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Abstract

Background

Body movements, such as trunk flexion and rotation, are risk factors for low back pain in

occupational settings, especially in healthcare workers. Wearable motion capture systems

are potentially useful to monitor lower back movement in healthcare workers to help avoid

the risk factors. In this study, we propose a novel system using sheet stretch sensors and

investigate the system validity for estimating lower back movement.

Methods

Six volunteers (female:male = 1:1, mean age: 24.8 ± 4.0 years, height 166.7 ± 5.6 cm,

weight 56.3 ± 7.6 kg) participated in test protocols that involved executing seven types of

movements. The movements were three uniaxial trunk movements (i.e., trunk flexion-exten-

sion, trunk side-bending, and trunk rotation) and four multiaxial trunk movements (i.e., flex-

ion + rotation, flexion + side-bending, side-bending + rotation, and moving around the

cranial–caudal axis). Each trial lasted for approximately 30 s. Four stretch sensors were

attached to each participant’s lower back. The lumbar motion angles were estimated using

simple linear regression analysis based on the stretch sensor outputs and compared with

those obtained by the optical motion capture system.

Results

The estimated lumbar motion angles showed a good correlation with the actual angles, with

correlation values of r = 0.68 (SD = 0.35), r = 0.60 (SD = 0.19), and r = 0.72 (SD = 0.18) for

the flexion-extension, side bending, and rotation movements, respectively (all P < 0.05).

The estimation errors in all three directions were less than 3˚.

Conclusion

The stretch sensors mounted on the back provided reasonable estimates of the lumbar

motion angles. The novel motion capture system provided three directional angles without
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capture space limits. The wearable system possessed great potential to monitor the lower

back movement in healthcare workers and helping prevent low back pain.

Introduction

Low back pain (LBP) is a disabling complaint experienced by approximately two-thirds of

adults at some point in their lives and requires expensive treatment [1,2]. Studies showed a rel-

atively high prevalence of LBP in nurses and healthcare workers, relative to workers in other

industries [3–6]. LBP episodes require primary care consultation, regardless of the pain inten-

sity, because of the subjective nature of LBP [7]. Furthermore, chronic LBP leads to absentee-

ism and presenteeism, which are serious factors affecting productivity and quality of work

[8,9]. The number of workers in the healthcare industry has been increasing with the ongoing

aging of society. Hence, the issue of LBP prevention is of utmost importance.

Epidemiological studies revealed that physical movements, including trunk flexion and

rotation, are the physical risk factors associated with the occurrence of LBP in occupational

settings [10–13]. This is partly because larger movement angles increase the load on the lower

back by increasing the torque, which causes both increased disc compression and shear forces

[14]. Cumulative moderate back load and large peak loads are independently associated with

LBP occurrence [15]. Based on an assessment of their posture and movements during work

time, workers need to change their working behavior to reduce the loads they impose on their

lower back. However, an accurate assessment of the physical movements in occupational set-

tings based on a reliable monitoring system is often difficult to achieve.

Using questionnaire surveys is one of the most popular methodologies for assessing physi-

cal movements during working time, and often yield results with low reliability and validity

[16] because subjects often overestimate their physical movements [17]. The direct observation

method provides a rough picture of the time spent in certain postures [16], but it is only suit-

able for monitoring a limited working area. The video recording method was adapted to mea-

sure the trunk angles in an automobile factory, where workers frequently bend forward and

are forced to assume an unnatural posture [13]. However, the capture area was limited to that

in the cameras’ field of view. Healthcare workers usually walk around extensively within their

institutions to take care of many patients. The capture space is too small to entirely record

their movements. Therefore, a new motion capture system without spatial limitations is

required to measure the movements of these workers.

Recent progress in micro-electromechanical systems enabled inertial measurement unit

(IMU) sensors to be used as wearable human motion capture system for gait analysis and

trunk and pelvic kinematics [18–21]. IMU sensors include tri-axial accelerometers and gyro-

scopes, and sometimes magnetometers, in a small and light unit. The advantages of the IMU

sensors are their small size and robustness compared to optical motion capture systems. How-

ever, the disadvantages of the IMU sensors involve computational problems in estimating the

angles.

Advancements in material engineering technology have resulted in the production of wear-

able sensors that track human movements. One such example is the sheet stretch sensor [22],

which is a flexible, thin sensor designed for mounting on curved surfaces. This sensor is capa-

ble of stretching along with the skin without interfering with the wearer’s body movements. A

previous study proposed the idea of angle measurement with a stretch sensor using simple lin-

ear regression [23]. By using a stretch sensor, we may monitor the lower back movements,

namely flexion, side bending, and rotation, of healthcare workers during their work hours.

