
RESEARCH ARTICLE

Isoflurane anesthesia promotes cognitive

impairment by inducing expression of β-

amyloid protein-related factors in the

hippocampus of aged rats

Shuai Zhang, Xueyuan Hu, Wei Guan, Li Luan, Bei Li, Qichao Tang, Honggang Fan*

Department of Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin,

China

* fanhonggang2002@163.com

Abstract

Isoflurane anesthesia has been shown to be responsible for cognitive impairment in Alzhei-

mer’s disease (AD) and development of AD in the older age groups. However, the patho-

genesis of AD-related cognitive impairments induced by isoflurane anesthesia remains

elusive. Thus, this study was designed to investigate the mechanism by which isoflurane

anesthesia caused AD-related cognitive impairments. Aged Wistar rats were randomly

divided into 6 groups (n = 12), 1 control group (CONT) and 5 isoflurane treated (ISO) groups

(ISO 0, ISO 0.5D, ISO 1D, ISO 3D and ISO 7D). The CONT group inhaled 30% O2 for 2 h

without any anesthesia. ISO groups were placed under anesthesia with 3% isoflurane and

then exposed to 1.5% isoflurane delivered in 30% O2 for 2 h. Rats in each ISO group were

then analyzed immediately (ISO 0) or at various time points (0.5, 1, 3 or 7 day) after this

exposure. Cognitive function was assessed using the Morris water maze test. Protein levels

of amyloid precursor protein (APP), β-site APP cleavage enzyme-1 (BACE-1) and Aβ42 pep-

tide were analyzed in hippocampal samples by Western blot. β-Amyloid (Abeta) plaques

were detected in hippocampal sections by Congo red staining. Compared with controls, all

ISO groups showed increased escape latency and impaired spatial memory. Isoflurane

increased APP mRNA expression and APP protein depletion, promoting Aβ42 overproduc-

tion, oligomerization and accumulation. However, isoflurane did not affect BACE-1 expres-

sion. Abeta plaques were observed only in those ISO groups sacrificed at 3 or 7 d. Our data

indicate that aged rats exposed to isoflurane had increased APP mRNA expression and

APP protein depletion, with Aβ42 peptide overproduction and oligomerization, resulting in

formation of Abeta plaques in the hippocampus. Such effects might have contributed to cog-

nitive impairments, including in spatial memory, observed in these rats after isoflurane

anesthesia.
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Introduction

Alzheimer’s disease (AD) is an irreversible neurodegenerative disease. It is primarily character-

ized by deleterious changes in orientation, judgment and personality, as well as social and cog-

nitive abilities. Age is a major risk factor for AD, with AD being much more prevalent in older

than in younger age groups. There is no United Nations (UN) standard numerical criterion,

but the UN agreed cutoff is 60+ years to refer to the older population [1]. A current report esti-

mated 5.3 million cases of AD in the United States with those over 65 years of age having

about a 25 times greater incidence of the disease than those under 65 years of age [2].

The cellular etiology of AD is primarily related to loss of synapses and neurons in limbic

and cortical structures, affecting the amygdala and hippocampus. A major molecular etiology

of AD involves overproduction and accumulation of β-amyloid (Aβ) peptides. Aβ is formed

primarily through serial proteolysis of the amyloid precursor protein (APP) by aspartyl prote-

ase β-site APP cleavage enzyme-1 (BACE-1) [3]. APP can be processed via two alternative

pathways, the amyloidogenic pathway and the non-amyloidogenic pathway [4]. Under normal

physiological conditions, APP was mainly through the non-amyloidogenic pathway and

cleaved by α- and γ-secretases, which did not generate Aβ peptides. Under pathological condi-

tions, APP was primarily by the amyloidogenic pathway and cleaved by β-secretase (BACE-1),

which generated Aβ peptides. Extracellular Aβ exists in two major isoforms of the 42-residue

Aβ42 and 40-residue Aβ40 [5]. Amyloid plaques consist primarily of Aβ42 and Aβ40, peptides

generated by the amyloidogenic processing of APP [6]. Although levels of Aβ40 in the brain are

higher than those of Aβ42, Aβ42 has greater neuronal toxicity because it more readily generates

the large oligomers that form plaque-like deposits on the cell membrane surface [7–9]. In AD

patients, BACE-1 expression in brain regions with Aβ deposition was 2–3 fold higher than in

those regions without Aβ deposition [10]. BACE-1 is also a leading cause of Aβ overproduction

and Aβ deposition in the brain which is a pathological hallmark of AD. Based on previous

studies, the overproduction, oligomerization and accumulation of Aβ have become regarded

as central to the pathogenesis of AD [11, 12].

