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ABSTRACT Ocean oxygen minimum zones (OMZs) around the global ocean are
expanding both horizontally and vertically. Multiple studies have identified the sig-
nificant influence of anoxic conditions (#1 mM O2) on marine prokaryotic commun-
ities and biogeochemical cycling of elements. However, little attention has been
paid to the expanding low-oxygen zones where the oxygen level is still above the
anoxic level. Here, we studied the abundance and taxonomic and functional profiles
of prokaryotic communities in the Bay of Bengal (BoB), where the oxygen concentra-
tion is barely above suboxic level (5 mM O2). We found the sinking of Trichodesmium
into deep water was far more efficient than that of Prochlorococcus, suggesting
Trichodesmium blooms might be an essential carbon and nitrogen source for the
maintenance of the BoB OMZ. In addition to the shift in the prokaryotic community
composition, the abundance of some functional genes also changed with the
change of oxygen concentration. Compared to oxic (.60 mM O2) Tara Ocean and
high-hypoxic (.20 to #60 mM O2) BoB samples, we found more SAR11-nar sequen-
ces (responsible for reducing nitrate to nitrite) in low-hypoxic (.5 to #20 mM O2)
BoB waters. This suggested SAR11-nar genes would be more widespread due to the
expansion of OMZs. It seems that the nitrite-N was not further reduced to nitrogen
through denitrification but likely oxidized to nitrate by Nitrospinae in the BoB OMZ
and then accumulated in the form of nitrate-N. However, the lack of N2 production
in the BoB would change if the BoB OMZ became anoxic. Together, these results
suggested that reduction of oxygen concentration and OMZ expansion may increase
the use of nitrate by SAR11 and N2 production in the BoB.

IMPORTANCE Recognizing the prokaryotic community and its functions in hypoxic
(.5 to #60 mM O2) environments before further expansion of OMZs is critical. We
demonstrate the prokaryotic community and its potential functions in nitrogen me-
tabolism in the Bay of Bengal (BoB), where oxygen concentration is barely above
suboxic level. This study highlighted that Trichodesmium might be an essential car-
bon and nitrogen source in the maintenance of the BoB OMZ. Additionally, we sug-
gest that the lack of N2 production in the BoB would change if the BoB OMZ
became anoxic, and the expansion of OMZs in the global ocean may potentially
increase the use of nitrate by SAR11.
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Oxygen minimum zones (OMZs) are defined as subsurface oceanic regions (100- to
1,500-m depth) with low oxygen concentrations (#20 mM) due to decomposition

of sinking organic material as well as reduced ventilation (1, 2). The O2 concentration
of suboxic OMZs is #5 mM, while anoxic OMZs have #10 nM O2 (3, 4). There are four
permanent OMZs in the global ocean, including the eastern tropical North Pacific
(ETNP), the eastern tropical South Pacific (ETSP), the Arabian Sea (AS), and the Bay of
Bengal (BoB), all of which are hot spots of pivotal processes that mediate the biogeo-
chemical cycles of elements, the flux of greenhouse gases (e.g., CH4 and N2O), and
trace metal recycling in the ocean (5). Increasing stratification and enhanced biological
oxygen demand caused by climate change and anthropogenic pollution are driving
the expansion of these OMZs both horizontally and vertically (6–8).

Under suboxic/anoxic conditions, some microbes adapt to utilize nitrate as an elec-
tron acceptor (1, 9) due to its free energy of reduction being similar to that of oxygen.
Hence, organic carbon mineralization in OMZs is fueled principally by the reduction of
nitrate to nitrite. This process is carried out by a variety of microbes, including the
abundant SAR11 (Pelagibacteraceae) clade (10). Moreover, nitrite can be further
reduced to N2 by denitrification or anammox. These two processes are estimated to
make 30% to 50% of the oceanic fixed-nitrogen (N) loss in OMZs (11, 12). Other biogeo-
chemical processes mediated by microorganisms, such as sulfur cycling, can be
detected in open-ocean OMZs. For example, sulfate reduction genes in particles and
sulfur-oxidizing genes in the water column were detected (13), while other studies
found that sulfur oxidation occurs in particles but not in the water (14, 15). Studies
have pointed out that ongoing global expansion and intensification of OMZs may
influence the microbial community compositions and functions and that the marine
nutrient cycles and carbon budget may be altered, thus resulting in a higher loss of
nitrogen and production of greenhouse gases (9, 16).

The BoB has a strong seasonality driven by the Asian monsoon system (17). Heavy
rainfall and the associated river discharge in summer (June to September) cause a con-
siderable drop in surface water salinity (18). This, together with increased surface water
temperature, induces strong stratification of the water column, limiting nutrient flux
from subsurface water to the ocean surface, therefore making the BoB an area of rela-
tively low primary production compared to the Arabian Sea (19). The BoB does not
span a broad region with absolute anoxia as the other three OMZs do, and no indica-
tion of nitrogen loss has been observed although oxygen levels are below 1 to 2 mM
(20). Additionally, under the stratified and nitrogen-limited conditions, blooms of
Trichodesmium, a common diazotrophic cyanobacterium, occur sporadically and
abruptly in the BoB (21). This makes the BoB an ideal area to recognize the diversity
and metabolic properties of the prokaryotic community in hypoxic waters. With the de-
velopment of sequencing technology and data analysis methods, investigations on mi-
crobial diversity and related functional metabolism have become more accurate and
detailed. For instance, the application of metagenomics and metatranscriptomics has
produced generous information about prokaryotic diversity and metabolism function
in the ETNP, ETSP, and Arabian Sea (5, 13, 14, 22–26). However, to our knowledge, the
prokaryotic potential metabolism based on metagenomics in the BoB has not been
reported. Several studies had revealed that abundant microbes were involved in nitro-
gen and sulfur metabolism pathways based on quantitative PCR of functional genes or
Tax4Fun prediction in the BoB (20, 27). However, the functions predicted from taxono-
mies (inferred by 16S rRNA) are inaccurate, especially in nonhuman samples (28). To
understand the significant taxa which participate in biogeochemical processes, meta-
genomic techniques need to be applied to provide an accurate and comprehensive
analysis of the functional profiles of the microbes in the BoB OMZ. This work utilized
both amplicon sequencing and metagenomic approaches to comprehensively recog-
nize the taxonomic and functional diversity of prokaryotes in hypoxic waters.
Additionally, we compared the metagenomic data set from the OMZ layer in the BoB
(500 m) and that from the oxygenated mesopelagic waters of the Tara Oceans
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expedition to know the differences among the prokaryotic functional profiles in OMZs
and non-OMZs.

