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Abstract

Background: Melanin-concentrating hormone receptor 1 (MCHR1) plays a significant role in regulation of energy balance,
food intake, physical activity and body weight in humans and rodents. Several association studies for human obesity
showed contrary results concerning the SNPs rs133072 (G/A) and rs133073 (T/C), which localize to the first exon of MCHR1.
The variations constitute two main haplotypes (GT, AC). Both SNPs affect CpG dinucleotides, whereby each haplotype
contains a potential methylation site at one of the two SNP positions. In addition, 15 CpGs in close vicinity of these SNPs
constitute a weak CpG island. Here, we studied whether DNA methylation in this sequence context may contribute to
population- and age-specific effects of MCHR1 alleles in obesity.

Principal Findings: We analyzed DNA methylation of a 315 bp region of MCHR1 encompassing rs133072 and rs133073 and
the CpG island in blood samples of 49 individuals by bisulfite sequencing. The AC haplotype shows a significantly higher
methylation level than the GT haplotype. This allele-specific methylation is age-dependent. In young individuals (20–30
years) the difference in DNA methylation between haplotypes is significant; whereas in individuals older than 60 years it is
not detectable. Interestingly, the GT allele shows a decrease in methylation status with increasing BMI, whereas the
methylation of the AC allele is not associated with this phenotype. Heterozygous lymphoblastoid cell lines show the same
pattern of allele-specific DNA methylation. The cell line, which exhibits the highest difference in methylation levels between
both haplotypes, also shows allele-specific transcription of MCHR1, which can be abolished by treatment with the DNA
methylase inhibitor 5-aza-29-deoxycytidine.

Conclusions: We show that DNA methylation at MCHR1 is allele-specific, age-dependent, BMI-associated and affects
transcription. Conceivably, this epigenetic regulation contributes to the age- and/or population specific effects reported for
MCHR1 in several human obesity studies.
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Introduction

DNA methylation is an essential epigenetic modification of the

genome, and is involved in many cellular processes like

transcription, X chromosome inactivation, genomic imprinting

and chromosome stability [1,2]. In mammals, DNA methylation

occurs mainly at the cytosine of CpG dinucleotides, which are

unevenly distributed across the genome [3–5]. Generally, CpGs

are depleted, possibly because of high mutability of the methylated

cytosine to thymine [6]. However, some genomic regions show less

depletion of CpGs. Such CpG islands frequently overlap with the

transcriptional start sites (TSS) of genes [1,7,8]. DNA methylation

around the TSS can repress gene expression in two ways, either

directly by inhibition of binding of transcription factors or

indirectly by recruiting methyl-CpG-binding proteins and associ-

ated repressive chromatin remodelling activities [1,2]. In contrast,

DNA methylation in the gene body is associated with elevated

gene expression [9].

Different DNA methylation levels of alleles of a given gene

within one cell have been observed in imprinted regions on a

parent-of-origin basis [10,11] and in X chromosome inactivation

in females [12]. Moreover, allele-specific methylation (ASM) in

autosomes, which is independent of parent-of-origin, was reported

in humans [13–17]. Accordingly, about 10% of human genes may

be affected by ASM, yet to date there are only few genes known to

undergo ASM [15]. For example, only 12 loci showing ASM were

identified in a recent genome-wide analysis [13]. Further, a recent

methylation analysis of human chromosome 21 revealed two new

loci, that undergo ASM and further confirmed one locus, which

was previously identified [14,16]. In a further, recent genome-wide

study, 1.5% of the analyzed single nucleotide polymorphisms

(SNPs) showed ASM, of which 90.3% appear to be in cis [17].

Allele-specific expression (ASE) is a widespread phenomenon in

human cells [18,19] and ASM likely contributes to it [13,20]. Both

aberrant ASE and DNA methylation are frequently associated with

cancer and imprinting disorders (reviewed in [2], and references
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therein), but have also been reported for complex diseases like major

psychosis [21]. In aging and/or tumor cells, global hypomethylation

can lead to chromosomal instability, activation of transposable

elements, loss of imprinting and expression of oncogenes. Local

areas can gain methylation, for example CpG islands overlapping

with promoters of tumor-suppressor genes, which can lead to a

silencing of such genes as observed for MLH1 and BRCA1 [22]. Age-

dependent effects on DNA methylation were also shown in a non-

cancer-context [23–26]. These can be induced by either non-

random mechanisms like responses to environmental changes or by

stochastic errors in maintaining patterns of DNA methylation

during cell proliferation [27]. Thus, age- and/or sequence-

dependent changes in DNA methylation can have an impact on

the etiology of diseases or phenotypic variability.