Administration of general anesthesia is a risk factor for the development of AD. It is esti-

mated that 200 million patients worldwide undergo general anesthesia for clinical surgery each

year [13]. Studies on the relationship between anesthesia and AD also showed an increased

incidence of AD in older patients undergoing general anesthesia, indicating a greater risk of

general anesthesia in AD development [14, 15]. In addition, a previous study reported that

patients undergoing coronary artery bypass graft surgery under general anesthesia were at

increased risk for AD as compared to those under local anesthesia [16]. So, it is in urgent need

to elucidate the mechanism by which general anesthesia caused cognitive impairment in the

older patients, thereby contributing to exploring methods to reduce the risk factors for the

development of AD.

Volatile anesthetics impaired spatial memory and increased cognitive impairment in aged

rats [17, 18]. Isoflurane, a commonly used inhalational general anesthetic, caused hippocampal

cell injury in adult rats, an effect that might have contributed to isoflurane-induced loss of cog-

nitive function [19]. In another study, isoflurane induced increased Aβ expression, potentially

promoting the development of neuropathogenesis [20]. However, the pathogenesis of anes-

thetic-induced cognitive impairment is not fully understood. There is no direct evidence link-

ing β-amyloid protein, and its properties relevant to AD and isoflurane-induced cognitive

impairment in aged rats. Thus, in this study, we investigated effects of isoflurane on APP, β-

amyloid and BACE-1 expression and Abeta plaques formation in the aged rat hippocampus.

Isoflurane anesthesia promoted cognitive impairments in aged rats
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Methods

Animals

A total of 72 male Wistar rats, 24 months old and weighing 550 ± 50 g, were purchased from

the Laboratory Animal Center of Harbin Medical University (Harbin, Heilongjiang, China).

All rats were housed in standard polypropylene cages liberally lined with aspen wood shavings.

They were maintained at 25˚C under a 12 h/12 h light/dark cycle for at least 1 week before use

in experiments. Food and water were available ad libitum. All work was approved by the Ethics

Committee on the Care and Use of Animals, Northeast Agricultural University, Harbin,

China.

Experimental design

Aged Wistar rats were divided randomly into 6 groups (n = 12), 1 control group (CONT) and

5 isoflurane (ISO) groups. ISO groups were further divided into ISO 0, ISO 0.5D, ISO 1D, ISO

3D and ISO 7D groups, according to the day of sacrifice. To evaluate hippocampal-dependent

spatial memory, 8 rats in each group were randomly selected for Morris water maze (MWM)

training prior to test exposures. Thereafter, rats in the control group inhaled 30% O2 for 2 h,

without any exposure to isoflurane anesthesia. And rats in ISO groups were placed under anes-

thesia with 3% isoflurane and then exposed to 1.5% isoflurane delivered in 30% O2 for 2 h.

After isoflurane anesthesia, rats in ISO groups were maintained in 30% O2 for 20 min at 37˚C

to enable recovery from anesthesia. Finally, rats in the CONT group were sacrificed immedi-

ately after the control exposure and the cognitive testing. Rats in the ISO 0 group were sacri-

ficed that day, immediately after the righting reflex recovery (time 0) and the cognitive testing,

whereas rats in other ISO groups were given cognitive testing and sacrificed after 0.5 1, 3 or 7

day, respectively. After cognitive testing, all rats were euthanized at the indicated time and

their hippocampi were harvested immediately. The right cerebral cortex and hippocampus of

each brain were rapidly frozen in liquid nitrogen and stored at −80˚C for protein analysis and

quantitative real-time PCR analysis. The contralateral side was post-fixed in 4% paraformalde-

hyde saline and kept at 4˚C for Abeta plaques analysis. Levels of APP and BACE-1 mRNA in

the hippocampal samples were measured by quantitative real-time PCR and those of APP,

BACE-1 and Aβ protein by Western blot. Abeta plaques were visualized in hippocampal sec-

tions stained with Congo red.

