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Abstract: Essential oils (EOs) are some of the outstanding compounds found in Thymus that can exert
antifungal, phytotoxic, and insecticidal activities, which encourage their exploration and potential
use for agricultural and food purposes. The essential oils (EO) obtained from Thymus kotschyanus
collected in the East Azerbaijan Province (Iran) were characterized using a gas chromatography-mass
spectrometry (GC-MS) analysis. Thymol was the most important compound (60.48%), although 35
other active compounds were identified in the EO. Significant amounts of carvacrol (3.08%), p-cymene
(5.56%), and γ-terpinene (6.67%) were found in the EO. The T. kotschyanus EO was tested against
important phytopathogenic fungi (Botrytis cinerea, Aspergillus niger, and Penicillium expansum).
The antifungal assay showed that the use of ≥500 ppm of EO resulted in a fungicidal effect against
all funguses tested. In a similar way, the use of ≥500 ppm of EO inhibited the germination of all
crop weed seeds (Amaranthus retroflexus L. and Panicum miliaceum L.) and their subsequent growth,
which demonstrated its herbicidal effect. Finally, the insecticidal capacity of T. kotschyanus EO was
also observed against selected insects (Oryzaephilus surinamensis and Sitophilus oryzae). O. surinamensis
was more susceptible to the effect of EO (LC50 = 4.78 µL/L air) than S. oryzae (LC50 = 13.20 µL/L air).
The obtained results of the present study can provide new safe resources to the development of new
products for the food, agriculture, and pharmaceutical industries.
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1. Introduction

The Genus Thymus L., family Labiatae, consists of more than 215 herbaceous perennial species
mainly distributed in the Mediterranean region [1,2]. In Iran, fourteen species of Thymus L. are
known [3]. Thymus kotschyanus represents one of the most diffused Thymus species. It is exploited
mainly, but not only, in folk medicine to improve the digestive process and to treat respiratory
disorders. Furthermore, its use as an aromatic ingredient, spice, or to prepare an herbal tea is
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well-known [2]. Aromatic and medicinal plants have a variety of biological compounds, including
essential oils, alkaloids, coumarins, flavonoids, phenols, saponins, and tannins, which provide
them with antibacterial, antifungal, and pesticide attributes [4]. Essential oils (EOs) represent a
sub-category of secondary metabolites which are found in aromatic plants, known as natural and
various compounds with significant attributes and which play a key role in protecting the plants via
their antibacterial, antiviral, antifungal, and pesticide attributes [5]. These EOs are a complex mixture
of substances that are present at different forms and concentrations. Monoterpenes, oxygenated
monoterpenes, sesquiterpenes, and oxygenated sesquiterpenes are the predominant constituents, but
phenolic compounds are also important components of some EOs [6]. The EO’s chemical composition
is varied, because it is affected by environmental conditions, ontogenetic, weather and temperature,
pre and post-harvest, and genetic factors [7]. With regards to this, there are a significant variation in
chemical compositions of the EOs of various Thymus species. A recent research found that the essential
oil composition of T. kotschyanus contained 54.6% of thymol [8], while other authors found that the
EOs of this species was composed by 41.4% of carvacrol and 19.6% of thymol [9]. Other Thymus
species, such as T. carnosus, T. pubescens, and T. persicus, showed values of thymol between 14% and
36% [10–12]. In addition to thymol, in some of these species, authors also observed high contents of
other compounds, such as p-cymene (21.3%) [12], carvacrol (48.8%) [11], and geraniol (9.4%) [10].

On the other hand, several EOs and other plant extracts are also used as substitutes for
synthetic additives in the food industry [13–15], by direct addition [16–20] or by applying as active
packaging [21–23], to limit microbial and oxidation degradation of food [24–27].