Melanin-concentrating hormone receptor 1 (MCHR1) plays a

significant role in regulation of energy balance, food intake and

body weight in humans and rodents [28–31]. To date, five human

obesity association studies of SNPs in the MCHR1 protein-coding

region of exon 1 (rs133072: G/A, missense; rs133073: T/C, silent)

were published and show inconsistent results or no association at

all [32–36]. In adolescent German study groups (mean age 6

standard deviation: 1463 years and 2564 years), association of

the A allele of rs133072 and obesity was detected and supported

by transmission disequilibrium. However, findings in other

German and Danish, French and American study samples did

not support the initial association. In the Danish sample (2062

years) and in a second, epidemiological German sample (24–74

years) the frequency of the A allele of rs133072 was higher in non-

obese vs. obese individuals, but not statistically significant [35]. In a

French Caucasian group comprising obese children (,18 years,

BMI.97th percentile) and obese adults (BMI.40) the G allele of

rs133072 was associated with obesity/BMI (P = 0.044) compared

to adult controls [32]. Further, in Danish men (median age 47 and

49 years) a significant association of the rs133072 A allele with

reduced abdominal obesity was found [34]. In contrast, two other

groups did not find association of SNPs rs133072 and rs133073

with obesity in a population-based cohort of British Caucasians

aged 40–65 years (mean BMI = 26) and a Finnish study group

aged between 50–70 years, respectively [33,36]. Further, the

missense SNP rs133072 does not show obvious functional

relevance in vitro [35].

These contrasting results suggest that SNP-dependent epige-

netic variations may influence the association with obesity. The

role of genotype-dependent DNA methylation in gene silencing/

expression has previously been shown for the respiratory chain

component NDUFB6, a gene associated with the risk of type 2

diabetes mellitus, in human skeletal muscle [37]. In the present

study, we analyzed DNA methylation with respect to allelic status

of SNPs rs133072 and rs133073 of the obesity candidate gene

MCHR1 [32–36].

SNPs rs133072 and rs133073 are located in the first exon of

MCHR1. They are in tight linkage and form two major haplotypes,

GT and AC [32,35]; in these, one allele of either SNP constitutes a

potential methylation site. We analyzed DNA isolated from blood

cells of 49 individuals and found differential, haplotype-specific

methylation levels. This ASM at MCHR1 is age-dependent, which

means the difference in methylation status between haplotypes is

significant in young (20–30 y) but abolished in old individuals.

Interestingly, the methylation status of the GT haplotype decreases

with increasing BMI, whereas the AC haplotype shows no

association in methylation status with BMI. In a MCHR1

heterozygous lymphoblastoid cell line (LCL), which shows ASM,

ASE could be abolished by treatment with the methylation

inhibitor 5-aza-29-deoxycytidine (AzadC).

Results

The MCHR1 CpG island
The SNPs rs133072 (G/A) and rs133073 (T/C) form each a

CpG, if allele G or C is present, respectively. Based on sequences of

chimpanzee (CGSC 2.1/panTro2) and rhesus macaque (MGSC

Merged 1.0/rheMac3), these alleles represent the ancestral state. In

the vicinity of these SNPs there are 15 additional CpGs, which form

a CpG island according to criteria put forward by Gardiner-Garden

and Frommer [38]. In detail, the CpG island has a length of 220 bp,

a G+C content of 66% and an observed vs. expected CpG ratio of

0.64. The CpG island is embedded in the coding portion of MCHR1

exon 1 and is located about 300 bp downstream of the putative

MCHR1 TSS (human GRCh37/hg19 assembly: chr.22:

41,075,182, RefSeq: NM_005297) (Figure 1).

DNA methylation at MCHR1 is allele-specific
We initially genotyped the MCHR1 SNPs rs133072 and

rs133073 in 93 DNA samples of individuals aged between 21

and 78 years. All homozygous individuals showed only two

haplotypes, GT and AC. In heterozygous individuals, all

individuals who were heterozygous at rs133072 were also

heterozygous at rs133073. For further analyses PCR products of

18 heterozygotes were cloned and sequenced, which allowed

determination of haplotypes. Also here, only GT and AC

haplotypes were found. Therefore and because of the previously

reported tight linkage of these SNPs [32,35], we assumed that only

two haplotypes, GT and AC, occur in our data set. In the

following, we will refer to GT and AC haplotypes as GT and AC

alleles. The major allele is GT with a frequency of 66.3%, which is

consistent with Hap Map data for CEU individuals (Utah residents

with Northern and Western European ancestry from CEPH

(Centre d’Etude du Polymorphisme Humain) collection) [39].

Genotype frequencies in our sample are 45.7% for homozygous

GT alleles, 41.3% for heterozygous and 13.0% for homozygous

AC individuals. The observed genotype frequencies in our data set

are consistent with the Hardy-Weinberg-equilibrium (P = 0.468,

Chi-square test). For subsequent methylation analyses only

unrelated Caucasian individuals were used.

