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Abstract
The presence of different transcripts of a gene across samples can be analysed by whole-transcriptomemicroarrays.
Reproducing results from published microarray data represents a challenge owing to the vast amounts of data and
the large variety of preprocessing and filtering steps used before the actual analysis is carried out. To guarantee a
firm basis for methodological development where results with new methods are compared with previous results,
it is crucial to ensure that all analyses are completely reproducible for other researchers.We here give a detailed
workflow on how to perform reproducible analysis of the GeneChip�Human Exon1.0 STArray at probe and probe-
set level solely in R/Bioconductor, choosing packages based on their simplicity of use. To exemplify the use of the
proposed workflow, we analyse differential splicing and differential gene expression in a publicly available dataset
using various statistical methods.We believe this study will provide other researchers with an easy way of accessing
gene expression data at different annotation levels and with the sufficient details needed for developing their own
tools for reproducible analysis of the GeneChip�Human Exon 1.0 STArray.
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INTRODUCTION
In the field of microarrays, it has traditionally been

difficult to compare new methods with already

established and published methods, as different

strategies for preprocessing, summarizing and filter-

ing make it almost impossible to work with the exact

same data, even when the raw data is made available.

That is why we consider reproducible research
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of fundamental importance as it will facilitate easy

(i) revision of articles, (ii) access to data and results,

(iii) communication with other researchers and

(iv) comparison between different methods.

Reproducible research is gaining relevance among

the scientific community as shown by the number

of articles published on the subject during the past

years [1–4]. Ioannidis et al. showed that the results of

only 2 of 18 published microarray gene-expression

analyses were completely reproducible [5]. This is

why some authors demand that documentation

and annotation, database accessions and URL links

and even scripts with instructions are made publicly

available [2]. Journals like Biostatistics have even

appointed an Associate Editor for reproducible

research, but still treat it as a ‘desirable goal’ rather

than a requirement [6]. Setting up a framework for

reproducible research necessarily implies working

with free and open-source software, for example,

R/Bioconductor [7, 8]. Additionally, using Sweave

[9, 10] (a tool for embedding R code in

LATEXdocuments [11]) enables automatic reports

that can be updated with output from the analysis.

The main tool in this article will be the

Bioconductor package aroma.affymetrix [12] that

can analyse all Affymetrix microarray types with a

Chip Definition File (CDF file). Affymetrix some-

times refer to their microarrays as ‘chips’. The

number of arrays (samples) that can be simulta-

neously analysed by aroma.affymetrix is virtually

unlimited, as the system requirements are just 1 GB

RAM, for any operating system [13]. This package is

freely available and can easily be installed into R. The

aroma.affymetrix website www.aroma-project.org is

conceived as reference for all the possible microarrays

that can be analysed with aroma.affymetrix, and

does not focus specifically on the analysis of the

GeneChip� Human Exon 1.0 ST Array (or exon

array in short). Portable scripts for a fast and basic

analysis can be obtained on request to aroma.affy

metrix’s authors.

The analysis of exon array data in R/

Bioconductor is not yet standard. There are several

packages available, and it can be a tremendous effort

for a newcomer to maneuver between them and to

overcome the numerous challenges associated with

these packages. This article aims to make this task

easier and to provide a quick reference guide to

aroma.affymetrix’s documentation. We also explain

how to extract data for different statistical analyses

and propose a method for gene annotation and for

gene profile visualization. For this last step, we use

the packages biomaRt and GenomeGraphs to annotate

and visualize the transcripts in a genomic context.

When using the workflow, please remember to

cite packages aroma.affymetrix, GenomeGraphs and

biomaRt.

In this article, we sketch the proposed workflow,

which is carried out solely in R/Bioconductor, and

explain some key sections. The complete code is

available as a Sweave (.Snw) [9] document that will

allow the reader to reproduce our exact results. The

.Snw document can also be converted into an R

script and executed. The workflow starts by reading

in the data, followed by background correction and

quantile normalization. We then explain how to

obtain transcript cluster-, probeset- and probe-level

estimates. Afterwards, different methods for the sta-

tistical analysis of differential splicing or differential

gene expression are reviewed. Finally, we make a

suggestion on how to annotate transcript clusters to

genes in the lists obtained from the statistical analyses,

and how to plot the data including genomic infor-

mation. To exemplify the use of the workflow, an

example dataset [14] is analysed along the way.

BACKGROUNDON
ALTERNATIVE SPLICING
Splicing is the post-transcriptional process that gen-

erates mature eukaryotic messenger RNAs

(mRNAs) from pre-mRNAs by removing the

non-coding intronic regions and joining together

the exonic coding regions. For many genes, two or

more splicing events take place during maturation of

mRNA molecules, resulting in a corresponding

number of alternatively spliced mRNAs. These

mature mRNAs translate into protein isoforms dif-

fering in their amino acid sequence and ultimately in

their biochemical and biological properties [15, 16].

Alternative splicing is one of the main tools for gen-

erating RNA diversity, contributing to the diverse

repertoire of transcripts and proteins [16, 17]. It is

known that 92–94% of multi-exon human genes are

alternatively spliced and that 85% of those have a

minor isoform frequency of at least 15% [18, 19].

In our case, we will focus on the detection of differ-

ential splicing between groups, as for instance tissue

types, or healthy versus diseased samples.

The exon array was presented in October 2005

as a tool for the analysis and profiling of whole-

transcriptome expression [20–22]. To interrogate
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each potential exon with at least one probeset, the

exon array contains about 5.6 million probes

grouped into >1.4 million probesets (most probesets

consisting of four probes), which are further grouped

into 1.1 million exon clusters, or collections of over-

lapping exons. Finally, exon clusters are grouped into

>300 000 transcript clusters to describe their rela-

tionship, for example, shared splice sites or overlap-

ping exonic sequences. Each gene is covered, on

average, by 40 probes interrogating regions located

along the entire gene [23]. This probe positioning

aims at providing better estimates of gene expression

levels than previous arrays, and allows for the study

of differential splicing [24] and differential gene

expression based on summarized exon expression.