RESULTS
Environmental characteristics. In all sampling stations, temperature (ranging from

2.6 to 30.5°C) decreased with increasing depth (see Fig. S1a and Table S1 in the supple-
mental material). We found considerably lower surface water salinity in the northern
(32.1 to 33.6) than in the southern (34.5 to 35.7) sampling stations (Fig. S1b). Oxygen
concentrations sharply declined below the mixed layer (ca. 40- to 50-m depth) to mid-
water depth (ca. 500- to 700-m depth), and the OMZ broadened from south to north
(Fig. S1c). The oxygen concentration at 500 m was 6.2 to 53.2 mM (average, 24.1 mM),
significantly lower (analysis of variance [ANOVA], P , 0.001) than that of the other
three depths (surface, deep chlorophyll maximum [DCM], and 2,000 m), which ranged
from 44.7 to 202.3mM (average, 135.7mM). Hence, we defined samples from 500 m as
the BoB OMZ samples here. Among all samples, the 500-m depth of stations E87-30
and E87-32 had the lowest oxygen concentrations (6.2 mM and 7.0 mM, respectively)
but the maximum nitrate concentration (46.8mM and 39.6mM, respectively) (Table S1).
The concentration of nitrite was 0.1 to 0.4mM in the deep samples, and the maximum
concentration (0.6 mM) was detected in the DCM sample of E87-30 (Table S1).
Phosphate concentration showed a similar distribution pattern as that of nitrate.
Silicate concentration increased with depth (Fig. S1).

Microbial abundance. The maximum abundance (1.3 � 106 cells mL21) of hetero-
trophic prokaryotes occurred in the depth of DCM of station EI-03, while the minimum
abundance (2.5 � 104 cells mL21) was observed at the 2,000-m depth of station E87-30
(Fig. 1b). In the middle layer (ca. 200- to 1,500-m depth), heterotrophic prokaryotes
exhibited higher abundance in the north (stations E87-30 and E87-32), where oxygen
concentration was relatively lower (Fig. 1b and Fig. S1). The heterotrophic prokaryotic
abundances for 500-m samples of stations E87-23 (1.6 � 105 cells mL21), E87-30
(1.2 � 105 cells mL21), and E87-32 (1.4 � 105 cells mL21) were higher than those of sta-
tions EI-09 (6.1 � 104 cells mL21) and EI-03 (7.3 � 104 cells mL21). The highest
Prochlorococcus abundance was observed at 75-m depth (near DCM) in stations E87-30
(1.1 � 105 cells mL21) and E87-32 (1.0 � 105 cells mL21). Below the euphotic zones
(200 m), Prochlorococcus and Synechococcus can still be detected at an abundance of
around 102 to 104 cells mL21. Surprisingly, Synechococcus (1.5 � 104 cells mL21 at 500-m
depth of station E87-32) and Prochlorococcus (1.1 � 104 cells mL21 at 800-m depth of sta-
tion E87-30) had a relatively high abundance in the noneuphotic zone (Fig. 1b).

Prokaryotic diversity and community composition. The Chao1 index values of 60
samples varied from 2,177 to 4,892 based on the 16S rRNA gene analysis (Fig. S2 and
Table S1). A spatial difference in the Chao1 index was observed. For example, at the
DCM layer, the Chao1 index was markedly lower at stations E87-23 and E87-30 (aver-
age, 2,777.4) than at the other three stations (average, 3,958.0). The Shannon and
Simpson indices were slightly higher at 500 m (average, 4.8 and 1.0, respectively) than
at 2-m (average, 3.9 and 0.9, respectively), DCM (average, 4.4 and 0.9, respectively), and
2,000-m (average, 4.5 and 0.9, respectively) depths (Fig. S2). The diversity index values
at each depth did not show the north-south pattern like the oxygen concentrations.
Principal-coordinate analysis (PCoA) was applied to analyze the pattern of microbial
community structure among the different sampled depths. Samples were generally
clustered into different groups according to the sampling depth, although some sam-
ples of 2-m depth and DCM overlapped (Fig. S3). This indicated that sampling depths
had distinct compositions, especially at 500-m depth, where the oxygen concentration
was the lowest (Table S1). However, there was an absence of notable north-south pat-
terns for community structure among OMZ samples.