Over the last decade, T. kotschyanus has gained popularity due to its potential applications,
not only in the food industry but also in the pharmaceutical (ascertained antifungal, anti-inflammatory,
antimicrobial, and expectorant properties) and cosmetic industries, as components of soaps, toothpastes,
and perfumes [1,28–30]. In addition, the management of crop pests and diseases is a constant and
necessary concern in agricultural and food industries. For instance, Botrytis cinerea, Penicillium expansum,
and Aspergillus niger are among the most common worldwide post-harvest pathogens of fruits and
vegetables [31].

However, synthetic pesticides, herbicides, and fungicides are contaminants introduced into the
environment that can be extremely hazardous to the human body and agricultural products due to
slow degradation and consequent persistence in the environment [32,33]. Moreover, excessive use of
synthetic pesticides, herbicides, and fungicides has made pathogens and insects to be resistant to such
chemicals [34,35]. In this line of thought, the search for environmentally friendly strategies to manage
crop pests and diseases has become an interesting field of application for natural products [32,33].
Among the green strategies, the use of EOs is an appealing alternative to synthetic and toxic compounds
commonly used in crop management and, for instance, as new antifungal agents [36]. Since some EOs
from medicinal herbs exhibit phytotoxic activity, these natural sources can be explored for agricultural
and food-processing purposes [4,37].

Essential oils (EOs) are some of the outstanding compounds found in Thymus L. that can exert
antifungal, bactericidal, phytotoxic, antiparasitic, and insecticidal activities, which encourage their
exploration and potential use for agricultural and food purposes [4,16,37–39]. In the last decades,
EOs were also studied to evaluate their use in weed control and crop productivity (the so-called
allelopathic effect) [40]. The compounds with such properties could be used for the biological control
of plant pathogens and weeds as natural pesticides and herbicides with less destructive effects on the
environment [41]. Different EOs obtained from some thyme species have demonstrated allelopathic
effects and could be used to control and combat the growth of the weed species [42,43].

Although several Thymus species were studied and the chemical composition, antioxidant activity,
and biological properties of their essential oils were determined [29,44], few studies deal with the
composition and biological activity of T. kotschyanus in North West Iran. Therefore, in the present study,
the antioxidant, phytochemical, antifungal, phytotoxic, and insecticidal properties of some derivatives
of T. kotschyanus grown in the North West of Iran were evaluated.
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2. Results and Discussion

2.1. Phytochemical Characterization

The amount of essential oil (EO) yielded by the Clevenger hydro-distillation method was 3.5% (v/w)
of dry weight, which had a color nuance ranging from light orange to yellow. GC-MS chromatogram
and chemical compositions of EO are shown in Table 1 and Figure 1, respectively.

Table 1. Percentage chemical composition and retention indices of the essential oil of Thymus kotschyanus.

No Compounds Tn RI RI-L Percentage

1 α-Thujene 3.98 926 925 1.38 ± 0.01
2 α-Pinene 4.11 934 932 0.96 ± 0.00
3 Camphene 4.37 949 952 0.62 ± 0.00
4 β-Pinene 4.86 978 978 0.53 ± 0.00
5 3-Octanone 4.97 984 984 0.16 ± 0.00
6 β-Myrcene 5.07 990 991 1.36 ± 0.01
7 3-Octanol 5.16 995 994 0.15 ± 0.00
8 α-Phellandrene 5.37 1006 1006 0.27 ± 0.00
9 3-Carene 5.49 1011 1011 0.08 ± 0.00