The exon array has three levels of annotation for

the interrogated transcript clusters: core, extended and

full [25]. Core transcript clusters are supported by

the most reliable evidence such as RefSeq transcripts

and full-length mRNAs [26], and a core transcript

cluster is roughly a gene [27]; the extended level

contains the core transcript clusters plus complemen-

tary DNA (cDNA)-based annotations [28], and the

full level contains the two previous levels plus

ab initio, or algorithmic, gene predictions [29]. It is

worth noting that aroma.affymetrix enables the

analysis at the three levels of annotation mentioned

above, and also that it provides intensity estimates for

probes, probesets and transcript clusters, allowing for

a variety of options for the analysis.

WORKFLOW
Our workflow for the analysis of exon array data

starts by setting up the required folder structure for

aroma.affymetrix. The data are then preprocessed

and summarized at transcript cluster and/or probeset

level. Next, transcript clusters are analysed with sev-

eral statistical models to detect differential expression

or splicing, and the transcripts of interest are anno-

tated and visualized at the end (Figure 1). In the

code, places where user input is needed are marked

by ‘***’, and places where the user can choose

whether to modify parameters are marked by ‘**’.

To exemplify the use of the tutorial, we have used

Affymetrix’s colon cancer dataset [14], consisting of a

collection of paired samples of colon tumour tissue

and adjacent normal tissue from 10 patients and

available at http://www.affymetrix.com/support/

technical/sample_data/exon_array_data.affx.

According to Affymetrix’s website, the RNA

samples are from a commercial source. This dataset

has been used in a number of articles to evaluate the

performance of different analysis methods [30–33],

and a number of genes have been validated to be

differentially spliced or not [14]. The analysis was

performed in R version 2.15.1 (32 bit).

Start by installing and loading aroma.affymetrix

in R and loading the other libraries required:

> source(‘‘http://aroma-project.org/hbLite.R’’)

> hbInstall(‘‘aroma.affymetrix’’)

> require(aroma.affymetrix)

> require(biomaRt)

> require(GenomeGraphs)

Setting up the structure and files for the
analysis workflow
This section corresponds to steps 1 and 2 in Figure 1.

The first step is to create the folder structure:

under a main folder of our choice—‘myworking

Directory’—we will create the ‘rawData’ and

‘annotationData’ folders, which will be common to

all aroma.affymetrix projects. Inside ‘annotation

Data’, the subfolder ‘chipTypes’ will contain one sub-

folder per chip type, with the exact name of the .CDF

file provided by Affymetrix, ‘HuEx-1_0-st-v2’ in our

case. Inside this folder, we will save any library and

annotation files that might be needed. Besides, the

‘myDataSet’ folder will be created under ‘rawData’

to store .CEL files. These files are the output of a

microarray experiment and contain the result of the

intensity calculations per probe or pixel. Note that the

microarray experiment produces one .CEL file per

array and that one array analyses one sample. Note

also that we need one ‘myDataSet’ folder per experi-

ment and that ‘myDataSet’ will be added as a tag at the

end of the aroma.affymetrix output.

> #*** user-defined working directory

> wd <- ‘‘myWorkingDirectory’’

> #*** user-defined data set name

> ds <- ‘‘myDataSet’’

In the second step, we save our library (.CDF in

our case) and .CEL files in the corresponding folders.

Affymetrix’s unsupported CDF files can be down-

loaded from http://www.affymetrix.com/Auth/

support/downloads/library_files/HuEx-1_0-st-v2.

cdf.zip; note that registration is needed. For the exon

array, Elizabeth Purdom has created a number of

binary .CDF files based on Affymetrix’s text CDF
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file [13] that are faster to query and more memory

efficient. Such binary .CDF files for core, extended

and full sets of probesets can be downloaded from

http://aroma-project.org/node/122. In the exam-

ple below, we use the custom aroma file for core tran-

script clusters, which might be updated in the future.

Our original .CEL files will be copied from the user-

specified ‘myCELfileDirectory’ into the exon

‘rawData’ subfolder (the code is part of the .Snw ver-

sion of this article). The desired output folder specified

in ‘output.folder’ should exist in advance.

> #** download user-defined library file

> library.file <-

þ paste(annotation.data.exon,

þ ‘‘HuEx-1_0-st-v2,coreR3,

þ A20071112,EP.cdf’’,sep ¼ ‘‘/’’)

> download.address <-

þ ‘‘http://bcgc.lbl.gov/cdfFiles/’’

> file <- paste(‘‘HuEx-1_0-st-v2,A20071112,EP’’,

þ ‘‘HuEx-1_0-st-v2,coreR3,

þ A20071112,EP.cdf’’,sep ¼ ‘‘/’’)

> custom.cdf <-

þ paste(download.address, file, sep ¼ ’’’’)

> download.file(url ¼ custom.cdf,

þ destfile ¼ library.file,

þ mode ¼ ‘‘wb’’, quiet ¼ FALSE)

> #*** user-defined directory containing .CEL

þ files

> cel.directory <- ‘‘myCELfileDirectory’’

> #*** user-defined output folder

> output.folder <- ‘‘output.folder’’

Figure 1: Flowchart for an analysis with aroma.affymetrix, read counterclockwise starting in upper left corner:
1. and 2.; folder structure set-up including library, annotation and .CEL files; 3. data preprocessing and summariza-
tion; 4. extraction of intensities at transcript cluster, probeset and probe level, including filtering recommended by
Affymetrix; 5. statistical analysis of differentially expressed or spliced transcript clusters and 6. annotation and visua-
lization of transcript cluster profiles. Blue boxes (step 3.) represent parts of the analysis implemented in aroma.af-

fymetrix, yellow and green boxes are part of the code provided in this article and purple boxes represent user-
input needed (steps 1., 2. and analysis of differential splicing with FIRMA). Output produced at several steps is
saved in user-chosen ‘output.folder’ and represented by a star shape in the workflow. A number of folders are
automatically generated by aroma.affymetrix (represented by a faded yellow rectangle in 3.); our workflow does
not make use of the contents of such folders.
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In addition, the sample information should be

saved in a tab-separated file with column names

celFile, replicate and treatment containing

.CEL file name (without .CEL), replicate identifier

and treatment name, respectively. This file should be

called ‘SampleInformation.txt’, and it will be copied

from the user-specified directory into the ‘\rawData\

myDataSet \HuEx-1_0-st-v2’ folder (which will also

contain the .CEL files) after it has been created. The

sample information file for the colon cancer example

is attached as an additional file.

