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Abstract: Sesquiterpenes (SS) are secondary metabolites formed by the bonding of 3 isoprene (C5)
units. They play an important role in the defense and signaling of plants to adapt to the environment,
face stress, and communicate with the outside world, and their evolutionary history is closely related
to their physiological functions. This review considers their presence and extensively summarizes
the 156 sesquiterpenes identified in Vitex taxa, emphasizing those with higher concentrations and
frequency among species and correlating with the insecticidal activities and defensive responses
reported in the literature. In addition, we classify the SS based on their chemical structures and
addresses cyclization in biosynthetic origin. Most relevant sesquiterpenes of the Vitex genus are
derived from the germacredienyl cation mainly via bicyclogermacrene and germacrene C, giving rise
to aromadrendanes, a skeleton with the highest number of representative compounds in this genus,
and 6,9-guaiadiene, respectively, indicating the production of 1.10-cyclizing sesquiterpene synthases.
These enzymes can play an important role in the chemosystematics of the genus from their corre-
sponding routes and cyclizations, constituting a new approach to chemotaxonomy. In conclusion,
this review is a compilation of detailed information on the profile of sesquiterpene in the Vitex genus
and, thus, points to new unexplored horizons for future research.

Keywords: Vitex; biosynthesis; sesquiterpenes synthases; cyclization

1. Introduction

Volatile sesquiterpenes, like all terpenoids, are derived from the five-carbon precursor
isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP) [1,2].
Plant species use two separate pathways to synthesize these precursors: the mevalonate
acid pathway (MVA), which is located in the cytosol and partially in the endoplasmic
reticulum and peroxisomes, and the methylerythritol phosphate pathway (MEP), which is
located in the plastids [2–4].

For the biosynthesis of volatile sesquiterpenes, farnesyl diphosphate synthase (FDS),
a branch point enzyme in the biosynthesis of these terpenoids, condenses a DMAPP
unit with two IPP units to form the linear precursor farnesyl diphosphate (E,E-FPP, C15).
This, by cleavage, forms a reactive carbocation, which undergoes electrophilic cyclization
and rearrangements to form sesquiterpenes (SS) through a cascade of enzymatic reactions
catalyzed by families of functionally distinct enzymes of sesquiterpene synthase (sesqui
(TPS)) and cytochrome P450 mono-oxygenase (P450), which are the main drivers of skele-
tal formation and functional modifications, respectively [5–7]. The cascade of reactions
generated by sesqui (TPS) proceeds through the intermediate carbocations, which serve as
ramifications for specific pathways in the chemical cascade [1,8]. In general, the proposed
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reaction mechanism for SS formation consists of three main stages: (1) generation of a
carbocation, (2) hydride changes and carbocation rearrangements, and (3) neutralization of
a carbocation by deprotonation or capture of a nucleophile (e.g., water) [9,10].

Alternatively, sesqui (TPS) can use a secondary carbocation formed from the isomer
(E,E)-FPP, the (3R)-nerolidyl diphosphate (3R-NPP), and then proceed to the formation of
the terpenoid skeleton. The first cyclization that occurs by attacking the double bond with
carbocations derived from (E,E)-FPP or (3R)-NPP (farnesyl or nerolidyl cation) can be used
to divide the sesquiterpenes produced by plants into seven groups, which can be 1.10 or
1.11 of the farnesyl carbocation or 1.6, 1.7, 1.10, 1.11-cyclization of the nerolidyl carbocation
(Figure 1) [11,12].
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Sesquiterpenes have more than 7000 identified carbon skeletons from different organisms [13].
In plants, volatile SS hydrocarbons are well known as constituents of essential oils and play
ecological roles in the plant’s interaction with pollinators and predators. Many of these



Molecules 2021, 26, 6405 3 of 29

compounds are released by flowers to attract pollinators [14] and play an important role
in direct and indirect chemical defense against herbivores and phytopathogens [15–17].
They are the volatile constituents released by plants defense after attack by herbivores,
attracting arthropods that attack or parasitize these herbivores [15,18–20]. In addition,
they are also synthesized and accumulated in organs such as rhizomes and roots, partici-
pating in the attraction of nematode predators [17,21].