Isoflurane anesthesia

All rats were fasted, without water, for 12 h before isoflurane anesthesia or control exposure.

Rats were placed in a temperature-controlled, sealed transparent anesthesia induction cham-

ber with soda lime at the bottom. The side opening of this chamber was connected to an anes-

thesia machine. The rats were monitored physiologically during anesthesia, confirming that

respiratory rate (RR), heart rate (HR) and pulse oximeter oxygen saturation (SpO2) remained

in the safe range and rectal temperature was 37.0 ± 0.5˚C. The minimum alveolar concentra-

tion (MAC) is the alveolar concentration at which 50% of animals do not show a motor

response to painful stimuli. One MAC of isoflurane in rats is approximately 1.5% [21]. Rats in

the CONT group inhaled only 30% O2 for 2 h at 37˚C, whereas rats in ISO groups were placed

under anesthesia with 3% isoflurane and then exposed to 1.5% isoflurane and 30% O2 for 2 h

at 37˚C. After isoflurane exposure, rats were maintained in 30% O2 for 20 min at 37˚C to

enable recovery from anesthesia.
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Morris water maze (MWM) experiments

The MWM test is widely used to assess spatial learning and memory in rodents [22]. To con-

duct this test, a circular pool (180-cm diameter, 50-cm depth) was filled with warm (26˚C)

opaque water. A hidden round platform (10-cm diameter) was submerged 2 cm below the sur-

face of water, located in one quadrant. From each group, 8 rats were randomly selected for

MWM training. Rats were trained using 4 trials per day for 5 consecutive days before receiving

anesthesia or control exposure. The minimum interval between each trial was 15 min. For

each trial, the rat was placed in 4 different quadrants of the water maze in turn and allowed to

discover the hidden platform freely. Rats failing to discover the hidden platform within 90 sec

were guided artificially to the hidden platform for 30 sec. On the sixth day, rats in ISO groups

received isoflurane anesthesia or for the CONT group, the control exposure. The hidden plat-

form was removed to perform the probe trial on day 0, 0.5, 1, 3 or 7 after isoflurane anesthesia

and then rats were sacrificed. Swimming path, speed, latency (time to discover the hidden plat-

form) and the number of platform crossings were recorded with a video tracking system

(SuperMaze; Shanghai Xinruan Information Technology, Shanghai, China).

Quantitative real-time PCR

Total RNA extraction and quantitative real-time PCR analysis were performed as previously

described [23]. Total RNA was extracted from the hippocampus samples using the TransZol

Up system (TransGen Biotech, Beijing, China). A GeneQuant 1300 spectrophotometer (GE

Healthcare Bio-sciences AB, Uppsala, SE) was used to assess quantity and purity of the RNA.

Special primers were designed and synthesized by Sangong Biotech (Shanghai, China)

(Table 1). A 10-fold dilution series of the template was used during quantitative real-time PCR

reactions to generate standard curves and the β-actin gene was used as an endogenous control.

Transcripts were quantified using SYBR1 Premix DimerEraserTM (TakaRa Biotechnology

Inc., Dalian, China) on an ABI 7500 Real-time PCR System (Applied Biosystems). To quantify

relative mRNA expression, the cycle threshold (CT) values of the target genes were normalized

to the CT values of reference gene β-actin, and the results are presented as fold change using

the 2−ΔΔCT method. The relative mRNA expression of target gene in each group was calculated

using the following equations: ΔCT = CT target gene − CT β-actin, and ΔΔCT = ΔCT treated group −
ΔCT control group.

Western blotting

Western blot analysis was performed as previously described [24]. Hippocampal tissue samples

were homogenized in an ice-cold RIPA buffer (Beyotime, Jiangsu, China) supplemented with

a protease inhibitor. The homogenates were centrifuged at 12,000 × g for 5 min at 4˚C, super-

natants were collected and their protein concentrations determined with the BCA protein

assay kit (Beyotime, Jiangsu, China). Proteins were separated by sodium dodecyl sulfate-

Table 1. Quantitative real-time PCR primers.