Lumbar motion angles measured by stretch sensors
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Therefore, this study aims to investigate the validity of the lumbar motion measurements

obtained from stretch sensors.

Materials and methods

Participants

A group of six healthy young adults (i.e., three males and three females) participated in the

study (mean age: 24.8 ± 4.0 years, height 166.7 ± 5.6 cm, weight 56.3 ± 7.6 kg). We obtained

informed consent from all the participants before including them in the experiment. This

study was approved by the ethical committee of the Kobe University Graduate School of

Health Science in accordance with the Helsinki declaration.

Experimental procedures and measurements

The participants were asked to stand on a flat floor in an upright position with their feet shoul-

der-width apart and their arms close to their body. They performed seven types of lumbar

movements. The movements consisted of three uniaxial trunk movements (i.e., trunk flexion,

trunk side-bending, and trunk rotation) and four multiaxial trunk movements (i.e., flexion

+ rotation, flexion + side-bending, side-bending + rotation, and moving around cranial–cau-

dal axis). The movement conditions are listed in the second left column of Table 1. Each trial

lasted for 30 s. The participants were instructed to hold their necks naturally, while trying to

keep them stable. They were also asked to look straight ahead during the test. The movement

frequency was once in eight seconds (= 0.125 Hz). The movement speed was adjusted to

match the rhythm of an electronic metronome beating at 30 times/min.

Apparatus

Four flexible stretch sensors (C-STRETCH1, Bando Chemical Industries, Ltd., Japan) were

attached to each participant’s back using adhesive jelly. The sensor system was composed of a

sensor, a transmitter, and input and output cables. The size of the transmitter was W51D34H25

mm and the weight of the receiver was 23.5 g. The size of the stretchable sensor was W10L50

(mm) in the form of a sheet. The stretch sensor is extremely thin (150 μm), flexible with a wide

dynamic range (up to 100% with 0.8 MPa of stretching stress), and light (1.1 g/cm3). The sensor

is composed of three elastomer layers and two electrode layers. The parallel plate structure

Table 1. ROM values and RMS of errors between actual and estimated lumbar angles.

Trial Movement

Condition

ROM (degree) Error (degree)

Flexion-

extension

Side Bending Rotation Flexion-

extension

Side Bending Rotation

mean SD mean SD mean SD mean SD mean SD mean SD

1 Flexion 33.82 7.34 7.06 1.88 5.36 2.81 2.36 1.15 1.21 0.25 0.73 0.38

2 Side-bending 7.76 2.92 12.42 6.17 7.79 2.55 1.54 0.65 1.50 0.13 0.74 0.28

3 Rotation 6.30 2.63 11.48 4.49 11.22 4.69 1.98 1.41 2.06 0.88 0.93 0.46

4 Flexion + Rotation 24.07 5.97 18.64 5.77 10.83 5.23 1.85 0.59 2.07 0.89 1.12 0.72

5 Rotation + Side-bending 10.79 5.53 18.01 5.83 12.46 4.85 2.08 0.84 2.16 0.48 2.16 1.41

6 Side-bending + Flexion 24.47 7.00 17.26 6.73 9.41 2.77 2.75 0.89 2.17 0.63 1.31 0.70

7 Moving around cranial-caudal axis 31.19 11.73 16.86 6.00 10.26 1.84 3.91 3.08 2.71 0.82 1.46 0.52

Over all 19.77 11.36 14.53 4.31 9.62 2.38 2.35 0.79 1.98 0.49 1.21 0.50

ROM: range of motion, SD: standard deviation

https://doi.org/10.1371/journal.pone.0183651.t001
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works as a capacitator. Since the elastomer sheets were almost incompressible, the capacitance

of the stretch sensor is proportional to its areal strain. In fact, the capacitance of the sensor

showed high linearity to the square of the area of the sensing part (R2 > 0.98) [22]. The mea-

surement error in length of the sensing part was reported to be less than 1.5 mm in 40 and 60

mm of contraction [24]. Moreover, the capacitator type of stretch sensor shows high repeatabil-

ity of measurements [22].