We next analyzed MCHR1 methylation in blood of 49

individuals, including 18 individuals homozygous for GT, 13

individuals homozygous for AC and 18 heterozygotes after

bisulfite treatment by cloning and sequencing. We analyzed on

average 41 clones per individual. The average clone number for

the GT allele is 29 (number of allele carrier: nind = 36) and for the

AC allele 31 (nind = 31). The methylation intensity of the GT allele

was significantly lower than that of the AC allele (median: 20.9%

vs. 29.9%; P,0.001, Mann-Whitney-test; Figure 2). We also checked

for methylation level differences according to gender and could

not detect differences for both alleles (data not shown). As expected

for a CpG island, the analyzed clones show a high abundance of

unmethylated sequences (methyl-CpG/all CpG,20%), but het-

erogeneously (20–80%) and highly methylated clones (.80%) are

also observed. Moreover, the AC allele shows a higher abundance

in heterogeneously and highly methylated and fewer less

methylated clones than the GT allele, which is significant

(P,0.001, Chi-square-test) (Figure 3).

DNA methylation at MCHR1 is age-dependent
To test whether MCHR1 methylation intensity varies over age,

we further selected from the 49 individuals three age classes: young

(20–30 years), intermediate (40–50 years) and old (.60 years),

comprised of 23, 10 and 12 individuals, respectively. Genotypes of

rs133072 in the age classes are distributed as follows: young (GG/

Epigenetics of Human MCHR1
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GA/AA: 8/9/6), intermediate (4/3/3) and old (5/5/2). Again, in

young individuals the methylation level of the GT allele was

significantly lower compared to the AC allele (mean 6 sd:

22.966.7% vs. 34.2612.7%; P = 0.003, t-test; Figure 4A). In the

intermediate group a less pronounced difference in methylation

level of GT and AC alleles was observed (20.765.1% vs.

26.564.4%; P = 0.053; Figure 4B). In contrast, methylation levels

of GT and AC alleles in old individuals did not differ significantly

(median: 20.9% vs. 27.9%; P = 0.407, Mann-Whitney-test;

Figure 4C). In conclusion, the ASM is significant in young in

contrast to old individuals. A correlation analysis does not reveal a

significant correlation of age and methylation status for both alleles

(GT: r = 20.059; P = 0.234; AC: r = 20.168; P = 0.144, Pearson

correlation), but show a decrease in methylation status with

advancing age for both alleles, with a higher slope for the higher

methylated AC allele. No gender difference was observed within

the different age classes (data not shown).

DNA methylation at MCHR1 is BMI-associated
Furthermore, for 39 individuals with available BMI data

(rs133072 genotypes GG/GA/AA: 13/16/10), we analyzed the

methylation status vs. BMI. The methylation status of the GT

allele (nind = 29) is negatively correlated with BMI (r = 20.814;

P = 0.024, Pearson correlation), whereas for the AC allele (nind = 26)

we did not detect a difference in methylation with respect to

increasing BMI (r = 0.057; P = 0.897, Pearson correlation; Figure 5).

Figure 1. The genomic structure of MCHR1 and the analyzed region. (I) Genomic structure of MCHR1. MCHR1 is located on chromosome
22q13.2 and shown according to NM_005297. Boxes represent the two exons of MCHR1; white parts show untranslated regions (UTRs) and green
parts show coding regions (CDS). Three potential translation start sites are indicated by black triangles. The SNPs rs133072 and rs133073 are located
in the coding region of the first exon. (II) Detailed view of the analyzed region. White circles indicate CpGs. Alleles of SNPs rs133072 and rs133073 are
highlighted in green. Red asterisks mark the potential methylation site created by one allele of either SNP. In our data set, only the two haplotypes GT
and AC were observed.
doi:10.1371/journal.pone.0017711.g001

Figure 2. Allele-specific DNA methylation at MCHR1. The box plot
shows average methylation levels of the GT and the AC allele observed
in 49 individuals, comprised of 18 homozygous for GT, 13 homozygous
for AC and 18 heterozygotes. The median methylation level for the GT
allele is 20.9% and for the AC allele 29.9%. This difference is significant
(***: P,0.001, Mann-Whitney-test). The methylation analysis was done
by PCR on bisulfite treated DNA. PCR products were cloned and
sequenced. We analyzed on average 41 clones per individual. The
methylation level for each allele per individual was calculated by
dividing the number of methylated sites in all clones harboring the
respective allele by the number of possible methylation sites.
doi:10.1371/journal.pone.0017711.g002