10 α-Terpinene 5.62 1017 1017 2.1 ± 0.01
11 p-Cymene 5.82 1026 1026 5.56 ± 0.02
12 Limonene 5.89 1030 1030 0.52 ± 0.00
13 1,8-Cineol 5.95 1032 1033 2.82 ± 0.02
14 γ-Terpinene 6.56 1060 1060 6.67 ± 0.03
15 cis-Sabinene hydroxide 6.76 1069 1070 1.66 ± 0.01
16 α- Terpinolen 7.21 1090 1090 0.12 ± 0.00
17 trans-Sabinene hydrate 7.48 1102 1104 0.57 ± 0.00
18 Camphor 8.6 1148 1148 0.36 ± 0.00
19 Borneol 9.18 1171 1173 1.82 ± 0.01
20 Terpinen-4-ol 9.44 1182 1182 0.88 ± 0.00
21 α-Terpineol 9.79 1196 1195 0.17 ± 0.00
22 cis-α-terpineol 10.02 1205 1209 0.13 ± 0.00
23 Carvacrol methyl ether 11.12 1247 1246 2.94 ± 0.01
24 Thymol 12.84 1313 1311 60.48 ± 0.78
25 Carvacrol 12.94 1317 1316 3.02 ± 0.01
26 Thymol acetate 13.97 1358 1357 0.13 ± 0.00
27 E-Caryophyllene 15.62 1424 1422 2.18 ± 0.01
28 Aromandendrene 16.08 1443 1440 0.09 ± 0.00
29 α-Humulene 16.44 1458 1457 0.08 ± 0.00
30 γ-Muurolene 16.99 1480 1479 0.09 ± 0.00
31 Virdiflorene 17.45 1499 1497 0.13 ± 0.00
32 β-Bisabolene 17.74 1512 1511 1.36 ± 0.01
33 δ-Cadinene 18.1 1527 1526 0.16 ± 0.00
34 (E)-α-Bisabolene 18.53 1545 1545 0.17 ± 0.00
35 Spathulenol 19.42 1583 1582 0.08 ± 0.00
36 Caryophyllene oxide 19.53 1588 1587 0.21 ± 0.00

A total of 36 compounds were detected by GC-MS analysis, being thymol (60.48%), γ-terpinene
(6.67%), p-cymene (5.56%), and carvacrol (3.02%), as well as 1,8-cineol (2.82%) and E-caryophyllene
(2.18%) as the main components. The extraction yield of T. kotschyanus EO is in the range of values
reported for Thyme species, which can vary in the range of 0.8–2.6% [45–50]. Moreover, among 14
Thymus samples from Iran studied by Tohidi et al. [51], EO yield varied from 0.29% (T. fedtschenkoi) to
3.87% (T. migricus).
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The yield of EO and thymol content found in this study were significantly higher compared to
other previous studies evaluating T. kotschyanus. Therefore, T. kotschyanus collected from the Shabestar
region could be identified as a new thymol chemotype. For instance, other authors found variable
amounts in T. kotschyanus that ranges from 1.1% in plants collected in Yarz (Iran) [52] to 54.66% in plants
collected in the highlands of Bojnurd (Iran) at an altitude of 1700 m [8]. In addition, Tohidi et al. [53]
analyzed the EOs of ten Thymus species from different areas of Iran and reported that thymol contents
ranged from 12.4% (EO of T. fedtschenkoi) to 79.74% (EO of T. migricus).Molecules 2020, 25, x FOR PEER REVIEW 4 of 17 
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(EO) from Shabestar, East Azerbaijan, Iran.

2.2. Antifungal Activity

The antifungal activity of EOs against mycelial growth is shown in Figure 2. Among the fungal
strains tested, B. cinerea (Figure 3A) was the most susceptible fungus, and it was completely inhibited
by all EO treatments. In the cases of A. niger (Figure 3B) and P. expansum (Figure 3C), mycelial growth
was reduced at 250 ppm, being completely inhibited at concentrations of ≥500 ppm (fungicidal effect).
In addition, the effects of EOs at 250 ppm were considered fungistatic for P. expansum and A. niger that
were partially inhibited.