> sample.info <-

þ read.table(file ¼ paste(raw.data.exon,

þ ‘‘SampleInformation.txt’’, sep ¼ ‘‘/’’),

þ sep ¼ ‘‘\t’’, header ¼ TRUE)

Finally, NetAffx transcript clusters’ and probesets’

annotation files should be saved in ‘annotationData/

chipTypes/HuEx-1_0-st-v2’. We have used release

32, which was most up to date at the time of writing,

and we downloaded files ‘HuEx-1_0-st-v2.na32.

hg19.transcript.csv.zip’ and ‘HuEx-1_0-st-v2.na32.

hg19.probeset.csv.zip’ from http://www.affymetrix

.com/estore/browse/products.jsp?productId¼131

452&categoryId¼35676&productName¼GeneChip-Hu

man-Exon-ST-Array#1_3, Technical Documentation tab,

under NetAffx Annotation Files. The extracted .csv

files should be converted into .Rdata files for query-

ing them faster in the future. Note that the number

of lines to skip might differ for future annotation

files.

> transcript.clusters.NetAffx.32 <-

þ read.csv(file ¼ paste(annotation.data.

þ exon,HuEx-1_0-st-v2.na32.hg19.

þ transcript.csv’’,sep ¼ ‘‘/’’), skip¼24)

> probesets.NetAffx.32 <-

þ read.csv(file ¼ paste(annotation.data.exon,

þ ‘‘HuEx-1_0-st-v2.na32.hg19.

þ probeset.csv’’,sep ¼ ‘‘/’’), skip¼23)

Data preprocessing and summarization
to probeset/transcript cluster level
After defining chip type and dataset, background

correction and quantile normalization are carried

out as shown in Figure 1, step 3. In these preproces-

sing steps, it is possible to use either Affymetrix’s

original .CDF file, the .CDF files provided by the

aroma project (the file for core transcript clusters in

our example) or a .CDF file created by the user. The

summarization step, however, must be done using

one of the custom .CDF files available at the

aroma.affymetrix project website.

Background correction as defined by Irizarry [34]

and quantile normalization are performed by

the RmaBackgroundCorrection() and Quantile

Normalization() functions, respectively. The raw,

background corrected and quantile normalized

probe intensities can be visualized using the

plotDensity() function applied to the correspond-

ing object. Summarization is done with the

ExonRmaPlm function [35]. The parameter

mergeGroups determines whether to summarize at

transcript level (TRUE) or probeset level (FALSE). All

the functions described automatically create sub-

folders such as ‘plmData’ or ‘probeData’ inside

‘myWorkingDirectory’. A more detailed version of

this code with interesting comments about the

choice of .CDF and possibilities for quality control

is available at http://www.aroma-project.org/

vignettes/FIRMA-HumanExonArrayAnalysis.

> chipType <- ‘‘HuEx-1_0-st-v2’’

> #** user-defined .CDF file: change tags

þ parameter

> cdf <- AffymetrixCdfFile $ byChipType, tags¼

þ (chipType,‘‘coreR3,A20071112,EP’’)

> cs <- AffymetrixCelSet$byName(ds, cdf ¼ cdf)

>

> # background correction

> bc <- RmaBackgroundCorrection(cs)

> csBC <- process(bc, verbose ¼ verbose)

>

> # quantile normalization

> qn <- QuantileNormalization(csBC,

þ typesToUpdate ¼ ‘‘pm’’)

> csN <- process(qn, verbose ¼ verbose)

>

> # summarization

> # transcript cluster level

> plmTr <- ExonRmaPlm(csN, mergeGroups ¼ TRUE,

þ tag ¼ ‘‘coreProbesets

þ GeneExpression’’)

> # probeset/exon level

> plmEx <- ExonRmaPlm(csN, mergeGroups ¼ FALSE,

þ tag¼‘‘coreProbesetsExon

þ Expression’’)

Extraction of intensity estimates
The aroma.affymetrix documentation focuses on

analyses at the probeset and transcript cluster levels.
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The respective intensities are obtained by applying

the function getChipEffectSet() to the transcript

or probeset plm objects (plmTr and plmEx, respec-

tively) and then extracting the corresponding

dataframes. However, it is also possible to extract

the background-corrected and quantile-normalized

intensities of all probes using the function

getUnitIntensities. While plmTr is suitable for

the FIRMA analysis, plmEx is well suited for

probeset-level analysis. For the ANOSVA probe

analysis described in the statistics section, we have

created one list of dataframes containing probe

intensities per transcript cluster, and another list of

dataframes containing probeset intensities per cluster

(code included in .Snw).

> # extract a matrix of gene intensities

> cesTr <- getChipEffectSet(plmTr)

> trFit <- extractDataFrame(cesTr,

þ addNames¼TRUE)

> # extract a matrix of probeset intensities

> cesEx <- getChipEffectSet(plmEx)

> exFit <- extractDataFrame(cesEx,

þ addNames¼TRUE)

> # extract a list of probe intensities per gene

> unitIntensities <-

readUnits(csN, verbose¼verbose)

The high number of transcript clusters analysed

in combination with the usually small number of

chips tends to cause a high number of false positives

[25]. To reduce the number of false positives,

Affymetrix recommends to perform detection

above background (DABG) [36] on the dataset

before the analysis [25]. The DABG procedure is

not implemented in aroma.affymetrix, so we

decided to follow the procedure described in [30]

and use 3 as a threshold for the probeset intensity,

so that probesets with a log2 intensity below 3 will

be marked as absent. Except for this change, we

followed the guidelines proposed in [25] to remove

absent transcript clusters and probesets, where

neither probesets that are absent in more than

half of the samples of a group nor transcript clusters

with more than half of the probesets absent

are analysed.

Besides this filtering based on expression levels,

another filtering step that removes probesets present-

ing cross-hybridization is advisable [25]. Cross-

hybridizing probesets are identified in file

‘HuEx-1_0-st-v2.na32.hg19.probeset.csv’ and

removed. Affymetrix recommends to filter them

out after the analysis, but we have decided not

to include them in the analysis to narrow down

the number of probesets/transcript clusters to

investigate.