Figure 3. Fraction of clones with different methylation levels.
The fraction of the GT allele bearing clones and that of AC allele
containing clones are depicted in white and grey bars, respectively. The
methylation level was calculated by dividing the number of methylated
sites by the number of possible methylation sites in a single clone. As
expected for a CpG island, the majority of clones are weakly methylated
(,20%), but heterogeneously (20–70%) and highly methylated clones
(.80%) were also observed. The AC allele showed a lower abundance
in weakly methylated clones and a higher abundance in heteroge-
neously and highly methylated clones compared to the GT allele
(P,0.001, Chi-square-test).
doi:10.1371/journal.pone.0017711.g003
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ASM and ASE of MCHR1 in LCLs
To examine whether there is a correlation between MCHR1

methylation and mRNA expression, we studied three EBV

transformed LCLs: GM12760, GM12864 and C0913, which are

heterozygous at rs133072 and rs133073. At ten time points within

63 passages DNA methylation was stable in all three cell lines

(Figure S1A–C). In GM12760 mean methylation intensity was

little and did not differ significantly between alleles (GT:

17.966.1%, AC: 21.365.8%; P = 0.224, t-test; Figure 6A).

GM12864 alleles were higher methylated and showed significant

ASM (GT: 27.565.2%, AC: 50.966.6%; P,0.001; Figure 6B).

LCL C0913 exhibited the most pronounced ASM (GT:

20.267.3%, AC: 70.268.5%; P,0.001; Figure 6C).

By pyrosequencing, we analyzed MCHR1 ASE in these cell lines

at five time points. Both GM12760 and GM12864 did not show

allele-specific transcription (Figure 7). This was confirmed by

cloning and subsequent sequencing of cDNA from a single

passage, which allowed calling of the respective alleles (number of

GT/AC clones: GM12760 = 74/82, GM12864 = 33/28). In

contrast, in LCL C0913, which showed the highest difference in

methylation intensity between GT and AC alleles, we observed

allelic imbalance of MCHR1 transcription. Mean frequency of

transcripts representing the GT allele was 75.7610.4% (Figure 7).

This was confirmed by cloning and sequencing using cDNA from

a single passage (GT/AC = 51/16, GT-fraction: 76%). The

preferential GT allele expression of C0913 is significantly different

from the equal expression of both alleles observed in GM12760

and GM12864 (P,0.05, ANOVA). To check if the observed

allele-specific transcription is not due to a different number of

allele copies in these LCLs, we measured allelic status in genomic

DNA by pyrosequencing. All three LCLs have equal copies of

both alleles (Figure S2).

Next, C0913 cells were treated with the DNA methylase

inhibitor AzadC. MCHR1 methylation and transcription were

analyzed after four days of treatment. Mean methylation

decreased from 20.764.9% to 10.262.8% for GT alleles from

69.065.4% to 15.764.9% for AC alleles (Figure 8A), whereas the

mean methylation in control cells did not change, that is, values

were 22.565.8% for GT alleles and 71.1610.9% for AC alleles,

respectively. We measured changes in total expression of MCHR1

in C0913 after AzadC treatment by qPCR and found a 645-fold

increase of MCHR1 transcripts compared to untreated cells (Figure

S3). In parallel, the GT allele frequency in MCHR1 transcripts

dropped from 71.662.8% to 49.962.3% (Figure 8B). Control cells

showed a GT allele frequency of 69.966.5%.

Discussion

Here, we report the methylation analysis of a CpG island in the

first exon of MCHR1, a gene involved in the control of energy

metabolism and linked to obesity in rodents and humans [28–

32,34,35,40]. In blood, we found that MCHR1 methylation is

allele-specific, age-dependent, BMI-associated and affects gene

Figure 4. Age-dependent ASM at MCHR1. (A–C) The box plots show average methylation levels of the GT and the AC alleles of 45 individuals
separated in three different age classes. *: P,0.05. A: ASM in the young group (20–30 years, n = 23; P = 0.003, t-test). The GT allele exhibited a mean
methylation of 22.966.7%, while the AC allele was 34.2612.7% methylated. B: ASM in the intermediate group (40–50 years, n = 10; P = 0.053, t-test).
The GT allele shows a mean methylation of 20.765.1% and the AC allele is 26.564.4% methylated. C: Median methylation levels of GT and AC alleles
in old individuals (.60 years, n = 12), which is 20.9% and 27.9%, respectively. This difference is not significant (P = 0.407, Mann-Whitney-test). D:
Methylation levels of GT and AC alleles plotted against age (n = 49). The regression curves are depicted as a solid line for the GT allele methylation
data and as a dashed line for the AC allele. The methylation status decreases with advancing age for both alleles, but this is not significant (GT:
r = 20.059; P = 0.234; AC: r = 20.168; P = 0.144).
doi:10.1371/journal.pone.0017711.g004