In total, 45 bacterial phyla were identified in the 16S rRNA amplicon data sets,
although most of them had a relative abundance of less than 1%. Alphaproteobacteria,
Cyanobacteria, and Actinobacteria were predominant in the euphotic zone (2-m depth and
DCM), accounting for 73.1 to 92.4% (Fig. 2a). In the deep samples (500-m and 2,000-m
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depth), prokaryotic communities were characterized by a higher relative abundance of
Alphaproteobacteria (14.6 to 35.3%), Euryarchaeota (4.3 to 24.0%), and Thaumarchaeota
(13.1 to 49.8%), except for the samples at 2,000-m depth of stations E87-30 and E87-32,
where Actinobacteria (7.7 to 40.0%) were more abundant than in other samples
(Fig. 2a). At the family level, samples from 2-m depth were mainly dominated by
Rhodobacteraceae, Synechococcaceae, and SAR11 (Pelagibacteraceae in Fig. S4a), which
collectively contributed to 60.4 to 89.0% of the total sequences (Fig. S4a). SAR11 (14.6
to 39.2%) was the most abundant family in DCM, followed by Synechococcaceae (15.8
to 29.4%) (Fig. S4a). There was an obvious shift of microbial community composition in
the deep samples (500-m and 2,000-m depth), which were generally dominated by
Cenarchaeaceae (12.7 to 52.7%) (Fig. S4a).

Prokaryotic community composition based on the 16S rRNA data sets was quite dis-
tinct from that of the metagenomes (Fig. 2b and Fig. S4). The relative abundance of
archaea in the prokaryotic community compositions based on the metagenomic data
set was far lower than that in the 16S-based prokaryotic community compositions at
500-m depth (Fig. 2 and Fig. S4). Thaumarchaeota and Euryarchaeota accounted for ca.
10.0% and 2.0% of the metagenomic community at the BoB 500-m depth, respectively
(Fig. S4b). In station E87-32, it was worth noting that the relative abundance of
Trichodesmium was only 17.8% in the 2-m sample but reached 81.9% in the 500-m

FIG 1 (a) Map of the study region in the Bay of Bengal showing the locations of the sampling stations. (b) Vertical distribution of microbial abundance (cells
per milliliter, log10 transformed) including Synechococcus, Prochlorococcus, heterotrophic prokaryotes, and picoeukaryotes in the BoB. (c) Percentage of each
genus in cyanobacteria (based on metagenome data). The 13 metagenomic samples of the BoB in panel c are marked in panel b at the corresponding depth
with stars by different colors according to stations.
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sample, whereas the relative abundance of Prochlorococcus decreased from 66.7% at 2
m to 2.4% at 500 m (Fig. 1c).

Distinct distributions of the operational taxonomic units (OTUs) (based on 16S rRNA
data set) within the same family were observed across the four depths (Fig. 2c). For
SAR11 (Pelagibacteraceae), OTU1, OTU18, and OTU27 were abundant in the euphotic
samples, while OTU12, OTU19, and OTU31 were more dominant in the noneuphotic
zones (Fig. 2c). Although there were many Cenarchaeaceae members in the deep sam-
ples, they belonged to different OTUs between 500-m and 2,000-m depths. For
instance, OTU2 and OTU5 were abundant at both 500 m and 2,000 m, whereas OTU16,
OTU17, OTU20, OTU23, OTU28, OTU35, OTU36, and OTU46 had a higher abundance at
the 500-m than at the 2,000-m depth (Fig. 2c).

Prokaryotic network structure complexity and stability. The network of prokary-
otic communities (based on 16S rRNA data set) at each depth demonstrated distinct
cooccurrence patterns (Fig. S5 and Table S2). A network containing 284 nodes and
1,357 links was obtained for prokaryotic communities at 2-m depth, and the network
was fragmented into 9 modules (Fig. S5a and Table S2). The prokaryotic communities
of DCM resulted in a network of 317 nodes and 1,153 links that was fragmented into
19 modules (Fig. S5b and Table S2). Significantly, the network of the 500-m depth was
constructed by 219 nodes and 156 links, and the network was fragmented into 72
modules (Fig. S5c and Table S2). A network of 336 nodes and 575 links was obtained
for prokaryotic communities at 2,000-m depth, and the network was fragmented into
59 modules (Fig. S5d and Table S2). Values of average degree and average clustering

FIG 2 (a) Prokaryotic community composition of the BoB at the phylum or class level based on 16S rRNA gene sequences. Sequences were taxonomically
classified using the classify.seqs command in Mothur with 80% confidence threshold, based on the SILVA version 138 reference database. The stations of
each depth (x axis) are shown from south to north (i.e., from station EI-09 to station E87-32). Note that each sample was triplicate. (b) Prokaryotic
community composition of the BoB and Tara samples at the phylum or class level based on metagenome sequences. Sequences are taxonomically
classified using Diamond based on the GenBank nr database. The cutoff identified values for the class and family level are 46% and 55%, respectively,
according to the work of Luo et al. (92). The stations of each depth (x axis) in the BoB are shown from south to north (i.e., from station EI-03 to station
E87-32 for 2 m and DCM and from station EI-09 to station E87-32 for 500 m). (c) Relative abundance (log transformed) and taxonomic classification of the
top 50 most abundant OTUs in the BoB.
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coefficient for 500-m networks were the lowest (Table S2). A markedly higher modular-
ity and number of modules in the OMZ samples (1.0 and 72, respectively) than in other
layers (Fig. S5 and Table S2) were observed (Fig. S5c and d and Table S2), which sug-
gests the simplicity and instability of the OMZ network structure in the BoB.

In the 2-m-depth and DCM networks, nodes were mainly comprised of Rhodobacteraceae
(34.2%) and SAR11 (18.0%), respectively. Nevertheless, at 500-m and 2,000-m depths, the
nodes mainly belonged to the archaeal family Cenarchaeaceae (23.7% and 18.5%, respec-
tively) (Fig. S5). SAR11 also accounted for a significant proportion of nodes at 2-m
(14.8%), 500-m (18.7%), and 2,000-m depths (9.5%) (Fig. S5). Synechococcaceae, which
had a high relative abundance of the community composition in the euphotic zones,
contributed only 6.7% and 5.4% of the nodes in 2-m-depth and DCM networks, respec-
tively, but they were associated with a high number of other OTUs (e.g., SAR11 and
Alteromonadaceae) in the networks (Fig. S5).