Some components of the EO, such as thymol, γ-terpinene, and carvacrol, display strong antifungal
activity [53–57]. Particularly for thymol, a monoterpene phenolic compound, previous studies indicated
an important effect against the growth of important fruit and food-spoiling fungi, such as A. niger,
Alternaria alternata, B. cinerea, Fusarium oxysporum, and Rhizopus oryzae, that are [58–62]. In a similar way
as the results obtained by us, other studies observed that thymol and carvacrol exhibit an important
antifungal activity against postharvest pathogens Botrytis cinerea [63] and also against spoilage yeasts in
wine [64]. Additionally, other research found that carvacrol inhibits the growth of Penicillium expansum
spores, which agree with our results [65]. The protective effect of T. kotschyanus EO can be explained by
irreversible damage to fungi membrane and the consequent leakage of the cytoplasmic contents [64],
although the effects of other minor components should not be overlooked.
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2.3. Phytotoxic Activity

The effect of EOs on weeds germination indices is shown in Table 2. In both weed species,
germination and growth indices were affected by T. kotschyanus EO treatments. The final germination
percentage (GP) varied significantly (p < 0.01) among the different EO concentrations used. For example,
seed germination of A. retroflexus (Figure 4A) and P. miliaceum (Figure 4B) were completely inhibited
when the concentrations exceeded 500 ppm. Likewise, the percentage germination of A. retroflexus
was 81.33% and 0% for control and essential oils more than 500 ppm, respectively. For P. miliaceum,
such index was 92.00% and 0% for control and EO more than 500 ppm, respectively. Moreover, mean
germination time was significantly (p < 0.01) influenced by T. kotschyanus EO concentration.
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Figure 3. Evolution of mycelial growth inhibition (%) (mean ± standard error) of Botrytis cinerea (A),
Penicillium expansum (B), and Aspergillus niger (C) by different concentrations of T. kotschyanus EO (ppm).
A–C mean values not followed by a common letter differ significantly (*** significant at p < 0.001).
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Table 2. Influence of various concentrations of T. kotschyanus essential oil in seed germination indices of A. retroflexus and P. miliaceum at the end of incubation time.
GP: germination percentage, MGT: mean germination time, GRI: germination rate index, RL: root length, ShL: shoot length, SLL: seedling length, FW: fresh weight, VI:
vigor index, and T50: the time to reach 50% germination.

Treatments GP (%) MGT (day) GRI RL (cm) ShL (cm) SLL (cm) FW (mg) VI T50

Amaranthus retroflexus
Control 81.33 ± 2.0 3.22 ± 0.31 6.50 ± 0.13 1.54 ± 0.12 1.52 ± 0.00 3.05 ± 0.13 0.02 ± 0.00 248.33 ± 16.81 2.57 ± 0.01
250 ppm 50.67 ± 4.0 4.70 ± 0.28 2.86 ± 0.35 0.45 ± 0.12 0.00 0.46 ± 0.13 0.01 ± 0.00 23.52 ± 8.44 4.17 ± 0.29
500 ppm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
750 ppm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1000 ppm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1500 ppm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LSD 5.25 0.45 0.43 0.19 0.016 0.20 0.01 19.3 0.33
Prob *** *** *** *** *** *** *** *** ***

Panucum miliaceum
Control 92 ± 4.00 2.52 ± 0.08 9.65 ± 0.28 5.54 ± 1.09 3.23 ± 0.27 8.78 ± 1.36 0.12 ± 0.03 803.67 ± 91.0 1.86 ± 0.03
250 ppm 88 ± 4.00 3.83 ± 0.15 6.30 ± 0.11 1.06 ± 0.16 0.95 ± 0.10 2.01 ± 0.12 0.02 ± 0.00 176.44 ± 2.1 3.06 ± 0.05
500 ppm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
750 ppm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1000 ppm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1500 ppm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LSD 5.75 0.17 0.34 1.23 0.30 1.48 0.02 106.7 0.06
Prob *** *** *** *** *** *** *** *** ***

Data represent means of three replicates compared by Duncan´s multiple range test (DMRT) at p < 0.01. *** Significant at (p < 0.001).
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Figure 4. Effect of different concentrations of T. kotschyanus EO (µL/L) on the cumulative germination
(mean ± standard error) of Amaranthus retroflexus (A) and Panicum miliaceum (B). The least significant
difference (LSD) indicates the differences between factors.