Vitex (Lamiaceae, Viticoideae) comprises c. 250 pantropical, subtropical, and some
temperate species [22]. The most common species known for their medicinal properties are
V. agnus-castus, V. rotundifolia, and V. negundo [22]. According to our survey, 21 Vitex species
have essential oils reported in the literature database. These species have a diversity of
volatile terpenes, mainly sesquiterpenes, which are present in great abundance [23–30].
This genus also has some nonvolatile sesquiterpenoids. Yao et al. [30] published a re-
view of terpenes obtained from Vitex species. They reported that eight SS structures
were obtained, including a structure containing a furan ring, three furanoeremophylane,
and four sesquiterpenoids with an aromadendrane skeleton with a seven-membered ring.
Interestingly, volatile SS varieties with a seven-membered ring aromadendrane skeleton
were found in Vitex species in different regions of the world [25,30–34]. It was hypothesized
that sesqui (TPS) that are being expressed in the genus Vitex, which are responsible for
the formation of compounds with fused five- and seven-membered rings, may play an
important role in chemosystematics [25].

There was great progress in recent years in the identification and functional character-
ization of genes for the biosynthesis of SS and cyclase enzymes, which led to a greater un-
derstanding of the mechanisms and variability of biosynthesis of these terpenoids [7,35,36].
So far, a large number of sesqui (TPS) responsible for the formation of defensive SS were
cloned and functionally characterized from various plants, such as corn, rice, sorghum,
cotton, and tomatoes [7,37–40]. Defenses related to SS were well described in these species
of angiosperm, revealing several chemical mechanisms for resistance against above and
below ground stressors, providing much stronger evidence for the involvement of SS in
plant defense [37,41–43]. This knowledge can be combined with versatile metabolic engi-
neering approaches for the broader production of terpenoid bioproducts [44]. Although
advances have occurred, there is still a vast field of knowledge about the gene structure,
catalysis mechanism, and expression regulation for a large number of sesqui (TPS) from
various plants, including Vitex species.

In this context, this review addresses the possible sesqui (TPS) that are being ex-
pressed in the genus Vitex, the type of cyclization that occurs in the biosynthetic origin
of SS, which were identified with frequency and high concentrations in species, and its
correlation with the insecticidal activities and defensive responses reported in literature.
This paper covers the literature database correlating sesquiterpenes/sesquiterpenes syn-
thases, Vitex species and insecticidal activities. This review is a valuable source of informa-
tion in the field of plant SS biosynthesis, and therefore we compiled detailed information
on the profile of SS in the genus Vitex and, thus, also indicated new unexplored horizons
for future research.

2. Volatile Sesquiterpenes in Vitex Genus

Usually, SS are classified based on different oxygen functions, such as alcohol, aldehyde,
and sesquiterpene lactone. This is relevant to their physiological activities and physical
and chemical properties [45]. They are also classified by the number of carbon rings in
their chemical structure, such as acyclic, monocyclic, bicyclic, tricyclic, and tetracyclic [46].
In addition, SS can also be classified according to the number of carbons in the rings,
with most rings containing 5, 6, 7, and up to 11 carbons [47].

Several investigations were carried out on the chemical composition of different
Vitex species from different geographic regions. As far as we know, 156 volatile SS were
identified in Vitex species (Figures 3, 4, 9 and 13), which are distributed in 37 skeletons
(Figure 2). Among them, the bicyclic SS cadalane type is the one with the highest number of
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compounds identified in the Vitex genus followed by the eudesmane and the tricyclic aroma-
drendane. However, bicyclic caryophyllane-type compounds, such as (E)-β-caryophyllene
(EβC), caryophyllene oxide, and the monocyclic α-humulene, were the most representative
volatile SS within the Vitex genus, appearing in many species in high concentrations.
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Next, the SS of the Vitex species were classified based on the number of carbon rings
and subclassified by the original carbon skeletons on which their chemical structures are
based according to the work of [47], highlighting those that appeared more often and in
high concentrations. Furthermore, the type of primary cyclization in the biosynthetic origin
of these compounds was suggested.
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2.1. Acyclic Sesquiterpenes