Relationship between prokaryotic community composition and environmental
variables. Redundancy analysis (RDA) was performed to identify possible linkages
between the prokaryotic community composition and environmental variables. Nitrate,
depth, dissolved oxygen (DO), and salinity were the most important factors for the com-
munity differences between the euphotic zone (2-m depth and DCM) and deep samples
(500-m and 2,000-m depth) (Fig. S6a). At the euphotic zone, temperature and nitrite
were crucial variables determining the prokaryotic community composition (Fig. S6b). In
contrast, DO and P played a vital role in the community differences in the deep samples
(Fig. S6c).

Linear regression analyses showed that the relative abundance of all dominant
archaeal groups, including Cenarchaeaceae, Marine Group II, and Marine Group III,
exhibited significant negative correlation with DO concentration (R2 = 0.38, P , 0.001;
R2 = 0.67, P , 0.001; and R2 = 0.31, P , 0.001, respectively) (Fig. S7). However, the rela-
tive abundances of the most dominant bacterial families (e.g., Synechococcaceae and
Rhodobacteraceae) were positively correlated with oxygen concentration (Fig. S7).

Metagenomic analysis of nitrogen metabolism. The genes of nitrogen metabo-
lism in the BoB were mainly involved in pathways of assimilatory nitrate reduction
(narBGHI), denitrification (nirK, norBC, and nosZ), nitrogen fixation (nifKH), and nitrifica-
tion (nxrAB and amoABC) (Fig. 3a). In general, the amoABC (ammonium monooxygen-
ase), narGH (nitrate reductase), and nirK (nitrite reductase) genes were more abundant
in OMZ samples than in other water layers (Fig. 3 and Table S3), indicating potentially
more active ammonia oxidation, nitrate reduction, and denitrification in the BoB OMZ
than in the other depths. The narGH genes were more abundant at E87-30-500 m, E87-
32-500 m, and Tara-138, where oxygen concentration was the lowest (Fig. 3b and
Table S1). The values of transcripts per million (TPM) of SAR11 narGH genes (nitrate re-
ductase) markedly increased at E87-30-500 m, E87-32-500 m, and Tara-138 (Fig. 3c)
and showed a close relationship with oxygen concentration (see Fig. 5a and b, linear
model analysis, R2 = 0.78 and 0.75, respectively). This indicates the potential impor-
tance of SAR11 in anaerobic nitrate reduction in the BoB. The taxonomy of amoABC
and nirK genes found at the DCM and 500-m depth of the BoB and Tara samples
mainly belonged to Thaumarchaeota (Fig. 3c). The nirA gene (belonging to assimilatory
nitrite reduction), which transforms nitrite to ammonium, was mostly contributed by
Cyanobacteria at 5-m depth and DCM but mainly by Actinobacteria at 500-m depth
(Fig. 3c). In addition, a relatively high abundance of the nxrA gene affiliated with
Nitrospinae was observed at 500-m depth (Fig. 3c).

Metagenomic analysis of sulfur metabolism. The sulfur cycle genes were predo-
minated by assimilatory sulfate reduction (cysCDHNIJ), dissimilatory sulfate reduction
and oxidation (aprAB and dsrAB), and sulfur-oxidation (SOX) system (soxABCXYZ) genes
(Fig. 4a). These results showed that genes related to the sulfur cycle were abundant in
the BoB, especially in the 500-m layer compared to euphotic zones (Fig. 4b). The cysI
(sulfite reductase), sir (sulfite reductase), and dsrAB (sulfur oxygenase and sulfate reduc-
tase) genes were more abundant at 500-m depth than at the 2-m depth and DCM of
the BoB (Fig. 4b and Table S4). These genes were contributed by distinct microbial taxa
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FIG 3 (a) Nitrogen cycling potential in the BoB. (b) TPM value (square transformed) of nitrogen metabolism-related genes. The stations of
each depth (x axis) in the BoB are shown from south to north (i.e., from station EI-03 to station E87-32 for 2 m and DCM and from station

(Continued on next page)
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in the euphotic zone (2-m depth and DCM) and the deep ocean (500-m depth and
Tara) (Fig. 4c). For example, cysH (39-phosphoadenosine 59-phosphosulfate reductase),
sat (sulfate adenylyl transferase), and sir primarily belonged to Prochloraceae at 2-m
depth and DCM of the BoB, whereas they predominantly belonged to Thaumarchaeota
at 500-m depth of the BoB and Tara samples (Fig. 4c). It was notable that the relative
contributions by SAR11 to the cysHIJ markedly increased at E87-30-500 m, E87-32-500
m, and Tara-138, where oxygen concentration was the lowest (Fig. 4c and Table S1).
Furthermore, the linear model showed a significant correlation (R2 = 0.47 and 0.71,
respectively) between oxygen concentration and TPM values of SAR11 cys genes
(Fig. 5c and d), suggesting the importance of SAR11 in the BoB OMZ.

DISCUSSION

Overall, we detected an extensive OMZ in the BoB, where prokaryotes perform
diverse metabolisms under hypoxic conditions. The lowest oxygen concentration
(6.21 mM) among the four sampling depths of the five stations was higher than previ-
ously described in the BoB OMZ (below the detection limit of 7 to 12 nM and 0.6 mM,
respectively) (20, 27). It was also higher than that detected in other OMZs, such as AS,
ETNP, and ETSP (below the detection limit) (3, 4, 29, 30). Hence, the present study
expands the current knowledge about prokaryotic diversity and its potential function
in the OMZs where oxygen concentration is still above the suboxic level.