The filtering procedure is part of the .Snw file. In

our example, where we analysed only core probesets,

136 233 probesets of 284 258 were deemed present

by our filter, and the number of transcript clusters to

analyse (present in both samples) was reduced from

18 708 to 8401.

Statistical analysis
In this section, we give an overview of model-based

statistical methods available for the analysis of differ-

ential splicing and suggest a method for the analysis

of differential gene expression, and the analyses are

done genewise.

Differential splicing
The models used in this article are extensions of the

linear model by Li and Wong [37]

ypt ¼ ap þ bt þ "pt, ð1Þ

where ypt is the intensity measure of probe p for

treatment t, ap is a probe affinity term, bt is the

gene-level estimate for treatment t and "pt is the

error term.

ANOSVA (Analysis of Splicing Variation) was

presented by Cline et al. [38] and is a two-way

ANOVA model with probeset and treatment as

factors:

ypet ¼ mþ ae þ bt þ get þ "pet, ð2Þ

where ypet is the intensity measure of probe p in

probeset e and treatment t, the overall mean m is

the baseline level of all probes in all experiments

and ae and bt are the probeset and treatment

effects. The interaction term get indicates whether

the effect of the probeset depends on the treatment

and is therefore key to the detection of differential

splicing.

The model in (2) can be extended to include

random effects associated to replications from the

same individual, r:

ypetr ¼ mþ ae þ bt þ get þ Ir þ Ctr þ "petr ð3Þ

where Ir is the random effect of each individual r
and Ctr is the random chip effect. The error terms

"petr are independent, identically distributed (i.i.d.)

Nð0,s2Þ-distributed.
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Under the null hypothesis of no differential spli-

cing, the gets will all be zero, and therefore we con-

sider the test statistic

tet ¼
ĝet
ŝ
,

where ĝet is the estimate for get, and ŝ is the standard

error of ĝet. Large values will be critical for the null

hypothesis. Under the model assumptions, t will

follow a tN�T�ðneþR�1Þ distribution [39, Chap. 5],

with N the total number of observations per tran-

script cluster, T the number of treatments, ne the

number of probesets in the transcript cluster and R
the number of individuals. For each gene, the smal-

lest P-value from the above t-tests is regarded as a

measure of confidence that the gene is differentially

spliced across the experimental conditions [38]. The

interaction estimates and variances and thus the test

statistics are contrast dependent, so choosing a differ-

ent contrast will alter the gene lists. In our analysis,

we have used the sum contrast available in R, where

parameter estimates are centred around zero.

We use lm to fit the model in equation (3) to

the probe-level estimates obtained using unit

Intensities() from aroma.affymetrix to 8075

multi-exonic transcript clusters. Here, we only

show the code corresponding to equation (3), the

rest of the code is part of the .Snw file.

> # ** user-defined parameters for linear model

> lm <-

þ lm(intensity � probeset þ treatment þ

þ C(probeset:treatment, contr.sum)

þ replicate/treatment

> n.probesets <-

þ length(unique(dataframe$probeset))

> main.effects <-

þ 1 þ (n.probesets - 1) þ

þ (length(unique(dataframe

þ $treatment)) - 1)

> DS.parameters <- (n.probesets - 1)*

þ (length(unique(dataframe

þ $treatment)) - 1)

> p.t <-

þ min(summary(lm) $

þ coefficients[(main.effectsþ1):

þ (main.effects þ DS.parameters),

þ ‘‘Pr(>jtj)’’])

Although the vast majority of probesets contain

four probes, transcript clusters containing probesets

with less than four probes will give rise to an

unbalanced design. Nevertheless, the t-distribution

is almost a normal distribution for long transcript clus-

ters so the unbalanced design does not have any prac-

tical implications. For shorter transcript clusters,

however, an unbalanced design might be a problem.

The top 10 most differentially spliced genes, sorted

by the minimum P-value of their t-tests, appear in

Table 1. The gene ZAKwas validated as differentially

spliced in [14]. See Figure 2 for the profile plot of

KLK10, where the thick lines representing the mean

intensity in each group have been plotted for easing

the interpretation. Note that there is one measure-

ment per probe in each probeset, typically four probes

per probeset. How to obtain such plots is described in

the annotation and visualization section below. The

genes in Figures 2, 3, 4 and 6 were chosen because

they span over a shorter genomic region and show a

clearer picture of the relationship between probesets

and exons than the other genes in the lists of top 10

genes.

A slight variation of ANOSVA is the probeset

model as implemented in Partek [40] (note that the

probe subscript p has been removed):

yetr ¼ mþ ae þ bt þ get þ Ir þ Ctr þ "etr: ð4Þ

For the probeset-level ANOSVA, we used the

probeset-level estimates obtained by affyPLM(. . .,

mergeGroups ¼ FALSE). After filtering for non-pre-

sent or cross-hybridizing probesets, and absent tran-

script clusters, we were left with 8189 transcript

clusters to study. These clusters are sorted according

to the minimum P-value of the individual t-test

scores for differential splicing, and the top 10 genes

obtained appear in Table 2. The genes MMP11,ZAK
and COMP are in the top 10 genes for both the

Table 1: Top 10 differentially spliced genes
with minimum P-values from the ANOSVA
probe model, equation (3)

Gene symbol min P-value

MMP11 2:98e� 10
SOX9 2:59e� 09
FOXQ1 6:38e� 09
KLK10 3:84e� 08
SYNM 4:53e� 07
PHLDA1 4:85e� 07
ZAK 4:89e� 07
SNTB1 5:33e� 07
COMP 6:85e� 07
XPOT 7:87e� 07

Genes highlighted in grey appear in Figures 2 and 5.
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Figure 3: Profile plot of TGFBI with the genemodel and transcripts retrieved from Ensembl [50].The gene is on the
forward strand as indicated by (þ) next to its name. The mean intensities of each group are plotted with a thicker
line; note that only one estimate is plotted by probeset, and it corresponds to the estimate computed by
ExonRmaPlm(. . ., mergeGroups¼FALSE). Here, it seems like the tumour samples (blue/dashed) present increased
expression from exon 3 until the end of the transcript, with respect to normal (red/solid) samples. Given that
TGFBI is on the forward strand and that the difference is at the beginning of the transcript, we might be observing
a case of alternative promoter usage.