The GRI was significantly (p < 0.01) influenced by EO concentration, being the highest value found
for control (6.50 and 9.65 units for A. retroflexus and P. miliaceum, respectively), and the lowest was
obtained from EO treatments with 500, 750, 1000, and 1500 ppm (0.00 units) for both A. retroflexus and
P. miliaceum. A similar outcome was obtained for root length (RL) and shoot length (ShL). The seeds
treated with T. kotschyanus EO displayed lower mean values than obtained in the control. The complete
inhibition of root and shoot lengths were observed for seeds treated with ≥500 ppm of T. kotschyanus EO.

Statistically significant differences (p < 0.01) among treatments were also observed in the
seedling length (SLL) in both weeds. The highest length was observed in control (3.05 and 8.87 cm),
while the lowest values were obtained after the exposition of seeds to more than 500 ppm of EO
(0.00 cm) for A. retroflexus and P. miliaceum, respectively. The EOs decreased (p < 0.01) the SLL in a
concentration-dependent manner, according to the weeds.

Moreover, it was also found that several concentrations of EOs had a significant effect (p < 0.01)
on the fresh weight (FW) of seedlings. FW of samples treated with EOs were significantly lower
than control for both weeds. Likewise, the vigor index (VI) was affected by EO concentration in both
weeds. While the highest VI index was obtained in control (248.33 and 803.67 units for A. retroflexus
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and P. miliaceum, respectively), the lowest means values were observed in treatments with more than
500 ppm (0.00 units) of EO. The time to achieve 50% germination (T50 index) varied between the
treatments for both studied species. The T50 index increased from 2.57 (control) to 4.17 (250 ppm) days
for A. retroflexus seeds and from 1.86 (control) to 3.06 (250 ppm) days. Seeds treated with more than
500 ppm of T. kotschyanus EO did not germinate. The results obtained for T. kotschyanus EO phytotoxic
activity are in agreement with other studies in scientific literature. An experiment with four Thymus
daenensis ecotypes collected in Iran indicated that applying between 400 and 600 µL/L of EO was
associated with complete inhibition of A. retroflexus seed GP, which consequently reduced the shoot
and root fresh weight [66]. In the same line, the EO extracted from Thymus vulgaris displayed one of
the lowest ED50 (concentration that causes 50% inhibition of seed germination; 0.16 g/L) values to
inhibit the germination of A. retroflexus seeds among selected essential oils (lemon balm, sage, and
tansy, for instance) [67].

The allelopathic effect of T. kotschyanus EO on A. retroflexus and P. miliaceum seeds could be
explained by the individual activity of monoterpenes. A study about the phytotoxic effect of pure
thymol (10 mg/Petri dish) reported GP of 0.00% and root growth of 0.00% in [68]. Likewise, the treatment
with γ-terpinene inhibited the GP (76.5 vs. 32.0 and 21.3% for control and 10 and 20 µL, respectively)
and seedling root growth (28.9 vs. 22.0 and 14.5 mm for control and 10 and 20 µL, respectively) of
A. retroflexus seeds [69].

Moreover, seems reasonable to consider that these two monoterpenes are the main compounds
associated with T. kotschyanus EO allelopathic activity due to low phytotoxic activity reported for
p-cymene on A. retroflexus, Chenopodium album, and Rumex crispus seeds [68]. Although the inhibitory
mechanism exerted by terpenes on weed seeds remains unclear, previous studies reported relevant
effects on cellular proliferation, induction of oxidative stress, and inhibition of DNA synthesis on weed
seeds after terpene treatment [70,71].

2.4. Insecticidal Activity

The T. kotschyanus EO was lethal for both insect species (O. surinamensis and S. oryzae) used in
the experiments. O. surinamensis was more susceptible to the effect of EOs than S. oryzae, wherein the
values of LC50 were 4.78 and 13.20 µL/L air, respectively (Table 3).

Moreover, LT50 values highlighted that the EOs killed O. surinamensis faster than S. oryzae.
Cumulative mortality of O. surinamensis (Figure 5A) and S. oryzae (Figure 5B) increased daily. Half the
population of O. surinamensis adults died within 1.57 days, and 95% of insects were killed within 9.17
days after exposure to EO vapors. However, 50 percent and 95 percent of adult rice weevils were killed
after 2.36 and 14.60 days of treatment, respectively (Table 4 and Figure 6).