Figure 5. BMI-dependent DNA methylation levels at MCHR1.
Allele specific methylation levels plotted against BMI of 39 individuals.
The methylation status of the GT allele shows a significant negative
correlation with BMI (r = 20.814, P = 0.024, Pearson correlation), whereas
the methylation of the AC allele does not change with increasing BMI
(r = 0.057, P = 0.897, Pearson correlation).
doi:10.1371/journal.pone.0017711.g005
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expression. Generally, ASM is explained by an allele-specific

affinity of DNA-binding proteins with downstream effects on DNA

methylation and by direct effects of DNA sequence on propensity

for methylation [13]. The analyzed region differs only in two

positions (at SNPs rs133072 and rs133073) and the two major

haplotypes show the same G+C and CpG content. Therefore we

conclude that the observed ASM of MCHR1 is due to sequence

characteristics introduced by SNPs rs133072 and rs133073, but

this does not exclude that linked variations outside of the analyzed

region could be causative. However, the genes flanking MCHR1

(MKL1 and SLC25A17) did not show ASE in a study of

lymphoblastoid cell lines [19]. Furthermore, there are no

imprinted loci reported in the genomic context of MCHR1 [41].

Remarkably, the observed ASM at MCHR1 is age-dependent. The

AC allele was significantly more methylated than the GT allele in

individuals of young (20–30 years) in contrast to those of

intermediate (40–50 years) and old (.60 years) age. Both alleles

showed a decrease in methylation intensity with increasing age but

with a smaller slope for the GT in comparison to the AC allele. It

was previously shown that DNA methylation varies over age

[23,25,42,43]. An age-related loss of methylation can be explained

by reduced fidelity of the maintenance methyltransferase

DNMT1, whereas an age-related increase in methylation could

potentially reflect the accumulation of stochastic methylation

events [24]. In an Icelandic population sample it was shown that

29% of the individuals exhibit more than a 10% global

methylation change (enriched for promoter regions) over time,

whereby loss and gain in methylation intensity was observed. This

was confirmed in a second study sample comprising individuals

from a collection of Utah pedigrees [23]. Additionally, a familial

clustering of global methylation changes over time was observed,

which indicates a genetic mechanism underlying the methylation

maintenance [23]. Although we currently cannot rule out that

potential lineage-specific differences in methylation and changes in

cell composition over age may contribute to the observed age-

dependent methylation differences, the fact that we did not

observe gender-specific effects despite significant differences in

blood cell composition between males and females [57] argues

against this possibility.

ASE is a widespread phenomenon in the human transcriptome

[18,44]. Because DNA methylation is correlated with gene

silencing [45], ASM is suggested to contribute to ASE ([13];

reviewed in [20]). Accordingly, a pronounced ASM in the first

exon of MCHR1 in LCL C0913 is reflected in a skewed mRNA

transcription rate: the highly methylated AC allele has a three

times lower expression than the lowly methylated GT allele.

Further, global suppression of DNA methylation by AzadC

supplementation leads to an elevated total MCHR1 mRNA

expression and abolishes ASE. The analyzed MCHR1 CpG island

is located 300 bp downstream of the putative MCHR1 TSS.

Although the island is weak and not located in the promoter region

our results suggest that DNA methylation of this MCHR1 CpG

island has an impact on gene expression.

Figure 6. Allele-specific methylation levels of three LCLs. Mean methylation levels for GT and AC alleles were measured at ten time points of
63 passages of three heterozygous LCLs (for details see Figure S1). A: Mean methylation levels of both alleles of LCL GM12760. Mean methylation
level was little at both alleles and does not differ (P = 0.230, t-test). The GT allele was on average 17.966.1% methylated, while the AC allele showed
21.365.8% methylation, which is not significantly different (P = 0.224, t-test). B: ASM of LCL GM12864. The GT allele is on average 27.565.2%
methylated, whereas the AC allele showed a mean methylation level of 50.966.6%. This difference is significant (P,0.001, t-test). C: ASM of LCL
C0913. The GT allele showed an average methylation of 20.267.3%, whereas the AC allele exhibited 70.268.5%. This difference is significant
(P,0.001, t-test).
doi:10.1371/journal.pone.0017711.g006

Figure 7. Allele-specific mRNA expression of LCLs. Mean
frequency of the GT allele in cDNA is shown for three heterozygous
LCLs GM12760, GM12864 and C0913 as measured by pyrosequencing
at five time points, which were also analyzed for methylation level.
GM12760 and GM12864 showed an equal transcription of both alleles,
whereby GM12760 exhibited on average 47.465.6% of GT alleles and
GM12864 5064.2%. The LCL C0913, which exhibits the highest AC allele
methylation level showed an average frequency of 75.7610.4% of GT
alleles. This preferential GT allele expression is significantly different
from the equal transcription observed in GM12760 and GM12860
(P,0.05, ANOVA). Allele frequencies were confirmed by cloning and
sequencing of a single passage of the LCL.
doi:10.1371/journal.pone.0017711.g007
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Mchr1-deficient (Mchr12/2) mice have a significantly elevated

energy expenditure and show hyperactivity and resistance to diet-

induced obesity [31,46]. Mchr1 antagonists inhibit food intake,

reduced consumption of palatable food, and, after chronic

administration to rats with diet-induced obesity, resulted in a

decrease in body weight (reviewed in [29]). Thus, a lower level of

Mchr1 protein leads to a protection against obesity in rodents.