KLK10 (−)

2

4

6

8

Figure 2: Profile plot of gene KLK10 with the genemodel and possible transcripts retrieved from Ensembl [50].The
(�) next to the gene name indicates that it is located on the reverse strand. The mean intensities of each group
are plotted with a thicker line. Exons 5 (mapped by probesets 4 and 5) and 8 (mapped by probeset 9), counted
from the 50 end, seem to be higher expressed in tumour samples (blue/dashed) than in normal (red/solid).
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ANOSVA probe and the ANOSVA probeset

models. Gene TGFBI appears in Figure 3.

FIRMA (Finding Isoforms using Robust

Multichip Analysis) was first introduced by Purdom

etal. [30] for the exon array. In presence of differential

splicing, the model in (1) will not fit and this will

show up in the residuals. The linear model used is

the following:

ypetr ¼ ap þ btr þ "petr ð5Þ

with ap the probe affinity, btr the gene-level

effect for chip tr and the error terms "petr are i.i.d.

Nð0,s2Þ-distributed. Note that in contrast to the

model in (3), we do not compute an overall gene-

level estimate, but a gene-level estimate per chip.

In model (5), like in model (1), there is no treat-

ment/probeset interaction term, so differential spli-

cing is analysed probesetwise using the residuals

per probeset e:

rpetr ¼ ypetr � ðâp þ b̂trÞ,

p ¼ 1, . . . ne, t ¼ 1, . . . ,T, r ¼ 1, . . . ,R
ð6Þ

where âp and b̂tr are the estimates of ap and btr .
The median of the standardized residuals per

probeset per chip is chosen as score statistic:

FeðtrÞ ¼ median
p¼1,..., ne

rpetr
MAD

� �
ð7Þ

The standardization with the median absolute

deviation of the residuals per gene makes the scores

comparable across genes.

The FIRMA scores are extracted from the plmTr

object obtained in the data pre-processing and sum-

marization step. All probesets and transcript clusters

were analysed by FIRMA, as it is part of the default

aroma.affymetrix workflow.

> firma <- FirmaModel(plmTr)

> fit(firma, verbose ¼ verbose)

> fs <- getFirmaScores(firma)

> firma.scores <- extractDataFrame(fs)

After obtaining the FIRMA scores per probeset per

sample, we proceeded as described in [30]: (i) For

each probeset, we took the difference of FIRMA

LGALS4 (−)

2
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Figure 4: Profile plot of gene LGALS4 with the gene model and transcripts retrieved from Ensembl [50], the gene is
on the reverse strand. Interestingly, this gene only has one transcript. We might then be facing a novel splicing
event or, more likely, a false positive detected by the method.

Table 2: Top 10 differentially spliced genes
with minimum P-values from the ANOSVA
probeset model, equation (4)

Gene symbol min P-value

SOX4 9:07e� 15
MMP11 9:48e� 14
ZAK 4:40e� 13
FOXQ1 5:98e� 13
TGFBI 4:83e� 12
UBAP2L 8:17e� 12
COMP 2:87e� 11
SLC2A1 4:16e� 11
CDH11 4:19e� 10
CPXM1 4:47e� 10

Genes highlighted in grey appear in Figures 3 and 5.
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scores for each of the 10 pairs of normal/cancer sam-

ples and (ii) calculated the mean of the 10 differences

per probeset. Then (iii) we ranked the probesets

according to their absolute mean difference: as the

scores are comparable across transcript clusters,

larger average differences between the normal and

cancer samples will point at exons more differentially

spliced between the two conditions. The resulting list

was filtered to keep only probesets and transcript clus-

ters that had passed the filter described in the filtering

section above; the code is part of the .Snw file. To get

a gene list instead of a probeset list as in [30], we

mapped probesets to transcript clusters and then

selected the top 10 genes on the list (Table 3). The

profile plot of gene LGALS4 appears in Figure 4. The

high average difference for this gene is owing to a

FIRMA score of 830 030.8 at probeset 3861578 cor-

responding to the tumour sample of replicate 7.

Of 14 genes investigated for differential splicing in

([14], Table 1), 10 passed our filtering procedure and

were analysed for differential splicing: ACTN1,VCL,

CALD1, SLC3A2, COL6A3, CTTN, FN1, MAST2,
ZAK and FXYD6. The gene ZAK appears in the top

10 genes from ANOSVA probe and ANOSVA pro-

beset, but a plot is not produced automatically by the

code because ZAK is not recognized by BioMart.

Instead, we looked the gene up in PubMed obtaining

the Ensembl ID: ENSG00000091436 and used this to

plot the gene (Figure 5). The gene COL6A3 appears

among the top 100 genes for the ANOSVA probe and

the ANOSVA probeset methods. Gene ACTN1 is

among the top 100 genes for ANOSVA probeset

and it is also the first of Gardina’s genes to appear in

the filtered FIRMA list, at position 154.

The differences in the gene lists obtained with

ANOSVA and FIRMA are caused by the distinct

nature of the two methods. ANOSVA was designed

to look for splicing changes that are consistent within

replicate sets, and differential splicing is assessed

by the significance of a statistical test. FIRMA is a

robust method that can detect splicing chances not

necessarily consistent within replicate sets and so

ZAK (+)

2

4

6

8

Figure 5: Profile plot of gene ZAKwith the gene model and transcripts retrieved from Ensembl [50].The gene is on
the forward strand. There seems to be a differential splicing event identified by probesets 35 and 36 (counted from
the 50 end of the gene), corresponding to exons 19 and 20.

Table 3: Top 10 differentially spliced genes and their
top scores from the FIRMA model, equations (5) to (7)

Gene symbol Average difference

LGALS4 83 000.0
HMGCS2 82.9
RPS6KA1 31.8
MUC13 28.2
RPL35 24.5
RPL35A 18.8
SLC39A14 18.2
TGFBI 16.2
COL23A1 15.5
SFT2D2 14.2

Gene LGALS4, highlighted in grey, appears in Figure 4.
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does not explain how to summarize from exon-

sample scores to overall gene-level scores or whether

it is recommended to do so. This implies some

arbitrariness in the summarization procedure, which

makes FIRMA less reproducible than ANOSVA. A

thorough benchmarking of ANOSVA, FIRMA

and several other methods for detecting differential

splicing can be found in [41]. The comparison is

done by means of receiver operating characteristic

curves on two datasets: a panel of 11 human tissues

with confirmed alternative splicing events; and a

modification of a spike-in experiment where 25

transcripts were hybridized to HeLa cells [42, 43].