Fig 1A shows the four stretch sensors attached to a subject’s back. Two vertical sensors were

placed 10 cm from the midpoint of the participant’s back at the L5 level. The two other sensors

were attached obliquely from the L5 level to the middle of the subject’s back at a 45˚ angle. The

initial length of all the sensors was 7 cm. The pre-strain was aimed at measuring contraction of

the sensor. This helped to measure backward bending movements (extension).

Fig 1. Setup of the experiment and definitions of the three lumbar joint angles. (A) Four sheet stretch sensors and reflective markers

attached to a participant’s back. The lower ends of the sensor are at the L5 level. Two sensors are vertically attached, while the other two are

attached in a direction diagonal to the L5 level. Reflective markers are attached to ten anatomical landmarks. (B–D) Stick diagram showing the

definitions of the lower-back motion angles for flexion-extension (B), side-bending (C), and rotation (D). The gray circles represent the spherical

markers placed on the anatomical landmarks. The markers with a bold black edge line are used for the angle calculation in each direction.

https://doi.org/10.1371/journal.pone.0183651.g001
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An optical motion capture system (Optitrack, NaturalPoint, USA) consisting of eight cam-

eras arranged in a circle around the participants was used to record the motion of ten reflective

markers placed on each participant’s anatomical landmarks. The reflective markers measuring

11 mm in diameter were fixed with a double-sided adhesive tape at the following locations: C7,

right and left acromions; three markers at the 1st lumber spine level (L1left, L1, and L1right);

right and left anterior superior iliac spine (ASIS); 5th lumber spine; and the coccyx.

The optical motion tracking system generated a starting trigger signal at the same time to

record the marker data using the software (Motive Tracker ver.1.9.0. NaturalPoint. USA). The

trigger signal started a 16-bit data acquisition system (PowerLab 16/35, ADInstruments, New

Zealand) to record all stretch sensor signals at a sampling frequency of 100 Hz without any

time delay. Both the marker and sensor data were stored on a hard disk for off-line analysis.

Data analysis

All the stretch sensor signals were offset by the first frame data of each trial to obtain the dis-

placement values. Both the marker and stretch sensor data were then low-pass filtered using a

fourth-order Butterworth filter with a 10 Hz cutoff frequency. The cutoff frequency was deter-

mined based on the movement frequency of the experiment, 0.125 Hz, as well as power spec-

trum analysis. The marker data were used to calculate the three-dimensional angles relative to

the pelvis coordinate system using a Cardan X–Y–Z (flexion–lateral bending–rotation) rota-

tion sequence. Fig 1 defines the three lumber motion angles: Fig 1B, 1C and 1D relate to flex-

ion-extension, side bending, and rotation, respectively.

We estimated the three lumbar motion angles using the signals obtained from the stretch

sensors attached to each participant’s back. The stretch sensor measured the sensor length dis-

placement. The sensors stretched together with the skin underneath the sensor. Moreover, the

output signals were proportional to the stretch displacement of the skin. Thus, a joint angle

can be obtained by a simple linear regression using the sensor outputs [23].

For the lumbar flexion angle, we used the average length of two vertical sensors (Δl1 and

Δl2) to estimate the flexion angle.

Dy
EST
FX ¼ a1ðDl1 þ Dl2Þ=2 ð1Þ

Where Dy
EST
FX represents estimated angle in the lumbar flexion-extension direction, and α1 rep-

resents regression coefficient obtained by a simple regression analysis in the lumbar flexion-

extension movements.

For the lumbar side-bending angle, the difference between the two vertical sensors was cal-

culated, and the difference data were used to estimate the side-bending angle using the follow-

ing equation:

Dy
EST
SB ¼ a2ðDl1 � Dl2Þ ð2Þ

Where Dy
EST
SB represents the estimated angle in the lumbar side-bending direction, and α2 rep-

resents the regression coefficient obtained by a simple regression analysis in the lumbar side-

bending movements.

For the lumbar rotation angle, all four sensor outputs were used for estimation. The stretch

values obtained from the vertical sensors were subtracted from those obtained from the obli-

que sensors to reduce the cross-talk effect and obtain the adjusted oblique outputs (Δl‘3 and

Δl‘4). The difference between the adjusted oblique outputs was then calculated and used to esti-

mate the rotation angle.

y
ACT
RT ¼ a3ðD

�l3 � D�l4Þ ð3Þ

Lumbar motion angles measured by stretch sensors
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Where Dy
EST
RT represents estimated angle in the lumbar rotation, and α3 represents regression

coefficient obtained by a simple regression analysis in the lumbar rotation movements. All the

regression coefficients (α1, α2, and α3) were obtained based on the first 10 s of each datum.