Gene Primer (50!30) Product size (bp)

β-actin Forward AGGGAAATCGTGCGTGACAT 163

Reverse CCTCGGGGCATCGGAA

APP Forward GCAGAAGGACAGACAGCACA 140

Reverse GCAGGGACAGAGACTGGTTC

BACE-1 Forward AATCAGTCCTTCCGCATCAC 127

Reverse CTCCCATAACGGTGCCTGT

https://doi.org/10.1371/journal.pone.0175654.t001

Isoflurane anesthesia promoted cognitive impairments in aged rats

PLOS ONE | https://doi.org/10.1371/journal.pone.0175654 April 12, 2017 4 / 14

https://doi.org/10.1371/journal.pone.0175654.t001
https://doi.org/10.1371/journal.pone.0175654


polyacrylamide gel electrophoresis (SDS-PAGE), using 8% or 10% polyacrylamide gels,

depending on the molecular weight separation range needed. After bands were transferred to

polyvinylidene difluoride (PVDF) membranes, the membranes were incubated at 4˚C for

overnight with the appropriate primary antibody, anti-BACE-1 (CST, Danvers, USA), anti-

APP (CST, Danvers, USA) or anti-Aβ42 (Abcam, Cambridge, UK), each diluted 1:500. To

detect labeled protein bands, the membranes were next incubated for 2 h with the appropriate

fluorescently labeled secondary antibody at room temperature. Image-Pro Plus 6.0 software

(Media Cybernetics, Washington, USA) was used to analyze the fluorescence data for each

blot. Anti-β-actin (1:750; ZSGB-BIO, Beijing, China) was also used as a protein loading control

for each sample. Results are presented as the ratio of the intensity of the APP, BACE-1 and

Aβ42 band to that of the β-actin band.

Congo red staining for Abeta plaques

For Congo red staining, paraffin sections (5 μm) were treated as described [25]. Briefly, sec-

tions were deparaffinized in xylene and rehydrated. Sections were then treated with a working

sodium chloride solution (sodium chloride-saturated 80% alcohol containing 0.01% sodium

hydroxide) for 20 min at room temperature, stained for 1 h with 0.2% Congo red solution in

NaCl-saturated 80% ethanol, and finally counterstained with hematoxylin, dehydrated in abso-

lute alcohol. Images were captured using an Olympus BX41 microscope (Olympus, Tokyo,

Japan) equipped with a Canon EOS 550D camera head (Canon, Tokyo, Japan) at a high-mag-

nification field (400).

Statistical analysis

SPSS Version 18.0 (Chicago, IL, USA) for Windows was used for statistical analysis. All data

are presented as means ± standard deviation (SD). The escape latency and swimming speed

during the training tests were averaged to give a mean value for testing on each day and these

means were analyzed by one-way analysis of variance (ANOVA) with repeated measures. All

other data were analyzed by one-way ANOVA followed by a Least Significant Difference post-

hoc analysis without repeated measures. P values of<0.05 were considered to indicate signifi-

cant differences.

Results

Isoflurane anesthesia induced spatial memory impairments in aged rats

The MWM test is considered as a highly sensitive test of cognitive function and is widely used

to elucidate hippocampus-dependent learning and memory in rodents. In our study, as shown

in Fig 1A and 1B, the aged rats in each group, prior to anesthesia exposures, were able to dis-

cover the hidden platform after MWM training for 5 days. Compared with the latency on the

first day, there was a significant decrease in latency on the fifth day in all rats (P< 0.01). On

the fifth training day, aged rats in all 6 groups were able to discover the hidden platform within

30 sec. After isoflurane anesthesia, aged rats in the ISO 0, ISO 0.5D, ISO 1D, ISO 3D and ISO

7D groups had higher escape latency values than those in the CONT group (ISO 0, ISO 0.5D

and ISO 7D, P< 0.05; ISO 1D, ISO 3D, P< 0.01) (Fig 1C). In the probe trial, the decreased

number of platform crossings in the ISO 0, ISO 0.5D, ISO 1D, ISO 3D and ISO 7D groups

were observed compared with the CONT group (ISO 3D, ISO 7D, P< 0.05; ISO 0, ISO 0.5D

and ISO 1D, P< 0.01) (Fig 1D). Compared with the CONT group, there were no significant

differences in the swimming speed of 5 ISO groups (ISO 0, ISO 0.5D, ISO 1D, ISO 3D and ISO