The sinking of Trichodesmium in the BoB. The cyanobacteria Synechococcus and
Prochlorococcus are always detected with a high abundance in the euphotic zones
above the OMZs (31–33), and their sinking provides a considerable carbon source for
OMZs (34). For example, the abundance of Synechococcus and Prochlorococcus in the
OMZ of the Costa Rica Dome peaked at 106 cells mL21 (35). Similarly, a high
Synechococcus and Prochlorococcus abundance (up to 105 cells mL21) was observed in
the BoB euphotic zones (Fig. 1b). Furthermore, the metagenomic data showed a domi-
nance of Prochlorococcus among the cyanobacterial community in the BoB euphotic
zones (Fig. 1c). Also, up to 1.13 � 104 cells mL21 of Prochlorococcus were detected at
800-m depth. They could be from the sinking of upper layers or could survive in the
deep ocean waters (36, 37). At station E87-32, we observed a Trichodesmium bloom on
the sea surface during the sampling. The metagenomic analysis estimated that
Trichodesmium constituted 17.76% of the cyanobacterial community (Fig. 1c). The
Trichodesmium bloom at the surface water of E87-32 was not reflected in the 16S rRNA
amplicon and metagenomic data set at the DCM of the same station. The DCM layer is
predominated by other cyanobacteria like Prochlorococcus and Synechococcus that
contribute the majority of the sequence result. Interestingly, despite the fact that
Trichodesmium was not the most dominant cyanobacterium in the surface layer
(17.6%) of the station E87-32, its relative abundance increased to 81.9% at 500 m
(Fig. 1c), suggesting that the sinking of Trichodesmium was far more efficient than that
of other cyanobacteria (e.g., Prochlorococcus) into the OMZ layer. This was possibly
caused by the increase of transparent exopolymers by programmed cell death of
Trichodesmium, which can happen due to phosphorus starvation, resulting in a massive
downward pulse of particulate organic matter (29, 30). Trichodesmium is known as a
nitrogen fixer and a source of dissolved organic nitrogen/ammonium (38). In the pres-
ent study, the ammonium concentrations in the whole water column of station E87-32
were higher (average ca. 2- to 4-fold) than those in other water columns and the high
concentration continued even to 2,000-m depth (see Fig. S1g in the supplemental ma-
terial). Given the abundant Trichodesmium population inhabiting surface waters of the

FIG 3 Legend (Continued)
EI-09 to station E87-32 for 500 m). Oxygen concentrations (micromolar) of Tara samples are shown in the parentheses after sample
names. (c) Microbial taxa of the genes and their relative abundance in each sample. The stations of each depth (x axis) in the BoB are
shown from south to north (i.e., from station EI-03 to station E87-32 for 2 m and DCM and from station EI-09 to station E87-32 for 500
m), and the Tara samples are shown in the same order as in panel b.
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BoB throughout the year (21, 39, 40), it is reasonable to speculate that Trichodesmium
has a considerable contribution of carbon and nitrogen input into the OMZ layer and
even the deeper ocean for the maintenance of the BoB OMZ. However, we found a low
abundance of nitrogen fixation-related genes (nif) in the surface layer of station E87-32
and no nif genes in the OMZ samples of the BoB. This was different from the study in
the OMZ off Peru, where nitrogen fixation within OMZ waters was detected (41), but
was very similar to work in offshore anoxic OMZs (42–44). Diazotrophic activities may
frequently be relevant to organic carbon availability (41, 42, 44), and it partially
explains the different distributions of nif genes between coastal and offshore OMZs.

Specific prokaryotic community of the BoB. Decomposition of sinking organic
materials could result in the decrease of oxygen concentration, which would restructure
the prokaryotic community in the OMZ. In the present study, euphotic zone communities
were dominated by Alphaproteobacteria and Cyanobacteria, while the community compo-
sition shifted toward Thaumarchaeota and Euryarchaeota in deeper waters (500- and
2,000-m depth) (Fig. 2a and b). The Synechococcaceae made a relatively higher contribu-
tion at 2-m depth of stations EI-03 and E87-23 (Fig. S4a) than in 2-m-depth samples of
other stations. The PCoA further indicated the prokaryotic community of these two sam-
ples was more closely related to the prokaryotic community at the DCM (Fig. S3).
Consistently, a peak in Synechococcus abundance was observed in these two sample
types (Fig. 1b). This pattern was possibly caused by the upwelling in the equatorial east-
ern Indian Ocean, which is predominantly forced by atmospheric intraseasonal oscilla-
tions and shows larger amplitudes during spring (45) when the sampling was conducted
(April-May). Therefore, nutrients were brought to the surface water to support the
Synechococcus growth.

Below the euphotic zones, Euryarchaeota and Thaumarchaeota accounted for 4.3 to
24.0% and 13.1 to 49.8% of total prokaryotic communities, respectively. Such a high rel-
ative abundance of archaea was not observed in previous studies in OMZs, no matter
whether they used the same primers (46) or different primers (26, 27) from this study. For
example, Pajares et al. (46) found Euryarchaeota and Thaumarchaeota accounted for only
,5% and ,25% of the prokaryotic communities at 500-m depth of the ETNP, respec-
tively, where these communities were dominated by Alphaproteobacteria (ca. 50%).
However, such a high relative abundance of archaea was not found in the metagenomic
data (Fig. 2b and Fig. S4b), which is possibly due to the primer bias. Parada et al. (47)
found the primer 806R underestimated SAR11 taxa, and they observed an increase in
Thaumarchaea coverage when using 806R compared to 926R. Therefore, for the 16S data
of this study, the primer (341F/806R) may result in underestimation of the abundance for
SAR11 and the overestimation of that for Thaumarchaeota. Another alternative explana-
tion is that the number of archaea in the metagenome was underestimated given the
fact that a large proportion of reads (32.7% to 35.7%) were “unclassified” and that the
archaea are generally more poorly represented in databases than bacteria.

