
variational energy per site, E, at J=1and K= 0.4. The solid line shows the
result by the simulated annealing down to temperature T=10"4 for

N =962, b Phase diagram on the L—J; plane obtained by the simulated
annealing.

annealing. While increasing J;, the phase boundary between the
SkX2 and TVX is shifted to a smaller L rapidly. We note that the
SkX2 turns into the SkX1 while decreasing J;, whose tendency is
similar to the results in Fig. 2a, b. In addition, we obtain the phase
transition from the SkX1 to the anisotropic 3Q state while
increasing L, similar to the result in Fig. 3b, which also indicates
that L plays a similar role to the temperature.

Discussion

We have theoretically guided a new direction of exploring
further exotic magnetic states beyond the SkXs by using the
phase degree of freedom among the constituent spin density
waves. The phase shift turns the SkXs into other states repre-
sented by the TVX, which are characterized by staggered
emergent magnetoelectric fields and breaking of the lattice
rotational symmetry. We unveiled three microscopic mechan-
isms which drive such a phase shift in itinerant magnets: the
exchange interactions between the localized spins, thermal
fluctuations, and the long-range chirality interactions.

Our results indicate that the skyrmion-based physics arising from
nonzero net chirality can be switched on and off by changing the
relative phases among the constituent waves. Furthermore, the
lowering of the rotational symmetry by the phase shift induces
nonreciprocal transport even in centrosymmetric systems without
the spin-orbit coupling. These features open a new direction of
emergent electromagnetism by the phase shift engineering. This
would be realized in centrosymmetric skyrmion-hosting materials
where the multiple-spin interactions rooted in the spin-charge
coupling might play an important role!1383° While it is not
straightforward to identify the phase shift by diffraction techniques
such as the neutron scattering and the resonant x-ray scattering, our
findings suggest that the angle-resolved photoemission spectroscopy
and transport measurements will give good probes to detect the
phase shift and new phases like the TVX.

Furthermore, the concept of the phase shift is not limited to the
field of skyrmionics but ubiquitously useful for a variety of topo-
logical spin crystals, such as vortex crystals and hedgehog crystals,
since they are characterized by the multiple-Q spin density waves.
Our results suggest that the overlooked phase degree of freedom can
induce further interesting topological phase transitions, unconven-
tional electronic structures, topological properties, and conductive
phenomena, which will stimulate future exploration of functional
spintronics materials in both experiment and theory.

Methods
Kondo lattice model. We consider the Kondo lattice model on a triangular lattice,
whose Hamiltonian is given by

H=-> tijCZija +Jk s S —HLS. )
ij,o i i

The first term represents the kinetic energy of itinerant electrons, where c,-TU (cip) is a
creation (annihilation) operator of an itinerant electron at site i and spin 0. The
second term represents the exchange coupling between itinerant electron spins

s; = (1/2)%, /¢l 0, ¢ [6= (0% 0¥, 0% is the vector of Pauli matrices] and clas-
sical localized spins S; with [S;| = 1. The third term represents the Zeeman coupling
to an external magnetic field H. In the calculations, we take the model parameters
common to those in ref. 14: the nearest- and third-neighbor hoppings, f, = 1 and
t; = —0.85, respectively, Jx = 1, and the chemical potential 4 =—3.5, which gives
the characteristic wave vectors at Q,, (v =1, 2, 3) with Q = 71/3 in the main text (we
take the lattice constant unity). In this parameter set, the ground state at zero field
becomes the SkX2 in Fig. le, and that in a field becomes the SkX1 in Fig. 1c!4. Note
that the SkX2 is stable for other values of Q, while changing the hopping para-
meters and the electron filling!4; our arguments on the phase shift in the main text
are not limited to Q = 71/3 but can be applied to such other cases. To identify the
spin and chirality structure, we compute the spin structure factor

1 )
S@=y T TS, @

a=xy.z jl

and the chirality structure factor
1 . .
S — , iq-(R—R’)
X(q) N %: RRZ’:ey XRXR € ) (3)
respectively, where y = (1, d) represent upward and downward triangles, respectively.

Variational calculation for the Kondo lattice model. In the variational calcula-
tions in Fig. 2a, b, we compare the energy of the following spin textures as the
variational states: the triple spiral and sinusoidal crystals in Fig. 1c—f while varying
three 6, under the constraint |S;| =1 at each site, the single-Q spiral state char-
acterized by S; = (cosq - r;, sinq - r;, 0) where q = (0, 0), (Qy, 0), (47/3,0) denoted
as 1Q K and (0, Zﬂ/ﬁ) denoted as 1Q M, and the conical (1Q C) state char-
acterized by S; = (1/N,,)(cos Q, - 1;,sin Q, - r;,a,) where N, is the normalization
factor and a, is the variational parameter. We assume Q = 7/3 in the variational
calculations, since it was shown that the spin states with Q = 71/3 give the lowest
grand potential by performing the unbiased Langevin dynamics simulations with
the kernel polynomial method when the exchange interactions between the loca-
lized spins are zero!%. The phase diagram is obtained for the system size N = 962
under the periodic boundary condition.

Finite-temperature calculation for the Kondo lattice model. We adopt the
Langevin dynamics simulation with the kernel polynomial method?” to study the finite-
temperature properties of the Kondo lattice model in Fig. 3. In the kernel polynomial
method, we expand the density of states by up to 2000th order of the Chebyshev
polynomials with 162 random vectors. In the Langevin dynamics, we use a projected
Heun scheme for 1000—5000 steps with the time interval A7 = 2. The simulations are
done for N =602, 722, 962, and 120? sites, and the thermal averages are taken for
100—800 samplings after the thermalization. In the main text, we show the results for
N =962 and 1202, as those for N> 722 are convergent within the error bars. The data
at different temperatures are obtained independently starting from different random
states. In the simulations, we compute the q components of the scalar chirality

Xq = \/S(@/N at ¢ =0, 2Q;, 2Q,, and 2Q;, as plotted in Fig. 3a.

Effective spin model. An effective spin model, which is derived from the Kondo
lattice model in equation (1), is given by3”

off 2 = 2] L7 2
M =23 [~JSq S q +K(Sq S o )] +1 [{sQ‘ “(Sq,%Sq))} + H,c,] )

where 8¢ = (1/ VN)¥;8,;€/® . The first two terms describe bilinear and biqua-
dratic interactions, which are derived by second- and fourth-order perturbation
expansions in terms of the spin-charge coupling, respectively®; J> 0 and

K =K/N >0, and N denotes the number of sites. The J and K terms provide a
minimal effective model for the Kondo lattice model, stabilizing the SkX2 at zero
field (Fig. 3¢c) and the SkXI at finite fields (Fig. 3e)35. Meanwhile, the third term
with L = L/N? represents an interaction between the scalar spin chirality com-
posed of Sy (see Supplementary Information).

Variational calculation and simulated annealing for the effective spin model.
In the variational calculations in Fig. 4a, we compare the energy of the four states in
Fig. lc-f while varying three 6, under the constraint |S;] =1 at each site. The results
are for J=1 and K= 0.4 while changing L for the system with N = 962 sites. In the
simulated annealing in Fig. 4a, b, our simulations are carried out with the standard
Metropolis local updates in real space, by reducing the temperature successively, from
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T=0.1-1.0 to~ 10~* with the cooling rate of 0.99995—0.99999. The final tem-
perature is typically T= 104 Each phase is identified by its spin and chirality
configurations. We also start the simulations from the spin structures obtained at low
temperatures to determine the phase boundaries between different magnetic states.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The codes used for this study are available from the corresponding author upon
reasonable request.
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