7D) (Fig 1E).
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Isoflurane anesthesia promoted the expression of APP but not BACE-1

mRNA in the hippocampus of aged rats

APP and BACE-1 mRNA levels in the hippocampus were measured by quantitative real-time

PCR (Fig 2). Compared with the CONT group, APP mRNA expression in the ISO 0 and ISO

0.5D groups was not changed, but it was significantly increased in the ISO 1D, ISO 3D and

ISO 7D groups (P< 0.05) (Fig 2A). However, APP mRNA expression did not differ among

Fig 1. Isoflurane anesthesia induces the spatial memory impairment of aged rats. Spatial memory was examined

by using the Morris water maze (MWM). (A) Latency to discover the hidden platform during training days. (B) Swimming

paths during training days. (C) Latency to discover the hidden platform after isoflurane anesthesia. (D) The number of

platform crossing in the probe trial tests. (E) Swimming speed during training days. Data are presented as the mean ± SD

(n = 8). *P < 0.05, **P < 0.01 vs. the CONT group.

https://doi.org/10.1371/journal.pone.0175654.g001
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the ISO 1D, ISO 3D and ISO 7D groups. There was no significant difference in BACE-1
mRNA expression among all groups (Fig 2B).

Isoflurane anesthesia promoted the depletion of APP protein and

production of Aβ42 peptide, but not of BACE-1 protein, in the

hippocampus of aged rats

APP, BACE-1 and Aβ42 levels in the hippocampus were measured by Western blot. Compared

with the CONT group, the APP protein levels in all anesthesia-treated groups showed at least a

trend toward a decrease, with a significant decrease in the ISO 7D group (P< 0.05) (Fig 3A).

However, in agreement with the real-time PCR results, there were no significant differences in

BACE-1 protein levels (Fig 3B). Aβ42 oligomers in the hippocampus were detected in various

molecular weight bands ranging from 22 to 31 kDa (Fig 3C). The 22 kDa protein bands were

present in all groups. Compared with the CONT group, the Aβ42 levels were significantly higher

in the anesthesia-treated groups (ISO 0, ISO 0.5D, ISO 1D, ISO 3D and ISO 7D, P< 0.01) (Fig

3C) and were highest in the ISO 3D group. The 27 kDa protein bands existed in all except the

CONT and ISO 0 groups. Aβ42 levels in other anesthesia-treated groups were significantly

higher than in the ISO 0.5D group (ISO 1D, ISO 3D, P< 0.01; ISO 7D, P< 0.05) (Fig 3C).

The 31 kDa protein bands were present in the ISO 1D, ISO 3D and ISO 7D groups. Compared

with the ISO 1D group, Aβ42 levels were significantly lower in the ISO 3D and ISO 7D groups

(P< 0.01) (Fig 3C). There is an upregulation in the overall levels of Aβ42 from the group ISO 0

to ISO 3D.

Isoflurane anesthesia induced formation of Abeta plaques in the

hippocampus of aged rats

Paraffin-embedded 5-μm sections from the hippocampus were used to detect Abeta plaques,

stained orange-red by Congo red staining (Fig 4). The Abeta plaques were visible under an

optical microscope (400). Abeta plaques were observed in the hippocampi of rats in ISO 3D

Fig 2. Effects of isoflurane anesthesia on the mRNA levels of APP and BACE-1 in the hippocampus of

aged rats. Twenty 4-month-old rats were exposed to 2% isoflurane anesthesia for 2 h. The expression of

APP and BACE-1 mRNA in the hippocampus of aged rats were measured by the quantitative real-time PCR.

(A) The hippocampal APP mRNA expression increases significantly over time after isoflurane anesthesia. (B)

There is no significant change in the level of BACE-1 mRNA. Data are presented as the mean ± SD (n = 12

per group).

https://doi.org/10.1371/journal.pone.0175654.g002
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and ISO 7D groups. However, Abeta plaques were not observed in the CONT, ISO 0, ISO

0.5D or ISO 1D group.

Discussion

In our study, we explored effects of isoflurane anesthesia on cognitive impairment in aged rats.

We also examined the relationship between these cognitive impairments and certain AD-asso-

ciated β-amyloid protein-related properties in the hippocampi of these animals.