The acyclic group has the smallest number of members, with only 11 acyclic SS iden-
tified in Vitex species, and all containing a farnesane skeleton (Figure 3). Among them,
the compound (E)-β-farnesene (EβF) stands out, which is reported in eight species, being one
of the main components of V. agnus-castus in various regions of the globe [24,26,31,48–60].
Probably, EβF synthase is being expressed in this species.
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The gene-encoding EβF synthase, which catalyzes the formation of EβF, was identified
and characterized for the first time from Mentha piperita L. [61]. Later, orthologous EβF
synthase genes were isolated from other plants, such as Citrus junos [62], Pseudotsuga
menziesii [63], Matricaria recutita [64], and Artemisia annua [65,66].

The acyclic pathway begins with the addition of water or the loss of protons from the
carbocation farnesyl or nerolidyl [12,36]. In this pathway, the carbocation does not undergo
a cyclization process as in other pathways, being responsible for the production of several
acyclic SS from the farnesane skeleton [47].

2.2. Monocyclic Sesquiterpenes

There are 24 monocyclic sesquiterpenes that were identified in Vitex species. They can
be classified into four subcategories based on the carbon skeleton, such as humulane,
germacrane, elemane, and bisabolane (Figure 4).
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2.2.1. Humulane Skeleton

Four compounds with a humulane skeleton were identified (Figure 4). Among them,
α-humulene, which was reported in 17 Vitex species, is one of the main compound in
V capitata, V. megapotamica, V. rufecens [25,67], V. simplicifolia [68], and V. doniana [28].

Although α-humulene is a common SS in plants, only α-humulene synthase was
identified in the species Zingiber zerumbet, Picea glauca, and Aquilaria crassna, catalyzing the
formation of α-humulene as the main product and β-caryophyllene as the secondary prod-
uct [69,70]. However, in Vitex species, α-humulene was identified as a secondary product
or in smaller amounts and EβC was identified as the main compound, while α-copaene
and β-elemene were also identified in smaller amounts. Interestingly, sequi (TPS) capable
of producing these compounds in this way was described and identified in plant species
Arabidopsis thaliana (AtTPS21) and Oryza sativa (OsTPS3) as (E)-β-caryophyllene synthase
(EβCs) [16,71]. Other studies reported that this synthase catalyzed the formation of EβC as
a major product and α-humulene in smaller amounts [72–74].

The origin of these SS is the result of 1.11-cyclization to form a humulyl cation,
which by deprotonation of C-9 can form α-humulene or promote the closure of 2.10 gener-
ating EβC (Figure 5) [69,75].



Molecules 2021, 26, 6405 7 of 29

Molecules 2021, 26, 6405 7 of 31 
 

 

catalyzed the formation of EβC as a major product and α-humulene in smaller amounts 
[72–74]. 

The origin of these SS is the result of 1.11-cyclization to form a humulyl cation, 
which by deprotonation of C-9 can form α-humulene or promote the closure of 2.10 
generating EβC (Figure 5) [69,75]. 

 
Figure 5. Types of primary cyclization of α-humulene and β-caryophyllene. 

2.2.2. Germacrane Skeleton 
Germacrenes are a subclass of SS with a germacrane skeleton. Four compounds with 

this skeleton were identified in Vitex species (Figure 4). However, germacrene D is the 
most relevant compound, appearing in eleven species, and is the major compound in the 
essential oils of V. rivularis and V. ferruginea [29,30], with significant amounts in V. ru-
fescens and V. simplicifolia [25,68]. Due to the high concentration of this SS, germacrene D 
synthase is possibly being expressed in V. rivularis and V. ferruginea. The gene (FcTPS1) 
encoding this synthase in Ficus carica L. catalyzed the predominant formation of ger-
macrene D together with α-cubebene, EβC, γ-muurolene, α-muurolene, γ-cadinene, and 
δ-cadinene in smaller amounts [76], as can be seen in V. rivularis and V. ferruginea. 