Statistics

The range of motion (ROM) in the flexion-extension, side-bending, and rotation angle were

calculated for both actual and estimated angles. The accuracy of the angle estimation algorithm

was evaluated using the root–mean–square (RMS) of the residual error and the Pearson’s cor-

relation coefficient between the actual and estimated angles. Agreements between ROM-mea-

surements were visualized by the plot of the difference between each paired measurement

against the mean value of both (Bland-Altman plot) [25]. The plot also shows a dashed line at

±1.96 standard deviation (SD); thus, 95% of the measurements are within these two bounds.

The statistical significance level was set to P< 0.05. The data were presented using the expres-

sion mean ± SD. The data were then analyzed using MATLAB1 R2015b (MathWorks, USA).

Results

Table 1 lists the ROM in all seven trials as obtained by the optical motion capture system. The

average ROM values were 19.77˚ (SD = 11.36) in flexion, 14.53˚ (SD = 4.31) in side-bending,

and 9.62˚ (SD = 2.38) in rotation. The ROM values varied depending on the movement con-

ducted in each trial.

Fig 2 shows the displacements of sensor length and lumbar angles in flexion-extension (A),

side-bending (B), and rotation movements (C). The vertical sensors were attached along the

rotational direction of lumbar flexion-extension. Hence, these sensors exhibited a good corre-

lation with the flexion-extension angle (Fig 2A). The vertical sensors were alternatively

stretched in the right and left directions during the side-bending movement (Fig 2B). The obli-

que sensors stretched alternately in accordance with the rotation angle (Fig 2C).

We conducted a simple regression analysis to estimate the lumbar movements using the

stretch sensor outputs. Fig 3 shows the actual and estimated lumbar movement angles for flex-

ion-extension in trial 1 (Fig 3A), side-bending in trial 2 (Fig 3B), and rotation in trial 3 (Fig

3C). These data were collected from the same set of participants shown in Fig 2.

Fig 4 illustrates the lumbar movement angles captured when performing the complicated

movements in trials 4 to 7. The sensor outputs in all the trials were in phase with the actual

lumbar movements. The amplitudes of the estimated angles appeared similar to the actual

angles in side-bending and the rotation angles. The estimated angles as regards the flexion-

extension angles were slightly smaller than the actual angles, especially for the large flexion-

extension angle values.

The Pearson product correlation was calculated using the actual and estimated lumbar

movements (Table 2). The average correlation coefficients for every trial were r = 0.68 (SD =

0.35, all P< 0.05), r = 0.60 (SD = 0.19, all P< 0.05), and r = 0.72 (SD = 0.18, all P< 0.05) for

flexion-extension, side-bending, and rotation, respectively. Overall, these data indicated that

the sensor outputs were either moderately or closely correlated to the actual lumbar movement

angles. The correlation values were high for the trial, in which the range of motion was large.

As regards flexion-extension angle, trials 1, 4, 6, and 7 showed r> 0.9 when the range of

motion was over 18˚. Meanwhile, trials 2, 3, and 5 exhibited an r-value < 0.5 for a range of

motion below 10˚.

The estimation error was quantified using the RMS values between the actual and estimated

angles. Table 1 shows the RMS values and the range of angles for each trial. The overall RMS

errors were 2.35˚ (SD = 0.79), 1.98˚ (SD = 0.49), and 1.21˚ (SD = 0.50) for flexion-extension,

Lumbar motion angles measured by stretch sensors
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side-bending, and rotation, respectively. The error ratios for the trial with a range of motion

over two-thirds of the max ROM, which increased the risk of LBP [13,26], were 12.87%

(SD = 3.54), 9.91% (SD = 2.72), and 10.19% (SD = 2.90) for flexion-extension, side-bending,

Fig 2. Typical time series of the angular displacement and stretch sensor outputs. Typical time series of the

angular displacement of the flexion-extension (A), side-bending (B), rotation (C), and stretch sensor outputs in the

three uniaxial movement trials. The gray straight lines represent the angular displacement of the lumbar joint. The

black straight and dotted lines represent the stretch sensor outputs. The straight and dotted lines in panels (B) and (C)

are in an anti-phase relationship with each other.

https://doi.org/10.1371/journal.pone.0183651.g002
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and rotation, respectively. The error values in the trials with small correlation values were also

small relative to those for the other trials.