Here, we show that DNA methylation in the first exon of human

MCHR1 may mediate suppression of gene transcription and thus

cause a reduction of orexigenic effects of receptor ligands. That

implies that the association of MCHR1 and human obesity may

be mediated epigenetically. Previously, a significant association of

the A allele of rs133072 with obesity in a German study group

comprising mainly adolescents could not be confirmed in other

German, Danish, French and American study samples of older

age [35]. In contrast, two other studies revealed an association of

either the G allele of rs133072 and obesity in a French study

sample [32] or the A allele with reduced abdominal obesity in

Danish men [34], with both study samples being comprised of

adults. Our data obtained in blood of individuals aged between

21 and 78 years – a higher methylation level of MCHR1

associated with the A allele of rs133072 – suggests a protective

effect of the A allele [32,34] rather than an association with

obesity [35]. This is supported by our observation of a significant

decrease in methylation of the GT allele with increasing BMI,

highlighting these epitypes as a potential risk factor for obesity.

Resulting increased expression levels of hypomethylated GT

alleles may therefore have a positive effect on food intake and

BMI at a particular age and under specific environmental

conditions.

We analyzed DNA methylation and mRNA expression in

blood and in blood-derived cell lines, in which MCHR1 is

expressed at low level. Since ASM may be tissue specific [16,17],

we cannot conclude that our results represent a general feature of

MCHR1 in human tissues. Especially, in functionally relevant

tissues like hypothalamus and adipose tissue [40,47,48], mecha-

nisms and time course of MCHR1 expression may differ

compared to blood. Therefore, further analyses of the impact

of allele-specific and/or age-dependent epigenetic variations of

MCHR1 on human obesity shall include adipose tissue available

after lipectomy.

Materials and Methods

Study samples
Blood was drawn from 33 healthy volunteers from Jena,

Germany (21–77 years, 11 males). For a further 60 individuals

(20–78 years, 30 males) DNA isolated from blood was obtained

from the popgen biobank [49]. These samples were grouped in

three age classes, including young: 20–30 years, intermediate: 40–

50 years and old: .60 years. Each age class contained 20

individuals with an equal proportion of male and female donors.

After approval by the ethics committee of the University Medical

Center Jena or of the Medical Faculty of Kiel, respectively, all

individuals gave informed written consent. For methylation

analysis we selected 49 individuals (21–78 years; 22 males).

Cell culture
The B-lymphocyte, EBV transformed cell lines (LCL)

GM12760 and GM12864 and cell line C0913 were purchased

from The Coriell Institute for Medical Research (Camden, NJ,

USA) and ECACC (Wiltshire, UK), respectively. Cell lines

GM12760 and GM12864 are from male donors of the CEPH

project, which comprises donors from Utah residents with ancestry

from western and northern Europe (HapMap project). The donor

of C0913 is an UK Caucasian female of unknown age. Cell lines

were cultured in RPMI 1640 with GIBCO GlutaMAXTM

(Invitrogen, Karlsruhe, Germany) with 15% Fetal Bovine Serum

‘‘GOLD’’ (PAA Laboratories, Pasching, Austria) and 1.5%

PenStrep (Roth, Karlsruhe, Germany) in 25 cm3 and 75 cm3

BD FalconTM flasks (Becton Dickinson, Heidelberg, Germany) at

37uC and 5% CO2 in a total amount of 10 ml and 30 ml,

respectively. Cells were grown to a density of 16106 cells/ml and

split in a ratio of 1:3.

Figure 8. Treatment of LCL C0913 with AzadC. A: The ASM of LCL C0913 is shown before and following treatment with 5 mM AzadC. Mean
methylation levels decreased from 20.764.9% to 10.262.8% for the GT allele and from 6965.4% to 15.764.9% for the AC allele. Mean methylation
level in the control cells did not change, that is, GT allele showed 22.565.8% and the AC allele 71.1610.9%. B: ASE of LCL C0913 subjected to AzadC
treatment. Allele frequencies were obtained by pyrosequencing of cDNA. Untreated cells showed allelic, that is more expression from the less
methylated GT allele. By contrast, the allele frequency of the GT allele diminished from 71.662.8% to 49.962.3% following AzadC treatment. The
control cells showed a GT allele frequency of 69.966.5%.
doi:10.1371/journal.pone.0017711.g008
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DNA
DNA isolation from blood and cell lines was performed using

the DNeasy Blood & Tissue Kit from Qiagen (Hilden, Germany)

according to the manufacturer’s protocol.