Germacrene D is a biogenetic precursor of many SS. This pathway is considered one 
of the most important, being responsible for the biosynthesis of numerous sesquiter-
penes. It can also be classified into three subpathways: via cadinenyl cation, via 
muurolenyl cation, and via amophenyl cation [77]. The formation of this sesquiterpene 
occurs through 1.10-cyclization of the farnesyl cation. The subsequent reaction pathway 
was shown to involve different hydrogen displacements to provide germacrene D (Fig-
ure 6) [11,78–80]. 

Figure 5. Types of primary cyclization of α-humulene and β-caryophyllene.

2.2.2. Germacrane Skeleton

Germacrenes are a subclass of SS with a germacrane skeleton. Four compounds with
this skeleton were identified in Vitex species (Figure 4). However, germacrene D is the
most relevant compound, appearing in eleven species, and is the major compound in the
essential oils of V. rivularis and V. ferruginea [29,30], with significant amounts in V. rufescens
and V. simplicifolia [25,68]. Due to the high concentration of this SS, germacrene D synthase
is possibly being expressed in V. rivularis and V. ferruginea. The gene (FcTPS1) encoding this
synthase in Ficus carica L. catalyzed the predominant formation of germacrene D together
with α-cubebene, EβC, γ-muurolene, α-muurolene, γ-cadinene, and δ-cadinene in smaller
amounts [76], as can be seen in V. rivularis and V. ferruginea.

Germacrene D is a biogenetic precursor of many SS. This pathway is considered one
of the most important, being responsible for the biosynthesis of numerous sesquiterpenes.
It can also be classified into three subpathways: via cadinenyl cation, via muurolenyl
cation, and via amophenyl cation [77]. The formation of this sesquiterpene occurs through
1.10-cyclization of the farnesyl cation. The subsequent reaction pathway was shown to
involve different hydrogen displacements to provide germacrene D (Figure 6) [11,78–80].
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2.2.3. Bisabolane Skeleton

The bisabolane skeleton had the largest number of compounds among the mono-
cyclic sesquiterpenes. Thirteen compounds were identified in Vitex plants (Figure 3).
Although the compounds in this group did not show a relevant concentration and fre-
quency among the species, γ-curcumene and β-curcumene were the secondary and tertiary
products of V. rivularis [29], respectively. As mentioned earlier, germacrene D is the major
compound in this species.

So far, only γ-curcumene synthase (PatTpsA) from Pogostemon cablin was identified
in plants, generating γ-curcumene as the only product [81]. Studies by targeting amino
acid residues mutation in the active site of the epi-isozyzaene synthase (EIZS) of Strep-
tomyces coelicolor converted this enzyme into new sesqui (TPS), including β-curcumene
synthase (F95H EIZS) and F95Q EIZS (unidentified synthase), generating β-curcumene
as the main product and the β and γ-curcumene regioisomers as the main cyclization
products, respectively [82,83].

The proposed mechanism for cyclization of curcumene sesquiterpenes derives from
1.6-cyclization to form the bisabolyl carbocation. The displacement of [1,2]-hydride forms
the homobisabolyl cation which, due to the loss of the proton, forms the derivatives of
curcumene (Figure 7) [82–84].
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2.2.4. Elemane Skeleton