In most of the experiments carried out, FIRMA

seems to perform better than ANOSVA. In [44]

and in [45], ANOSVA and FIRMA are compared

with other methods, respectively, but not with each

other.

Differential gene expression
In this section, we analyse differential gene expres-

sion using probe-level data. We study two types of

transcript clusters: (i) the ones not included in the

ANOSVA probe analysis above (with only one

probeset or not present in both normal and

cancer groups) and (ii) the ones not showing differ-

ential splicing (ANOSVA probe P-value above

0.1). The analysis of group (ii) is based on the

hierarchical principle: only look for significant

main effects (differential expression in this case)

among those transcript clusters with no significant

interaction terms (differential splicing) [46 (p. 427)].

In total, we analysed 16 231 transcript clusters. We

fit the following linear model to those transcript

clusters:

ypetr ¼ mþ ae þ bt þ Ir þ Ctr þ "petr ð8Þ

where bt is the gene-level treatment effect, ae is a para-

meter that captures probesets expressed above or

below the overall transcript cluster level and Ir
and Ctr are random effects for patient and chip,

respectively.

> aov <-

þ aov(intensity � probeset þ treatment þ

þ Error(replicateþ

þ replicate:treatment))

> p.F <-

þ summary(aov)$ ‘‘Error: Within’’[[1]]

þ [‘‘treatment’’,‘‘ Pr(>F) ’’]

The null hypothesis is that the gene expression is

the same in all groups. The top 10 genes, with

adjusted P-values, appear in Table 4. The method

used for adjusting the P-values was Benjamini-

Hochberg’s correction [47] using the function

p.adjust(..., method ¼ ‘‘BH’’). Only 80 of 159

genes appearing in Gardina’s list of genes up- and

down-regulated in tumour ([14] additional file 1)

passed our filters and were analysed for differential

gene expression. Among those analysed, the genes

CLDN1, SST, MUSK, KIAA1199 and SLC30A10

were in the top 100. The gene BEST4 is shown in

Figure 6. This gene is down-regulated in tumour

(blue or dashed in the printed version) compared

with normal (red or solid in the printed version)

samples. The thicker lines represent the mean

expression levels in the two groups.

Gene annotation and visualization
We chose to annotate transcript clusters to genes using

the NetAffx transcript cluster annotation release 32

specified above using the AnnotateGenes() function.

Some transcript clusters present unspecific annotation

and have several possible associated gene names. We

have decided to remove such clusters from our

output, as we cannot map them uniquely to a gene

and afterwards interpret the result according to the

gene structure. The number of transcript clusters pre-

senting non-unique annotation to genes was 1147 out

of 8189 for the differential splicing analyses and 2917

out of 16 231 in the differential expression analysis.

After gene annotation, the user can select genes

for visual inspection. Visual inspection of candidates

for differential splicing is recommended by

Affymetrix as a way to identify possible false positives

[25]. Plots of gene profiles with integrated genomic

Table 4: Top 10 differentially expressed genes from (8)
with corrected P-values. Gene BEST4, highlighted in
grey, appears in Figure 6

Gene symbol P-value

LARGE 0.00287
IL6R 0.00847
RXRG 0.00847
BAI3 0.00968
C1orf175 0.01090
GRIK3 0.01090
BEST4 0.01090
KCNN3 0.01090
PLEKHH2 0.01090
HOXD10 0.01090
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information are obtained using the biomaRt [48] and

GenomeGraphs [49] packages in Bioconductor.

We use bioMart to connect to the latest version of

the Homo sapiens dataset in Ensembl [50] (Ensembl

genes 68, GRCh37.p8 at the time of writing) and

retrieve genes by their HGNC symbol [51]. Gene

and exon structures are imported from Ensembl.

Gene and Exon objects are created by makeGene()

and makeTranscript() from GenomeGraphs. We

store expression data and probeset start and stop posi-

tions in an ExonArray object by makeExonArray().

The final plot is created passing a list with the

objects created to the gdPlot(list(exon, gene,

transcript,. . .)) function.

Our plots show on top the gene HGNC symbol

followed by (þ) for genes on the forward strand and

by (�) for those on the reverse strand. Below, the plot

of probeset intensities appears with vertical lines deli-

miting probesets. Note that for models based on

probe-level data (ANOSVA probe, FIRMA and dif-

ferential expression), the intensities of all probes in the

probeset (1–4) are shown. Samples from the same

treatment group appear in the same colour, red/

solid for normal samples and blue/dashed for

tumour samples in this case. For the genes detected

by the ANOSVA probe, the ANOSVA probeset and

the differential expression methods, thin lines show

the expression level of each sample, whereas the

thicker lines show the mean intensities in each of

the groups. Immediately after the profile plot, the

gene model retrieved from Ensembl is shown in

orange, followed by the possible transcript model(s)

in blue. The gene model consists of the exons that

appear in all possible transcript models. Exons (boxes)

in the gene model are linked by blue lines to the

probesets above, indicating which probeset(s) inter-

rogate which exon (Figures 2–6).

DISCUSSION
The aim of this article was to give a tutorial on how to

perform a complete and reproducible analysis of exon

array data in R/Bioconductor. We have worked with

three packages: aroma.affymetrix, biomaRt and

GenomeGraphs to go from .CEL files to intensity

data, statistical analysis, annotation and visualization.

The packages were chosen for their flexibility and ease

of integration. We believe that our workflow covers a

number of analysis variants for the exon array, includ-

ing differential splicing analysis at probe and probeset-

level and differential expression analysis at probe level,

and gives the user the opportunity to focus on all or

only some of the aspects of the data analysis. We make

our entire code available so that other researchers can

use it as it is or adapt it to their needs.

Some possible modifications to the workflow

include background correcting by subtracting from

each probe the median intensity of all the exon array

control probes with the same GC content, or

removing noisy arrays identified in the quality

BEST4 (−)
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Figure 6: Profile plot of gene BEST4, which is on the reverse strand, with the genemodel and transcripts retrieved
from Ensembl [50].The gene is under expressed in tumour (blue/dashed) compared with normal (red/solid) samples.