PCoA showed a clear difference between samples from 2-m, DCM, 500-m, and
2,000-m depths (Fig. S3). Furthermore, an independent network was observed at the
500-m depth of the BoB compared with other depths (Fig. S5). These implied a special
prokaryotic community structure and a less stable prokaryotic network in the BoB
OMZ. Similar studies in OMZs observed that microbial communities from the OMZ
form distinct clusters from the euphotic zone and the deep ocean (22, 24, 48). The
specificity of the prokaryotic community would result from the unique physical and
chemical factors (e.g., temperature, salinity, and DO) of OMZs (1, 49). At 500-m depth,
the prokaryotic community was negatively correlated with temperature, salinity, and
DO, similar to the findings of Fernandes et al. (27) in the BoB OMZs. These factors were
reported as major factors influencing prokaryotic community composition (27, 50).

Nitrogen metabolism in the BoB OMZ. As aerobic and anaerobic microbial proc-
esses operate at the same time in waters with low or even undetectable oxygen con-
centrations, characterizing the response of microbial community functions to oxygen
fluctuation can be complex (49). For example, a recent model predicted 0.1 to 10.0 nM
as the minimum oxygen concentration for maintaining aerobic metabolism in OMZs
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FIG 4 (a) Sulfur cycling potential in the BoB. APS, ammonium persulfate; PAPS, 39-phosphoadenylyl sulfate.
(b) Absolute abundance (square transformed) of sulfur metabolism-related genes. (c) Microbial taxa of the

(Continued on next page)
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(51). Also, actual data measured by shipboard incubations showed there were negligi-
ble rates of ammonia oxidation and high rates of nitrite oxidation at anoxic depths of
the ETNP and ETSP (52–54), while both processes were detected in the OMZ off Chile
at low-nanomolar oxygen levels (55). In this study, the amoABC genes were highly
abundant in OMZ samples of the BoB compared to anoxic Tara samples (Tara-138) but
similarly abundant as in oxic Tara samples (Fig. 3b), indicating potentially enriched ni-
trification in the BoB OMZ. Prokaryotic taxa involved in these processes were mainly
Thaumarchaeota. Also, about 70% of detected nirK reads belonged to Thaumarchaeota
(Fig. 3c), which are known to contain multiple copies of nirK-like copper oxidase-
encoding genes (56). In the BoB OMZ, the dominance of archaeal over bacterial ammo-
nia oxidizers was observed (Fig. 3c), which is similar to findings in other OMZs (25, 52,
57, 58) and oxic ocean waters (59, 60). Given the high N2O production rates by archaeal
ammonia-oxidizers under low oxygen concentrations (61), the production of this
greenhouse gas from OMZs would be enhanced by OMZs expanding.

SAR11 bacteria are often the most abundant prokaryotes in the OMZs, as observed
in a number of studies (10, 22, 25) as well as this study (Fig. S4). SAR11 has an impor-
tant role in encoding proteins catalyzing the reduction of nitrate to nitrite in OMZs
(10). In this study, it was surprising that the SAR11-nar genes were detected even in
the incompletely anoxic BoB (Fig. 3c). Then, we observed a significant negative linear
relationship between oxygen concentration and the TPM value of the SAR11-nar gene
(Fig. 5a and b), suggesting the potential importance of SAR11 in nitrate reduction in
the BoB OMZ. This result also indicates that there will be more SAR11 bacteria to use
nitrate after the BoB expands and goes anoxic.

FIG 5 The linear model between DO concentration and TPM value of the nar gene (a and b) and cys
gene (c and d) affiliated with SAR11 (Pelagibacteraceae) at 500-m samples of the BoB and Tara samples.
The gray shadow indicates the confidence interval.

FIG 4 Legend (Continued)
genes and their relative abundance in each sample. For panels b and c, the stations of each depth (x axis of
panels b and c) in the BoB are shown from south to north (i.e., from station EI-03 to station E87-32 for 2 m
and DCM and from station EI-09 to station E87-32 for 500 m), and the Tara samples are shown in the same
order as in Fig. 3b.
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However, the nitrite-N in the OMZ of the BoB seemed to be not further reduced to
nitrogen gas. The quite low abundance of norBC and nosZ indicates the N2 loss in the
BoB was limited compared to that in other OMZs (20). The oxygen concentration of
the BoB ranged from 6 to 200 nM, which would allow nitrite oxidation by Nitrospinae
(20). The relatively high abundance of the nxrA gene affiliated with Nitrospinae sug-
gests this family as the major nitrite-oxidizing bacteria (NOB) in the BoB OMZs as
observed by other studies (62). Therefore, the nitrite available for denitrification in the
BoB was possibly restricted (20) due to the competition between NOB and denitrifiers
for nitrite. Furthermore, the abundance of the nirK gene in low-hypoxic BOB samples
was similar to those in high-hypoxic BoB and oxic Tara samples, and most of the nirK
genes detected in BoB OMZ samples were affiliated with Thaumarchaeota (Fig. 3b and
c). Previous studies have shown that the nirK gene affiliated with Thaumarchaeota is
proposed to be involved in archaeal ammonia oxidation (63, 64) but not nitrite reduc-
tion. These explained that although the abundance of the denitrification-related genes
(nar and nirK) was relatively high in the BoB OMZ, the actual N2 loss from the BoB is
generally low compared to that from other OMZs (20). However, if the oxygen level of
BoB OMZ continues to decline due to warming (65, 66), nitrite oxidation will be sup-
pressed and nitrite will accumulate (20, 67). This may lead to the enhancement of deni-
trification/anammox and therefore may increase N2 loss in the BoB OMZ in the future.