These results are in agreement with data reported by other authors. For instance, the fumigant
toxicity effects of commercial thyme EO and selected terpenes, particularly p-cymene and thymol,
were evaluated against S. oryzae [72]. The authors obtained LC50 and LC95 concentrations of 63.9 and
89.5 µL/L air for thyme EO, respectively. Regarding the individual terpenes, p-cymene displayed
lower LC50 and LC95 concentrations (25 and 39 µL/L air, respectively) than those obtained for thymol
(69 and 174 µL/L air, respectively). A similar fumigant toxicity effect of thyme EO was reported
against Callosobruchus maculatus and Sitophilus granaries (relevant pests in the storage of legumes and
wheat). In this case, the EO extracted from T. daenensis Celak displayed LC50 concentrations of 4.22
and 6.55 µL/L air for C. maculatus and S. granaries, respectively. The authors also obtained the LC90

concentrations for C. maculatus and S. granaries (8.21 and 8.73 µL/L air, respectively).
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Table 3. Lethal concentration values of T. kotschyanus essential oil on O. surinamensis and S. oryzae.

Insect LC50 (µL·L−1) LC95 (µL·L−1) Slope ± SE Intercept ± SE χ2 (df = 3) p-Value

O. surinamensis 4.78 17.98 2.86 ± 0.34 −1.94 ± 0.26 2.04 0.57
(4.12–5.51) (13.63–27.63)

S. oryzae 13.2 150.22 1.56 ± 0.18 −1.75 ± 0.22 1.83 0.61
(10.08–17.29) (90.73–320.93)

Table 4. Lethal time values of T. kotschyanus essential oil on O. surinamensis and S. oryzae.

Insect LT50 (days) LT95 (days) Slope ± SE Intercept ± SE χ2 (df = 3) p-Value

O. surinamensis 1.57 9.17 2.14 ± 0.23 −0.42 ± 0.12 1.73 0.63
(1.26–1.91) (6.64–14.62)

S. oryzae 2.36 14.6 2.08 ± 0.23 −0.78 ± 0.13 2.47 0.48
(1.93–2.89) (10.12–25.22)
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The key role of T. kotschyanus EO compounds in the mortality of crop pests is also associated
with impairment of important molecular pathways. Particularly for thymol, it was reported that this
terpene can influence the GABA-gated chloride channel, which causes hyperexcitation of the central
nervous system and can lead to convulsions and death. Another related effect of thymol exposure
is modulation of a tyramine receptors cascade that eventually blocks the octopamine receptors and
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undermines neurological insect functions [73]. Finally, our results illustrated that T. kotschyanus has an
insecticidal activity against insect pests.

3. Materials and Methods

3.1. Plant Materials

Aerial parts of Thymus kotschyanus plants (voucher number: UHDH-101) in the flowering stage
were taken from the Shabestar Region in the East Azerbaijan Province, Iran in 2016. Having a classically
semi-arid climate and at the altitude of 1352 m above the sea level (Latitude: 38◦19′ N; Longitude:
45◦18′ E), this region has a high precipitation rate that often takes place throughout the autumn and
winter, whereas there is little rainfall in the summer.

3.2. Extraction of Essential Oil

Aerial parts of T. kotschyanus were harvested and dried at room temperature, preventing them from
taking light. Dried leaves (20 g) were subjected to hydrodistillation through a Clevenger instrument
(Urmia University, Urmia, Iran) for 3 h. The resulting EO was poured into screw-capped vials and
maintained in darkness at 4 ◦C for further analysis.