Differences of ROM-measurements were investigated using Bland-Altman analysis (Fig 5).

The Bland-Altman plots demonstrated that differences in ROM-measurements are within the

Fig 3. Representative angular displacements time series in uniaxial movements. Representative angular

displacements for the (A) flexion-extension, (B) side-bending, and (C) rotation angles for the three uniaxial

movement trials. The gray straight lines represent the angular displacement obtained from the optical motion capture

system. The black straight lines represent the angular displacement estimated from the stretch sensor outputs.

https://doi.org/10.1371/journal.pone.0183651.g003

Lumbar motion angles measured by stretch sensors
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1.96 SD with no outliers. The biases were 3.33˚±6.52˚, 5.83˚±4.14˚, and 2.91˚±2.69˚ in flexion-

extension, side-bending, and rotation, respectively. All regions in each direction between

lower and upper limits included zero, indicating no systematic error.

Discussion

We developed a new method to estimate lumbar angles in three dimensions using four body-

fixed stretch sensors. The experimental evaluations showed that the sensor output signals were

well correlated to the reference angles in all the three directions. The average of the residual

Fig 4. Typical time series of the actual and estimated angular displacements in multi-axial movements. Typical time series of the actual and

estimated angular displacements obtained from optical motion capture (gray line) and stretch sensor (black line) when complex movements were

performed in trials 4 to 7. From the top panel: angular displacements in the 4th experimental condition ((A) flexion and rotation), 5th experimental

condition ((B) rotation and side-bending), 6th experimental condition ((C) flexion and side-bending), and 7th experimental condition ((D) turning

trunk clockwise). The left panels represent flexion. The middle panels represent side-bending, while the right panels represent the rotation angles of

the lumbar joint. The gray straight lines represent the actual angular displacement obtained from the optical motion capture system. The black

straight lines represent the estimated angular displacement as calculated from the stretch sensor outputs.

https://doi.org/10.1371/journal.pone.0183651.g004
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errors between the actual and estimated angles was less than 3˚. In addition, the mean differ-

ences in ROM-measurements were less than 6˚ and no systematic difference was observed.

The validity of the new sensor system was studied by comparing it with the optical motion

capture system. The stretch sensor outputs showed a substantial correlation with the lumbar

motion angles obtained by the optical motion capture system. Although lower back move-

ments are an important factor for LBP occurrence, no clear consensus on the lumbar motion

angles that induce LBP currently exists. Some studies suggested that over two-thirds of the

ROM angles in the trunk bending task increased the LBP risk [13,26]. The experiment revealed

strong correlation values (i.e., r > 0.9) for the trial in which the range of motion was large. The

results suggested that the stretch sensor was suitable for monitoring large movements that

increase the LBP risk.

As regards accuracy, the overall RMS errors were less than 3˚. Previously, McGinley pro-

posed that an error of 2˚ or less is considered acceptable in most common clinical situations

[27]. Cuesta suggested that errors between 2˚ and 5˚ are likely to be regarded as reasonable

with a careful interpretation of the measured data [28]. The data from this experiment indi-

cated a reasonable accuracy for the measurements obtained by the stretch sensor system, but

may require consideration when interpreting the results.

The error between the estimated and actual lumbar angles in this study was a result of two

potential causes. The first cause is the crosstalk caused by skin stretching. The skin on the

torso is like an elastic sheet covering the body. Joint motions in any direction stretch the skin.

Table 2. Correlation coefficients between actual and estimated lumbar angles.

Trial Movement

Condition

Flexion-extension Side Bending Rotation

Mean SDa Mean SDa Mean SDa

1 Flexion 0.97 0.02 0.42 0.29 0.60 0.30

2 Side-bending 0.36 0.29 0.65 0.33 0.89 0.09

3 Rotation 0.17 0.36 0.29 0.48 0.94 0.06

4 Flexion + Rotation 0.97 0.01 0.89 0.14 0.80 0.24

5 Rotation + Side-bending 0.40 0.34 0.67 0.40 0.51 0.32

6 Side-bending + Flexion 0.91 0.07 0.69 0.41 0.78 0.22

7 Moving around cranial-caudal axis 0.94 0.03 0.58 0.32 0.52 0.56

a SD: standard deviation

https://doi.org/10.1371/journal.pone.0183651.t002

Fig 5. Bland–Altman plots of the evaluation results. The x-axis shows the average value of the angle obtained by stretch sensor and by the

optical motion capture system. The y-axis shows the difference between the angles. The dashed lines denote ±1.96 SD (standard deviation), that