Summary. In this study, we showed the prokaryotic community and its potential
functions in nitrogen metabolism in the BoB OMZ, a pronounced oxygen minimum
zone. We highlighted the importance of Trichodesmium as a carbon and nitrogen
source in the BoB OMZ. Additionally, a large number of archaeal-amo (primarily affili-
ated with Thaumarchaeota) and SAR11-nar genes were detected in the low-hypoxic
(.5 to #20 mM O2) BoB waters. This scene will be more widespread after suboxic
waters expand. Higher proportions of nar genes were affiliated with SAR11 as the oxy-
gen concentrations decreased, indicating that more SAR11 bacteria will use nitrate in
the future ocean if the oxygen levels decrease. Nitrite-N so far was not further reduced
to nitrogen through denitrification but likely oxidized to nitrate by Nitrospinae in the
BoB OMZ. However, if the BoB OMZ becomes anoxic, the lack of nitrogen production
will change.

MATERIALS ANDMETHODS
Sample collection and determination of environmental parameters. Cruises onboard the R/V

Shiyan 3 were carried out in the Eastern Indian Ocean from 22 March to 12 May 2019 (Fig. 1a). Seawater
was collected at 14 depths (2, 25, 50, 75, 85, 90, 100, 150, 200, 300, 500, 800, 1,000, and 2,000 m) at sta-
tions EI-09, EI-03, E87-23, E87-30, and E87-32 (Fig. 1a) using 8-L Niskin bottles assembled on a rosette with
conductivity-temperature-depth (CTD, Seabird SBE-911) mounted with a calibrated oxygen sensor (Seabird
SBE-43). The DCM in each sampling station was varied from 50 m to 90 m (see Table S1 in the supplemental
material). For picoplankton (heterotrophic prokaryotes, Synechococcus, Prochlorococcus, and picoeukaryotes)
abundance measurement, 2 mL seawater was prefiltered by 20-mm mesh and fixed with formaldehyde
(with a final concentration of 1.5%). For prokaryotic community (samples at 2-m, DCM, 500-m, and 2,000-m
depth) and metagenomic (samples at 2-m, DCM, and 500-m depth) analysis, 10 L prefiltered seawater was
filtered onto 0.2-mm (47-mm-diameter) polycarbonate membranes (Millipore) by an aspirator. Samples were
stored at 280°C until analysis. For the measurement of inorganic nutrients (ammonia, nitrate, nitrite, phos-
phate, and silicate), seawater was filtered through a 0.7-mm-pore-size glass fiber filter (Whatman) and stored
in the 80-mL polyethylene bottles at220°C.

In the laboratory, the inorganic nutrients were measured by a flow-injection autoanalyzer
(Quickchem 8500; Lachat Instruments, USA) according to the classical colorimetric methods (68). For
determination of chlorophyll a (Chl a), 500 mL of seawater was filtered through a 0.7-mm-pore-size GF/F
filter (Whatman) and then stored at 220°C. Chl a was extracted with 90% (vol/vol) acetone and meas-
ured using a Turner Design 10-AU fluorometer (69).

Picoplankton abundance. Three picophytoplankton populations (Prochlorococcus, Synechococcus,
and picoeukaryotes) were enumerated using a Becton Dickinson FACSCalibur flow cytometer based on
side light scatter (SSC) and orange and red fluorescence parameters according to a previous protocol
(70). To measure heterotrophic prokaryotic abundance, a portion of the fixed samples were stained with
the nucleic acid dye SYBR green I (Sigma-Aldrich Co., USA) (final dilution 1024, vol/vol), followed by dark
incubation for half an hour. Heterotrophic prokaryotic abundance was detected based on SSC and green
fluorescence (FL1, 530-6 15-nm) signals.

DNA extraction, PCR, and pyrosequencing. Genomic DNA was extracted from the 0.2-mm mem-
branes using the modified enzyme/phenol-chloroform extraction protocol (71, 72). In brief, each
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membrane was cut into small pieces and then transferred into a 2-mL tube with 0.5 mL of solution I
(50 mM EDTA, 50 mM Tris-HCl, and 50 mM sucrose; pH 8.0). Lysozyme (5 mg mL21, final concentration)
was added into the tubes after three freezing-and-thaw cycles using liquid nitrogen and a 60°C dry bath
and then incubated for 1 h at 37°C. Proteinase K (2 mg mL21, final concentration) together with sodium
dodecyl sulfate (0.5%, wt/vol) was added and further incubated for 2 h at 60°C. Then, DNA was extracted
from each sample with an equal volume of phenol-chloroform-isoamyl alcohol (25:24:1). After being
centrifuged for 10 min at 12,000 � g, the upper aqueous layer was transferred to a fresh microcentrifuge
tube. Then, samples were extracted twice with an equal volume of chloroform-isoamyl alcohol (24:1).
The supernatants were transferred to fresh microcentrifuge tubes, and isopropyl alcohol (i.e., 70% vol-
ume of the supernatant) was added. After incubation at 220°C overnight, the DNA in each tube was
concentrated by centrifugation at 12,000 � g for 10 min. The DNA pellets were washed twice using
0.2 mL 70% ethanol and resuspended in 35mL TE buffer (1 mM EDTA, 10 mM Tris-HCl; pH 8.0).