530 Rodrigo-Domingo et al.



control step. The latter can be easily done by remov-

ing such arrays from the sample information file and

re-doing the background correction and normaliza-

tion steps. A package in R for fitting linear and gen-

eralized linear mixed-effects models is lme4 [52]. In

our case, we used lm instead of lmer because it is

faster, but it requires a balanced design. Finally, dif-

ferential gene expression could be analysed using the

gene-level estimates obtained from the plmTr object

in other R packages such as limma [53]. Another

extension of the workflow could include a general

analysis strategy of the FIRMA scores, which in this

study was tailor-made for a two-treatment scenario.

Different Bioconductor packages could have been

used in some of the analysis steps. For example,

xmapcore [54] provides annotation data and cross-

mappings between genetic features such as transcript

clusters or exons and Affymetrix probesets. This

package, however, requires the separate installation

of a MySQL database, which makes this a more

complex alternative than the one we have chosen.

The xps package [55] could have been used for data

preprocessing and summarization, but it requires the

installation of the ROOT framework [56], and a certain

level of understanding of ROOT files and ROOT

trees is recommended. Our workflow does not

require any prior knowledge beyond R/

Bioconductor. Other free software includes BRB-

Array Tools [57], based on R, C, Fortran and Java,

with an Excel front end, and dChip [58], which is

written in Visual Cþþ and developed for Windows,

although some users have been able to run it on Mac

and Unix computers.

A previous article on exon arrays [24] suggests a

pragmatic approach and does the analysis piecewise,

starting with Affymetrix Power Tools (APT) and

then exporting the data to R. We recognize this is

a fix for the lack of straightforward packages for deal-

ing with the exon array in Bioconductor. However,

it implies working with several pieces of software so

we do not find it fit for reproducible research.

Licensed software, like Partek [40] or GeneSpring

GX [59], has been used in other studies [22, 60].

In contrast to licensed software, R/Bioconductor is

free and available for anyone, it allows the user to

control most analysis options and it enables custo-

mizable and reproducible analyses that are more

easily reviewed. Still, the aroma.affymetrix package

does not provide the speed of APT or the licensed

software, and it requires more user input.

Nevertheless, with this code and minimal user

input, any dataset can be analysed regarding differ-

ential expression at probe level and differential spli-

cing using the ANOSVA model.

Although the profile plots generated with

GenomeGraphs are highly informative, they can be

difficult to interpret for genes spanning over a long

genomic region, for example, TGFBI in Figure 3 and

ZAK in Figure 5. In our opinion, showing 30 and 50

ends, and exon and probeset numbers would signifi-

cantly improve the readability of the plots. Actually,

GenomeGraphs allows to add the Affymetrix probeset

identity below the profile plots, but we believe that a

probeset numbering relative to the gene over the

profile plot would be preferable. In the future, it

would also be interesting to study the flexibility of

the output imported from Ensembl and, for example,

remove the intronic regions from the gene and tran-

script models in the graphical representations.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key points

� The analysis of exon array data in R/Bioconductor is not yetwell
established.

� Reproducible research is fundamental to guarantee that meth-
ods can be compared on an equal footing, a framework for
reproducible research is therefore needed.

� With minor modifications, the code provided with this article
can be used to analyse any dataset.

� Wegive an overviewofmodel-basedmethods for the analysis of
differential splicing.

� A publicly available dataset is analysed to exemplify the use of
the code, including gene annotation and representation, and
themethods for differential splicing.
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Compstat 2002çProceedings in Computational Statistics,
Heidelberg: Physica Verlag, 2002;575–80.

10. Ramsey N. Nowebhomepage. http://www.cs.tufts.edu/�nr/
noweb/ (November 2012, date last accessed).

11. Lamport L. LATEX:ADocumentPreparationSystem. 2nd edn.
Addison-Wesley Publishing Co, 1994.

12. Bengtsson H, Simpson K, Bullard J, Hansen K.
Aroma.affymetrix: a generic framework in R for analyzing
small to very large Affymetrix data sets in bounded memory.
Technical Report 745, Department of Statistics, University
of California, Berkeley, 2008.

13. Bengtsson H, Bullard J, Hansen K, et al. Aroma project.
http://www.aroma-project.org/ (January 2012, date last
accessed).

14. Gardina PJ, Clark TA, Shimada B, et al. Alternative
splicing and differential gene expression in colon cancer
detected by a whole genome exon array. BMC Genomics
2006;7:325.

15. Black DL. Mechanisms of alternative pre-messenger RNA
splicing. Ann Rev Biochem 2003;72:291–336.

16. Hallegger M, Llorian M, Smith CW. Alternative splicing:
global insights. FEBS J 2010;277(4):856–66.

17. Licatalosi DD, Darnell RB. RNA processing and its regula-
tion: global insights into biological networks. NatRevGenet
2010;11(1):75–87.

18. Pan Q, Shai O, Lee LJ, et al. Deep surveying of alternative
splicing complexity in the human transcriptome by high-
throughput sequencing. Nat Genet 2008;40:1413–5.

19. Wang ET, Sandberg R, Luo S, et al. Alternative isoform
regulation in human tissue transcriptomes. Nature 2008;
456:470–6.

20. Clark TA, Schweitzer AC, Chen TX, et al. Discovery of
tissue-specific exons using comprehensive human exon
microarrays. Genome Biol 2007;8(4):R64.

21. Suzuki H, Osaki K, Sano K, etal. Comprehensive analysis of
alternative splicing and functionality in neuronal differentia-
tion of P19 cells. PloSOne 2011;6(2):e16880.

22. Thorsen K, Schepeler T, Oster B, et al. Tumor-specific
usage of alternative transcription start sites in colorectal
cancer identified by genome-wide exon array analysis.
BMCGenomics 2011;12:505.

23. Affymetrix. Application focus: whole-transcript expression
analysis. Gene expression. Technical Report 702503-2,
Affymetrix Inc., Santa Clara, CA, 2007.

24. Lockstone HE. Exon array data analysis using Affymetrix
power tools and R statistical software. Brief Bioinform 2011;
12(6):634–44.