3.3. GC and GC-MS Analysis

The analysis of the oil was performed using an Agilent gas chromatograph (GC-FID)
(Agilent Technologies, Santa Clara, CA, USA) with a DB-5-fused silica column (30 m × 0.25 mm;
0.25 µm film thickness). Nitrogen was used as the gas carrier at a constant flow of 1.1 mL/min.
The oven temperature was programmed from 60 to 250 ◦C at 5 ◦C/min and then isothermaled for
10 min. The injector and FID temperatures were set at 250 ◦C and 280 ◦C, respectively. The injection
volume was 0.1 mL. Samples were injected by splitting, and the split ratio was 1:100. GC-MS analysis
was carried out on a Thermoquest Finnigan Trace GC-MS instrument equipped with a DB-5 column
(30 m × 0.25 mm; 0.25 µm film thickness) programmed as above, with helium as the carrier gas with
a flow rate of 1.1 mL/min and a split ratio of 1:50. The MS operating parameters were: ionization
voltage, 70 eV and ion source temperature, 200 ◦C. Identification of the compounds was performed
by comparison of the retention indexes (relative to a homologue C6–C24 n-alkane series) obtained in
the same column with those of reference compounds. Additionally, each mass spectra obtained was
compared with those from the usual electronic libraries [74,75]. Relative area percentages obtained
from GC were used for quantification of the components.

3.4. Fungal Isolates

Three post-harvest pathogens fungal isolates, Bot-245 g (Botrytis cinerea Pers.), Pen-653mb
(Penicillium expansum Link), and As-88ma (Aspergillus niger Tiegh.), purchased from the fungal culture
collection of the Plant Pathology Department, Urmia University (Urmia, Iran) were used in our
experiments. The pathogenicity of fungal isolates was previously confirmed (data not shown).
Fungal isolates were grown in potato dextrose agar (PDA) medium at 25 ± 2 ◦C. Only actively growing
colonies were used in bioassays [76].

3.5. In vitro Antifungal Assays

The antifungal activity of the T. kotschyanus essential oil was evaluated through the poison
food medium method. Different concentrations of T. kotschyanus essential oil (0, 250, 500, 750, 1000,
and 1500 µL/L) were prepared in sterile water containing Tween 80 (0.5%, v/v) and aseptically added
to sterile, cooled, molten potato dextrose agar (PDA Merck, Darmstadt, Germany) medium (45 ◦C).
The resulting mixture (EO plus medium) were instantly dispensed onto sterilized glass petri plates
(90 mm diameter, 20 mL each) and allowed to solidify under aseptic conditions. A mycelial disk
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(6-mm-diameter) of the tested fungi, taken from the margins of the actively growing cultures, was placed
upside-down at the center of the petri plates.

Inoculated petri plates were incubated in darkness at 25 ± 2 ◦C. The control was composed of
0.5%Tween 80 in sterile water. Four replicates were used for each treatment, and all the experiments
were repeated twice. Antifungal activity of essential oil was measured taking into account the
percentage of the mycelial growth inhibition (MGI), calculated by the following the formula [77]:

MGI (%) =
(dc− dt)

dc
× 100 (1)

where dc was the colony growth diameter in the control and dt represented the diameter of colony
growth in the treatment.

In the case of no visible growth detected after the incubation with the essential oil, and in
order to determine fungistatic and/or fungicidal effects of the essential oil against the tested fungi,
the inoculated discs were transferred to new PDA plates and incubated again at 25 ± 2 ◦C for more
than 72 h. If mycelial growth was restarted in PDA medium, the effect was considered fungistatic;
otherwise, it was considered fungicidal.