The V3 and V4 regions of the 16S rRNA gene were amplified with modified primers 341F (59-
CCTAYGGGRBGCASCAG-39) and 806R (59-GGACTACNNGGGTATCTAAT-39) (73) for pyrosequencing. The
primers have previously been reported to target both bacteria and archaea (73). The PCR was carried
out in a 25-mL master mix, including 1 mL of DNA, 0.5 mM (each) primer, 1.5 mM MgCl2, 0.2 mM (each)
deoxynucleoside triphosphate (dNTP), 1� PCR buffer, and 1.0 unit of Platinum Taq DNA polymerase
(Invitrogen). We used sterilized water as the negative control. The PCR for each sample was carried out
in triplicate with the following thermal cycles: 5-min initial denaturation at 95°C, followed by 30 cycles
of 95°C for 30 s, 55°C for 30 s, and 72°C for 60 s, followed by a final extension at 72°C for 7 min before
holding at 4°C. The paired-end amplicon sequencing was conducted by the Magigene Company (China)
using the Illumina Hiseq 2500 platform.

The metagenome sequencing was conducted by the Novogene Company (China). Briefly, a total
amount of 1mg DNA per sample was used as input material for the DNA sample preparations. Sequencing
libraries were generated using the NEBNext Ultra DNA library prep kit for Illumina (NEB, USA) following the
manufacturer’s recommendations, and index codes were added to attribute sequences to each sample.
The clustering of the index-coded samples was performed on a cBot cluster generation system according
to the manufacturer’s instructions. After cluster generation, the library preparations were sequenced on an
Illumina PE150 platform, and paired-end reads were generated.

Analysis of 16S rRNA gene amplicons. Amplicons were analyzed with the software Mothur, accord-
ing to the standard protocol (74). In brief, tags and primers were trimmed first using the command trim.-
seqs. Sequences with an average quality score below 20 and lengths shorter than 300 bp were removed,
and then all sequences were aligned against the SILVA version 138 reference database (75) using the
command align.seqs. The filter.seqs command was used to remove columns where every character is ei-
ther a “.” or a “-.” The chimera.uchime command was used to analyze and remove chimeras. Then, the
high-quality sequences were identified with the Greengenes database version 13.8 at a cutoff value of
60% (76). Sequences identified as chloroplasts, mitochondria, or unknown were removed, and remaining
sequences were clustered into operational taxonomic units (OTUs) with cutoff values of 3%. The remov-
e.rare command was used to removed singletons (OTUs with just one sequence). To rarefy the data sets
to an equal sequencing depth, 20,000 sequences were subsampled from each sample for subsequent
analysis. This number of sequences subsampled was also due to the limitation of our computer capabil-
ity. The classify.otu command was used to identify OTUs against the Greengenes version 13.8. database
(76). Subsequently, the rarefaction.single command was used to analyze the alpha diversity of the
samples.

Analysis of metagenomes. Metagenomic analysis was conducted using the SqueezeMeta pipeline
(77). Five metagenomic samples from the Tara Oceans data set were downloaded from the ENA data-
base (http://www.ebi.ac.uk/ena/data/view/) and also analyzed (Table S1). Metagenomic reads were qual-
ity checked and trimmed for low-quality regions using Trimmomatic (78). Then, sequences were
assembled using Megahit with default settings (79). Open reading frames (ORFs) of the assembled con-
tigs (.200 bp) which were identified by the Prodigal software (80) were further annotated using
DIAMOND against both the NR and KEGG databases, with an E value cutoff of 1 � 1023 (81). Raw reads
were mapped to the contigs using Bowtie to calculate the abundance of each ORF (82). The abundance
of each ORF was calculated as TPM = rg � rl � 106/cl � T, where rg is reads mapped to gene g, rl is read
length, cl is coding sequence (CDS) length, and T is the sum of rg � rl/cl for all genes (83). Because narH,
narY, and nxrB genes are closely related to each other and annotated with the same KEGG orthology
(K00371), their abundances were calculated together.

Statistical analysis. Samples were categorized into different oxygen regimes. We defined the
hypoxic (.5 to #60 mM O2) as one regime including the low-hypoxic (.5 to #20 mM O2) and high-
hypoxic (.20 to #60 mM O2) regimes, representing important thresholds of oxygen concentrations for
biological processes (84). Oxygen concentrations of.60mM were defined as “oxic.”

The map of sampling stations and vertical distributions of environmental parameters were displayed
by Ocean Data View version 5.2.0 (85). All heatmaps including the relative abundance of the 50 most
abundant OTUs (log-transformed) and metabolism-related gene abundance (square root transformed)
were generated by HemI (86). The ordination of the prokaryotic community visualized by a PCoA plot
and RDA evaluating the relationships between prokaryotic community and environmental variables
were done using the “vegan” package version 2.5-7 in R version 4.0.3 (87, 88). To understand the cooc-
currence network structures among the prokaryotic OTUs at different depths (2 m, DCM, 500 m, and
2,000 m), we employed a molecular ecological network (MEN) analysis (89). Network calculations were
based on Spearman rank correlation coefficients with a cutoff of 0.80, and the networks were visualized
by Cytoscape version 3.7.2 (90). We used the network topological parameters of nodes, edge numbers,
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average degree, modularity, and module to assess prokaryotic network complexity and stability. Higher
node, higher edge numbers, higher average degree, and smaller modules represent greater network
complexity, indicating higher stability of the ecosystem (91). To test the differences of abundance for
metabolic genes between different depths, analysis of variance (ANOVA) was conducted by SPSS version
R26.0. The “lm” function in R was used to analyze the correlation between TPM value of selected genes
and oxygen concentration with the linear regression model.

Data availability. All sequences obtained from this study have been deposited in the National
Center for Biotechnology Information (NCBI) Sequence Read Archive under accession number
PRJNA724894. The CTD data of the five stations in this study in the BoB have been deposited at the web-
site http://data.scsio.ac.cn/metaData-detail/1503343885621309440.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 1.6 MB.
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