25. Affymetrix. Technical note: identifying and validating alter-
native splicing events. An introduction to managing data
provided by GeneChip� exon arrays. Technical Report
702422, Affymetrix Inc., Santa Clara, CA, 2006.

26. Pruitt KD, Tatusova T, Maglott DR. NCBI Reference
Sequence (RefSeq): a curated non-redundant sequence
database of genomes, transcripts and proteins. Nucleic Acids
Res 2005;33:D501–4.

27. Affymetrix. Technical note: GeneChip� exon array design.
Technical Report 702026, Affymetrix Inc., Santa Clara,
CA, 2005.

28. Benson DA, Karsch-Mizrachi I, Clark K, et al. GenBank.
Nucleic Acids Res 2012;40:D48–53.

29. Burge C, Karlin S. Prediction of complete gene structures in
human genomic DNA. JMol Biol 1997;268:78–94.

30. Purdom E, Simpson KM, Robinson MD, et al. FIRMA: a
method for detection of alternative splicing from exon array
data. Bioinformatics 2008;24:1707–14.

31. Zheng H, Hang X, Zhu J, et al. REMAS: a new regression
model to identify alternative splicing events from exon array
data. BMCBioinformatics 2009;10(Suppl 1):S18.

32. Affymetrix. Alternative transcript analysis methods for exon
arrays. Affymetrix GeneChip� Exon Array Whitepaper
Collection, 2005. Revision 1.1.

33. Turro E, Lewin A, Rose A, et al. MMBGX: a method for
estimating expression at the isoform level and detecting
differential splicing using whole-transcript Affymetrix
arrays. Nucleic Acids Res 2010;38(1):e4.

34. Irizarry RA, Hobbs B, Collin F, et al. Exploration, normal-
ization, and summaries of high density oligonucleotide array
probe level data. Biostatistics 2003;4(2):249–64.

35. Irizarry RA. Summaries of Affymetrix GeneChip probe
level data. Nucleic Acids Res 2003;31(4):e15.

36. Affymetrix. Statistical algorithms reference guide. Technical
Report 701110, Affymetrix Inc., Santa Clara, CA.

532 Rodrigo-Domingo et al.

http://www.cs.tufts.edu/nr/noweb/
http://www.cs.tufts.edu/nr/noweb/
http://www.cs.tufts.edu/nr/noweb/
http://www.aroma-project.org/


37. Li C, Wong WH. Model-based analysis of oligonucleotide
arrays: expression index computation and outlier analysis.
Proc Natl Acad Sci USA 2001;98:31–6.

38. Cline MS, Blume J, Cawley S, et al. ANOSVA: a statistical
method for detecting splice variation from expression data.
Bioinformatics 2005;21:i107–15.

39. Chambers JM, Hastie TJ. Statistical Models in S.Wadsworth &
Brooks/Cole 1992. Pacific Grove, California.

40. Partek Documentation - turning data into discovery. 2009.
Partek Incorporated, St. Louis, MO.

41. Rasche A, Herwig R. ARH: predicting splice variants from
genome-wide data with modified entropy. Bioinformatics
2010;26:84–90.

42. Abdueva D, Wing MR, Schaub B, Triche TJ. Experimental
comparison and evaluation of the Affymetrix exon and
U133Plus2 GeneChip arrays. PLoSOne 2007;2:e913.

43. Della Beffa C, Cordero F, Calogero R. Dissecting an alter-
native splicing analysis workflow for GeneChip� Exon 1.0
ST Affymetrix arrays. BMCGenomics 2008;9:571.

44. Cuperlovic-Culf M, Belacil N, Culf A, Ouellette RJ. Data
analysis of alternative splicing microarrays. DrugDiscovToday
2006;11:983–90.

45. Laajala E, Aittokallio T, Lahesmaa R, Elo LL. Probe-
level estimation improves the detection of differential
splicing in affymetrix exon array studies. Genome Biol
2009;10:R77.

46. Ekstrøm CT, Sørensen H. Introduction to Statistical Data
Analysis for the Life Sciences. CRC Press, 2010.

47. Benjamini Y, Hochberg Y. Controlling the false discovery
rate: a practical and powerful approach to multiple testing.
J RStat Soc Series B 1995;57:289–300.

48. Durinck S, Moreau Y, Kasprzyk A, et al. BioMart
and Bioconductor: a powerful link between biological

databases and microarray data analysis. Bioinformatics 2005;
21:3439–40.

49. Durinck S, Bullard J. GenomeGraphs: Plotting genomic informa-
tion from Ensembl. R package version 1.18.0.

50. Flicek P, Amode MR, Barrell D, et al. Ensembl 2012.
Nucleic Acids Res 2012;40(Database issue):D84–90.

51. Seal RL, Gordon SM, Lush MJ, et al. genenames.org:
the HGNC resources in 2011. Nucleic Acids Res 2011;39:
514–9.

52. Bates D, Maechler M, Bolker B. lme4: Linear mixed-effects
models using S4 classes 2012. R package version 0.999999-0.

53. Smyth GK. Linear models and empirical Bayes methods for
assessing differential expression in microarray experiments.
Stat Appl GenetMol Biol 2004;3: Article 3.

54. Yates T. xmapcore: core acces to the xmap database (installed
separately). R package version 1.2.8.

55. Stratowa C. xps: processing and analysis ofAffymetrix oligonucleo-
tide arrays including exon arrays, whole genome arrays and plate
arrays. R package version 1.18.1.

56. Brun R, Rademakers F. ROOT-an object oriented data
analysis framework. Nucl Instru Methods Phys Res A: t 1997;
389:81–6.

57. Simon R, Lam A, Li MC, et al. Analysis of gene expression
data using BRB-array tools. Cancer Inform 2007;3:11–7.

58. Amin SB, Shah PK, Yan A, etal. The dChip survival analysis
module for microarray data. BMCBioinformatics 2007;12:72.

59. Agilent Technologies. Multi-omic analysis with agilent’s
genespring 11.5 analysis platform. Technical Report 5990-
7505EN, Agilent Technologies, Inc., 2011.

60. Zhang Z, Lotti F, Dittmar K, et al. SMN deficiency
causes tissue-specific perturbations in the repertoire of
snRNAs and widespread defects in splicing. Cell 2008;133:
585–600.

Reproducible exon array analysis with R/Bioconductor 533