PCR and genotyping
For genotyping of MCHR1 SNPs rs133072 and rs133073 a

nested PCR approach was used. Primers used in the first PCR

were: M_Gt.1F 59-GGAGATCCCTTTCCTGATGG-39 and

M_Gt.1R 59-CCATCGCACCAGTGAGAGGC-39. First PCR

was performed in a volume of 25 ml. Cycling conditions were:

96uC for 5 min, 30 cycles at 95uC for 1 min, 59uC for 30 s, 72uC
for 1 min 30 s and a final elongation step at 72uC for 10 min. In

the second PCR, primers M_Gt.2F 59-TGCAGGCATTCA-

GAAGTGG-39 and M_Gt.2R 59-CAAAGGTCTCATCCTGC-

TC-39 were used. The PCR was done in a volume of 25 ml;

conditions were 95uC for 2 min, 30 cycles at 95uC for 1 min, 56uC
for 30 s, 72uC for 1 min and a final elongation step at 72uC for

10 min. Genotyping was performed by sequencing using BigDye

Terminator v3.1 Sequencing Standard Kit (Applied Biosystems,

Foster City, USA) and primers M_Gt.2F and M_Gt.3R 59-

CCTCAGAGCAAAGCAGACC-39. Sequencing reactions were

electrophoresed on ABI 37306l automated sequencers. Base

calling was performed using phred [50,51]. Trace files were

inspected visually in gap4 [52].

Methylation analysis
A minimum of 200 ng DNA was treated with sodium bisulfite to

convert unmethylated cytosines to uracil using the Methylation

Gold Kit (Zymo Research, Orange, CA, USA). Bisulfite specific

PCR (BSP) was performed using at least 10 ng of bisulfite treated

DNA in 25 ml for 95uC for 30 s, 35 cycles at 60uc for 30 s, 72uC
for 25 s, 95uC for 30 s and a final elongation step at 72uC for

5 min. BSP products were resolved on 1.5% agarose gels, purified

using the Double Pure Kit (Bio&Sell, Feucht, Germany) and

eluted in 12 ml HPLC water. Amplicons were cloned into pCR2.1

(TOPO-TA-Kit, Invitrogen). Further, E. coli (OneShotH TOP10

chemically competent cells, Invitrogen) were transformed accord-

ing to the manufacturer’s protocol. Single clones were sequenced

using M13 primers as described. The methylation intensity for

each individual was calculated by dividing the number of

methylated sites in all clones by the number of possible

methylation sites.

For MCHR1, the BSP product is 315 bp (position in the human

GRCh37/hg19 assembly: chr.22 41,075,440–41,075,755) and

contains 15 CpGs and SNPs rs133072 and rs133073. Primers for

BSP were: M_BSP.1F 59-TGTTTAGGTGATGTTAGTGG-

GAGTT-39, M_BSP.1R 59-ACTCCCAATCAACTCACCTAC-39.

mRNA expression analysis
Total LCL RNA was isolated from 107 cells with Qiagen

RNeasy Mini Kit (Qiagen). Reverse transcription was done using

OmniscriptTM RT Kit (Qiagen). Prior to further analysis, MCHR1

cDNA was amplified using primers M_Gt.1F and M_Gt.1R as

described above. PCR was performed in a volume of 25 ml.

Cycling conditions were: 96uC for 5 min, 30 cycles at 95uC for

1 min, 59uC for 30 s, 72uC for 1 min 30 s and a final elongation

step at 72uC for 10 min. For pyrosequencing biotinylated PCR

products were needed. For this purpose, we carried out eight

PCRs with one biotinylated and one unlabeled primer (for details

see Tables S1 and S2). PCR was performed in 25 ml for 95uC for

30 s, 35 cycles at 60uc for 30 s, 72uC for 25 s, 95uC for 30 s and a

final elongation step at 72uC for 5 min.

Allele frequencies were determined by pyrosequencing accord-

ing to manufacturer’s protocol. Briefly, biotin-labeled PCR

products were immobilized on Streptavidin SepharoseTM (GE

Healthcare, Munich, Germany) by mixing 20 ml of PCR product

with 6 ml streptavidin SepharoseTM suspension, 10 ml water, and

40 ml 16binding buffer, followed by shaking at room temperature

for at least 10 min. To remove unbiotinylated DNA strand,

samples were sequentially washed with 70% ethanol and 0.5 M

NaOH using the PyroMark Vacuum PrepTool (Biotage).

Immobilized single stranded DNA was then washed with 16
washing buffer for 10 s, transferred to 40 ml 16annealing buffer

plus 4 ml target-specific sequencing primer (10 pmol/ml in water),

and kept at 80uC for 10 min. After equilibration to room

temperature, sequencing was performed using sequencing primers

(Table S2) and the Pyro Gold Reagent Kit (Biotage) in the PSQ

96MA Pyrosequencing instrument according to the manufactur-

er’s instructions.