Fig 3. Effects of isoflurane anesthesia on the levels of APP, BACE-1 and Aβ42 oligomers protein in the

hippocampus of aged rats. The levels of APP, BACE-1 and Aβ42 oligomers protein in the hippocampus of

aged rats were measured by the Western blot. Representative results of APP, BACE-1 and Aβ42 oligomers

protein expression in the hippocampus were shown (A), (B) and (C) respectively. Results are presented as

the ratio of the intensity of the APP, BACE-1 and Aβ42 protein bands to the intensity of the β-actin protein

bands respectively. Data are presented as the mean ± SD (n = 12 per group). *P < 0.05, **P < 0.01 vs. the

CONT group. †P < 0.05, ††P < 0.01 vs. the ISO 0.5D. #P < 0.05, ##P < 0.01 vs. the ISO 1D.

https://doi.org/10.1371/journal.pone.0175654.g003
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Our study showed that isoflurane induced spatial memory impairments in the aged rats.

The swimming speed was unaffected and maintained at a normal level after isoflurane anesthe-

sia, indicating motor deficits in aged rats were not responsible for spatial memory impairments

after test exposures. But longer escape latency and increased number of platform crossing in

rats after isoflurane anesthesia were observed compared with the control group. Based on

these results, we found that rats exposed to 1.5% isoflurane anesthesia for 2 h exhibited spatial

memory impairments in the MWM test, indicating that proper dose of anesthesia can induce

cognitive impairment in aged rats and this memory impairment in aged rats was mainly the

disorder of evocation. Based on previous findings, it is evident that the commonly used inhaled

anesthetic isoflurane can have an impact on the neuropathogenesis of AD [15, 21]. Although

one previous study showed that isoflurane anesthesia for 4 h did not impair spatial reference

learning of 2-month-old rats or affect long-term memory at 4 months [26], several other

reports showed that isoflurane impaired learning and memory in rats [19, 21, 27, 28]. The dis-

crepancies among these studies might be caused by differences in animal ages, methods,

including the times at which tests were performed, and anesthesia concentrations. In addition,

the escape latency in ISO 7D group and the number of platform crossings in ISO 3D, ISO 7D

groups did not return to normal levels. From these results, we speculate that 1.5% isoflurane

anesthesia for 2 h can induce transient cognitive impairments in aged rats. However, whether

these effects keep more than one week is not yet clear.

APP may serve an essential role in the maintenance of synaptic function during ageing [29–

31], but studies on APP mainly focused on its role in the pathogenesis of AD. Isoflurane was

shown to promote abnormal APP processing and possibly to accelerate clinical progression

of AD-related neurodegenerative disorders [14, 15, 32]. In our study, we found that 1.5% iso-

flurane anesthesia for 2 h increased APP mRNA but decreased APP protein expression (or

increased APP depletion) in the hippocampus of aged rats. The correlation between mRNA

and protein expression in multicellular organisms may not be consistent due to many factors

including transcription efficiency, translation and degradation rates [33]. Moreover, APP pro-

tein was easy to be processed into downstream products via the amyloidogenic pathway or the

non-amyloidogenic pathway [4]. In particular, we observed that APP protein expression in the

isoflurane-treated groups showed a downward trend after anesthesia, but total amount of Aβ42

expression in the isoflurane-treated groups showed an upregulation after anesthesia. It was

reported that exposure to 2% isoflurane for 6 h promoted APP processing and induced Aβ
overproduction in H4 human neuroglioma cells stably transfected to express human wildtype

full-length APP [15]. This is consistent with our finding that 1.5% isoflurane anesthesia for 2-h

impacted APP processing in the aged rat hippocampus. Therefore, our data suggest that 1.5%

isoflurane anesthesia increased APP depletion through the amyloidogenic pathway to induce

Aβ42 overexpression in the aged rat hippocampus. It is notable that no significant effects of iso-

flurane on BACE-1 mRNA or protein expression in the aged rat hippocampus were observed

in our study. BACE expression is known to be elevated in the AD brain. A clinically relevant

study indicated that isoflurane increased the levels of BACE and Aβ expression in the brain of

C57/BL6 mice between 6 and 24 h following administration [20]. However, a follow-up study

showed that isoflurane anesthesia did not affect BACE levels in the aged rat hippocampus [34].