3.6. Phytotoxic Activity

Ripe seeds of Amaranthus retroflexus L. (redroot pigweed) and Panicum miliaceum L. (millet)
collected from the North West of Iran (West Azerbaijan Province) on September, 2016 were used to
investigate the phytotoxic effect exhibited by the EO. Seeds were stored in paper bags for a span of
four weeks at room temperature. The viability of the seeds and their germinability were checked
prior to the experiments. Surfaces of seeds were sterilized through a two-step procedure (rinse for
30 s with 70% ethyl-alcohol and a subsequent treatment with a 10% sodium hypochlorite solution for
20 min), then washed three times with sterile distilled water, and finally, air-dried in aseptic conditions
under a laminar hood. Fifty seeds from each weed were placed in Petri dishes containing two layers
of filter-paper (Whatman No. 2). To make exact concentrations of EO in water (0, 250, 500, 750,
1000, and 1500 µL/L), first a stock of EO in dimethyl sulfoxide (DMSO)/water (1%, v/v) was prepared.
Ultimately, 10 mL of each concentration was poured into the petri dishes. In the controls, 1% DMSO in
water was used. Each treatment had five replicates, and all the experiments were replicated twice.
The petri dishes containing seeds were sealed by plastic paraffin film tape. Then, petri dishes were
kept in a germinator set at 25 ◦C with a 16-h photoperiod of 28–36 mM/m2 s.

In this experiment, germination percentage (GP); mean germination time (MGT); germination
rate index (GRI); vigor index (VI); root, shoot, and seedling lengths (RL, ShL, and SLL, respectively);
and T50 index were measured. The GP was expressed as the ratio of germinated seed to the total of the
seeds. The MGT and GRI were calculated using the following formula [78]:

MGT =

∑
n.d

N
(2)

where n is the number of seeds germinated on each day, d is the days from the beginning of the
germination test, and N represents the final germinated seeds. The GRI:

GRI =
∑ (number of germinated seeds since n− 1)

n
(3)

where n represents the days of incubation. At the end of the incubation, root, shoot, and seedling
lengths were also measured, and the seed vigor index (VI) was obtained using the equation [79]:

VI = [SLL (cm)x GP] (4)

The T50 value was calculated in terms of days needed for germination of 50% of the seeds.
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3.7. Insecticidal Activity

The fumigant toxicity of T. kotschyanus EO was assessed using two model insect species, which are
mainly the infesting of food products during their storage, namely the saw-toothed grain beetle
(Oryzaephilus surinamensis) and the so-called rice weevil (Sitophilus oryzae). LC50 (median lethal
concentration) and LT50 (median lethal time) values were used as parameters to calculate the insecticidal
strength of the EO. After preliminary bioassays, 6-cm-diameter disks of filter papers (Whatman No.
1) were impregnated with different concentrations of the essential oil (2–87 µL/L air for S. oryzae and
2–12.6 µL/L air for O. surinamensis) without any solvent. The disks were mounted on the underside of
tightly screwed caps of 250 mL glass vials. Ten newly emerged adults of each insect were introduced
into each vial. Combinations of different concentrations and exposure times (1–7 days) were replicated
five times. In the controls, only filter papers were used. Vials were kept in darkness, 70% ± 5% RH and
28 ± 1 ◦C. Mortality percentage was recorded at 24-h intervals until 7 days. Insects with no reaction
after physical stimulation (leg or antennal movements) were considered as dead.

3.8. Statistical Analysis

Statistical analyses of the data (antifungal and phytotoxic activity) were performed using MSTAT-C
statistical software (Michigan State University, East Lansing, MI, USA), and means were separated by
DMRT at 0.01 probability level. In the case of insecticidal activity, all the experiments were replicated
five times. Data were analyzed using SPSS V22.0 software (IBM, Armonk, NY, USA).

4. Conclusions

The analysis of T. kotschyanus EO (yield around 3.5%) composition collected in the Shabestar
Region (Iran) revealed that thymol is the main compound, followed by γ-terpinene and p-cymene.
Moreover, our results also showed that T. kotschyanus EOs can be considered as an efficient natural
compound to control post-harvest fungal diseases (A. niger and P. expansum; fungicidal effect at
concentration ≥500 ppm); weeds (A. retroflexus and P. miliaceum; ≥500 ppm); and harmful insects
(O. surinamensis and S. oryzae). Therefore, taking into account the several issues related to the harmful
effects on the environment and on the health associated with synthetic pesticides, and the remarkable
fungicidal properties of T. kotschyanus active components, the EO evaluated in the present study can be
certainly considered as a good alternative in the post-harvest pest management.
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