Treatment with 5-aza-29-deoxycytidine
Lymphoblastoid cells were counted and set at an initial

concentration of 16105 cells/ml in a total volume of 6 ml per

well. A single dose of 5 mM of AzadC (Sigma-Aldrich, Munich,

Germany) was added to one well, while three wells were used as

untreated controls. Cells were harvested after 96 hours; incubation

medium was not changed. The experiment was repeated once.

qPCR
Real-time PCR was performed with the iCycler iQ detection

system (Bio-Rad, Munich, Germany). PCR reactions were

performed in 50 ml volume using GoScriptH qPCR Master Mix

(Promega, Mannheim, Germany) following manufactory’s proto-

col. All reactions were performed in triplicates and negative

controls were always included. The cycle threshold (Ct) values

were normalized to the Ct value which represented the lowest

expression level. Fold changes describe the difference in expression

level between untreated and treated LCL C0913. Ct values of

MCHR1 were normalized to Ct values of the housekeeping gene

GAPDH (glyceraldehyde-3-phosphate dehydrogenase). For ampli-

fication, primers qM.F 59-CCAGGCTACGGAGGAAGAC-39

and qM.R 59-GAGGTGATCCTGCCGAAGT-39 were used for

MCHR1 and qG.F 59-AACAGCGACACCCACTCCTC-39 and

qG.R 59-GGAGGGGAGATTCAGTGTGGT-39 for GAPDH.

PCR conditions were 95uC for 2 min, 45 cycles at 95uC for

20 s, 59uC for 30 s, 72uC for 20 s and 80uC for 15 s following by

melting curve analysis with 95uC for 30 s and a 0.5uC ramp

starting from 75uC to 100uC.

Data analysis
To detect CpG islands 2 kb up-and downstream of the putative

TSS, the program CpG island searcher was used [53]. Parameters

were set to the following criteria: G+C content 60%, obser-

vedCpG/expectedCpG ratio of 0.600, and a minimum length of

200 bp.

Hardy-Weinberg disequilibrium was tested using Chi square

(x2) test in EXCEL (Microsoft Corporation, Unterschleißheim,

Germany).

For primer design on bisulfite treated DNA, we used the

MethPrimer software (http://www.urogene.org/methprimer)

[54]. Primers for genotyping and pyrosequencing were designed

manually or using Primer3 version 0.4.0 (http://frodo.wi.mit.edu/

primer3/), respectively.

DNA methylation was analyzed using BIQanalyzer [55].

Quality parameters were ‘‘sequence error’’ and ‘‘bisulfite conver-

sion rate’’, which were set at 90% and 100%, respectively.
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Alignment of clone sequences was done using Clustal X [56]. To

examine allele-specific methylation in heterozygous samples, we

performed visual analysis of sequences, assigned alleles and

calculated mean methylation and standard deviation in EXCEL.

Linear regression and Pearson correlation analysis was done

using SigmaPlotH (Systat software Inc., Erkrath, Germany).

Statistical analysis was performed using the t-test for normally

distributed data. If the Normality Test (Shapiro-Wilk-test) failed,

the non-parametric Mann-Whitney-test was used. To compare

absolute clone counts for three different methylation levels (,20%,

20–80%, .80%), we performed a Chi square test, which was done

in SigmaPlotH. To test, if the differences in allele-specific gene

expression between the three LCLs do not occur by chance, we

performed Kruskal-Wallis One Way ANOVA (Analysis of

Variance) using SigmaPlotH. A value of P,0.05 was considered

as statistically significant.

Supporting Information

Figure S1 Allele-specific DNA methylation at MCHR1 in
three LCLs. DNA methylation levels of GT and AC alleles at ten

single passages in the three analyzed heterozygous LCLs: A:

GM12760, B: GM12864, C: C0913. The passage numbers were

counted when cells were split after thawing of the immortalized

LCLs. White circles display the methylation level of the AC allele;

black circles show methylation level of the GT allele.

(TIF)

Figure S2 GT allele frequency in genomic DNA of LCLs.
GT allele frequencies of the three LCLs in genomic DNA were

obtained by pyrosequencing. The measurements were performed

in a similar approach as for expression analysis of three LCLs (see

methods). We used three primer pairs, which did not span exon-

exon-boundaries. Both SNPs rs133072 and rs133073 were

analyzed in independent PCRs. GT allele frequencies in genomic

DNA were on average 50.23%61.63 for LCL GM12760,

50.47%60.68 for LCL GM12864 and 50.67%61.17 for LCL

C0913.

(TIF)

Figure S3 Fold changes in total expression of MCHR1
following AzadC treatment. To check if global suppression of

DNA methylation leads to an elevated MCHR1 expression, we

measured fold changes in gene expression by quantitative real time

PCR. Following AzadC treatment, total expression of MCHR1

changed about 645-fold.

(TIF)

Table S1 Pyrosequencing primer names and sequences.

(DOC)

Table S2 Pyrosequencing PCR.

(DOC)
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