Although the levels of BACE-1 were not changed in our study, we speculate that BACE-1 still

catalyzed the APP progressing via the amyloidogenic pathway combined with the results of

APP and Aβ42. In addition, isoflurane could induce β-Amyloid accumulation by enhancing

levels of γ-secretase in H4 APP cells [35]. In our study, it is possibly that isoflurane alters the

levels of γ-secretase and promote the APP progressing in the aged rat hippocampus.

Aβ, with a molecular weight of about 4.3 kDa, is a peptide with a folded configuration [36].

Aβ is primarily produced by serial proteolysis of APP by BACE-1. Monomeric Aβ in the brain
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can oligomerize into higher molecular weight forms, including dimers (8–10 kDa), trimers (13

kDa), tetramers (17 kDa), pentamers (22 kDa), hexamers (27 kDa), heptamers (31 kDa) and

nonamers (40 kDa) [36, 37]. Emerging evidences accumulated in recent years demonstrated

that amyloid beta-derived diffusible ligands (ADDLs, 15–56 kDa) have prominent neurotoxins

in AD [36, 38, 39]. In our study, the primary Aβ42 oligomers detected in the hippocampi of

aged rats after isoflurane anesthesia mainly were pentamers, hexamers and heptamers, belong-

ing to ADDLs. ADDLs can cause mature neuronal damage, synaptic dysfunction and oxidative

stress injury in the early of AD [36, 40, 41]. One previous report demonstrated that isoflurane

enhanced Aβ oligomerization rates and increased its toxicity in vitro [42]. Another study also

showed that repetitive 2% isoflurane exposure led to higher levels of Aβ oligomers in APP

mice, compared with in wildtype mice [43]. Therefore, we propose that the overproduction of

Aβ42 oligomers was caused by promotion of oligomerization of the peptide by isoflurane anes-

thesia. Furthermore, we observed increased levels of Aβ42 oligomers in the hippocampus after

anesthesia at the same time that the aged rats exhibited significant cognitive impairments in

the MWM test. Other studies also showed a close connection between increased Aβ oligomers

and cognitive dysfunction [44, 45]. Endogenous Aβ42 oligomers were first positively identified

in APP transgenic mice in year 2003 [46]. Early work revealed that, at high levels, Aβ42 induced

an AD-like synaptic loss in transgenic mice without forming amyloid plaques [47]. Aβ42 oligo-

mers derived from Tg2576 mice (APP-overexpressing transgenic mice) impaired memory or

caused neuronal loss when administered to the brains of young wildtype rats, suggesting that

these oligomers may have a causative effect on cognitive deficits associated with AD [48]. In

more recent studies, soluble Aβ oligomers were implicated as synaptotoxins, potentially induc-

ing an AD-related synapse failure and neurotoxicity, leading to cognitive impairment in AD

[49]. The results of Congo red staining in our study were consistent with a role for Aβ oligo-

mers in the neuropathology. We found significant Abeta plaques in the hippocampi of rats in

the ISO 3D and ISO 7D groups, indicating formation of amyloid deposits by days 3 and 7.

Fig 4. Localization of the Abeta plaques in hippocampus tissue slice after isoflurane anesthesia

under an optical microscope (400). Detection of the Abeta plaques in the hippocampus of aged rats by

Congo red staining. The Abeta plaques were staining orange red. Sections from the CONT, ISO 0, ISO 0.5D,

ISO 1D, ISO 3D and ISO 7D were showed.

https://doi.org/10.1371/journal.pone.0175654.g004
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Thus, our results suggest that Aβ oligomers were important in isoflurane induced cognitive

impairments in aged rats, indicating that these impairments may have an AD-related etiology.

In conclusion, in the aged rat hippocampus, isoflurane anesthesia increased the expression

of APP mRNA and depletion of APP protein and promoted the overexpression and oligomeri-

zation of Aβ42 peptide, ultimately resulting in formation of Abeta plaques. These effects may

contribute to the cognitive impairments observed in these rats after isoflurane anesthesia.

Additionally, our findings should inform future investigations of the mechanism of isoflurane-

induced cognitive impairment and help to elucidate the pathogenesis of AD in the older.
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