95% of the differences are in between the lines.

https://doi.org/10.1371/journal.pone.0183651.g005
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In fact, vertical sensors respond to both flexion-extension and side bending. The movements

with a small range of motion showed relatively low correlation values with the low back angles

measured by the optical motion capture, indicating that small movements are more susceptible

to crosstalk. Further studies should aim to establish a sophisticated algorithm and a means of

mounting the sensors to reduce the crosstalk effect. The second error factor is the decrease in

the initial pre-strain (shortening length error). The sensor underestimates the angles if the sen-

sor length is shortened. The development of a fixation methodology maintaining the initial

length would further improve the measurement accuracy.

The benefits of the wearable motion capture system lie in its inherent portability and sim-

plicity. Videos are capable of capturing objective lumbar angles even in occupational setting

studies. However, the capture scope is limited to the area immediately in front of the camera.

Multiple cameras are also required to obtain three-dimensional angles. Thus, previous studies

only analyzed the movements on the sagittal plane [15,26]. In comparison with a camera-

based system, the placement of the four stretch sensors used in the proposed method provided

angular information from all the three directions. Moreover, the capture space was not limited.

Recent longitudinal studies indicated that the duration of the task of bending forward from

the trunk was not independently related to LBP. These studies also suggested that other

motion angles, such as rotation, should be measured [29]. The proposed wearable system will

be useful in future studies to objectively measure the tri-axial movements of workers such as

healthcare workers who frequently move around as part of their duties.

An IMU sensor is another wearable system that can capture human movement. A number

of studies reported the validity and reliability of inertial sensors during static and dynamic

trunk movements aiming at clinical applications [28,30,31]. Previous studies reported that

IMU sensors showed high accuracy in the lumbar trunk angle as compared to golden standard

measurements, such as less than 5.8˚ RMS errors in the pitch axis. A recent study adapted this

approach to measure the trunk flexion angles of blue-collar workers [20,29,32]. The computa-

tional problem is an important problem to obtain the angle data from IMU sensor. The angle

data obtained from integration of angular velocity can be distorted by offset or other drifts

during long-term monitoring. Recent studies investigated the validity of the lumbar angle esti-

mation in the laboratory setting and proposed the algorism; accelerometer data is used

together as a reference angle to correct drifts in gyroscope data, when velocity can be assumed

small enough or near constant [30]. However, nurses and healthcare workers move irregularly

depending on patients’ needs throughout their working time. To the best of our knowledge,

the validity of long-term monitoring for the lumbar angle of healthcare workers during work-

ing time has not been investigated. Meanwhile, the stretch sensor signals can be translated to

angle values using simple linear estimation without the need for integration. Further studies

must be undertaken to compare the ability of these sensors in terms of accuracy as well as con-

venience to for use in long-term monitoring in healthcare workers.

There are four main limitations of this study. First, the participants were limited in that

they were all healthy young adults. Second, even among the healthy population, the stretch of

skin in the overweight population may be different from that in the normal weight population.

Second, for clinical usage, practical calibration of the stretch sensor is required. Based on the

high linearity between capacitance and squared sensing area, users need to measure at least

two reference angles in each direction before capturing motion using the current stretch sen-

sor system. For example, users measure the angle and sensor length in two postures such as an

upright stance and standing with maximum trunk flexion. Development of a simple calibra-

tion protocol is important in applying the system to a clinical setting. Third, the results of this

study did not provide any data on the validity of the stretch sensor measurements being repre-

sentative of intersegmental lumbar spine kinematics, which is assumed to be related to LBP
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[33,34]. To demonstrate the validity of the approach, different study design and measurement

methods, for example comparison with video fluoroscopy, would be required.

Wearable monitoring system can contribute to preventing LBP in respect to the following

three points. 1) Real-time quantitative feedback of lower back movements is useful to teach

appropriate movements to reduce lower back burdens in workplace training sessions. 2) An

alert system can be created to notice the cumulative risk of LBP related to lower back move-

ments. 3) It will be possible to capture objective evidence of workloads, which may motivate

managers to change working environments.

Overall, the sheet stretch sensors attached to the back of young healthy adults provided

lumbar angle information in three directions using a simple linear regression. The sensor had

a lightweight, thin, and flexible nature. Hence, the wearable sensor system possessed great

potential to monitor the lumbar angles of workers that move around as part of their duties.
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