Four elemane skeletons type compounds were identified in Vitex plants (Figure 3).
However, only β and γ-elemene have attracted attention. The first was identified in
10 species, appearing in significant concentrations in V. quinate and V. rufecens [25,85] and in
smaller amounts in V. capitata and V. megapotamica [25,67]. Its isomer, γ-elemene, appears as
one of the main compounds in V. capitata and in V. megapotamica [25,67]. Interestingly,
δ-elemene appeared as one of the major compounds of V. megapotamica collected in
southern Brazil [67].
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The sesqui (TPS) for β-elemene, whose compound is predominant in plants, was identified
only in rice [86]. However, β-elemene is generally considered a transformation product from
germacrene A, which is synthesized by germacrene A synthase (Figure 8) [21,87–89].
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From a biogenetic point of view, many elemene-type sesquiterpenes are produced from
the corresponding germacrenes via Cope rearrangement [90]. Studies showed that during
isolation and analysis by gas chromatography (GC), germacrene A undergoes a Cope to
β-elemene rearrangement induced by heating in the injector [91–94], while germacrene B
and germacrene C rearranges to γ-elemene [95] and δ-elemene [90], respectively. However,
germacrene A was not detected in any of the Vitex species. Instead, β-elemene appeared
as one of the secondary products. This compound probably comes from a single enzyme
that uses a single substrate, giving rise to several products [7]. The multiple products
are mainly due to the stochastic nature of the linked rearrangements, which follow the
creation of the unusual carbocation intermediates before the reaction is terminated through
deprotonation or nucleophile capture [7]. As mentioned earlier, EβCs are possibly being
expressed in V. rufescens, V. capitata, V. megapotamica, and V. quinata. This enzyme catalyzed
several products in smaller amounts in other plants, including β-elemene [16,71]. On the
other hand, the significant concentration of γ-elemene and corresponding decrease in its
precursor germacrane B in V. capitata and V. megapotamica [25] may be due to the high
temperature of the injector port in the analysis of GC.

The δ-elemene that appeared as one of the main products of V. megapotamica collected
in southern Brazil [67] is probably due to the expression of the gene encoding an δ-elemene
synthase, emitting the δ-elemene as the main compound and β-elemene in smaller amounts.
Uji et al. [96] was the first to identify a sesqui (TPS) (RlemTPS4) in plants, producing
δ-elemene as a major product and β-elemene as a minor product. Recently, δ-elemene
synthase (FcTPS5) from Ficus carica was identified, which also catalyzed the formation of
δ and β-elemene as main products [76].
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2.3. Bicyclic Sesquiterpenes

Bicyclic SS represent the largest group in Vitex species with 81 identified compounds and
can be classified into 11 subcategories based on the carbon skeleton (Figure 9), with eudesmane,
caryophyllane, cadalane, and bicyclogermacrene skeletons being the most prevalent.
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2.3.1. Cadalane Skeleton

Cadalane skeleton is the group with the highest number of compounds in Vitex plants,
with 30 structures reported. Following the criterion adopted in this survey of high frequen-
cies and concentrations, the compounds γ-muurolene and δ-cadinene are the ones that
have these characteristics. The first appears in 12 species, while the second was identified in
13 species. Interestingly, both were the main compounds in V. megapotamica and V. capitata
species [25,67]. Other species, such as V. rivularis, V. obovata ssp. obovata, V. obovata ssp.
Wilmsii, and V. ferruginea, had significant amounts of one of these compounds [29,30,33].

The entire series of cadalanes is generated by the protonation of an intermediate
neutral germacrene D [97], which is a potent precursor of cadinenes and muurolenes [95].
Biosynthetic pathways for the formation of δ-cadinene and γ-muurolene via germacrene D
in the legume Truncatula medicago were reported [98]. δ-cadinene occurs very frequently
in plants together with germacrene D when it is in higher concentrations [77]. This can be
observed in the species V. rivularis, V. ferruginea, V. rufecens, and V. simplicifolia [25,29,30,68].
However, investigations of δ-cadinene synthase, which catalyzes the formation of δ-cadinene
as the main product, as well as a multitude of other sesquiterpenes were reported in
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the species of laurel (Leonurus sibiricus), fig (Ficus carica), cotton (Gossypium hirsutum),
not showing any germacrene D in the products [76,99,100], as well as V. megapotamica and
V. capitata [25,67], which have δ-cadinene in larger amounts.

Cadinene and muurolene skeletons may also result from an earlier rearrangement
from farnesyl to the nerolidyl cation [40,101–104]. Germacradienyl cation forming by
1.10-cyclization. Subsequently, a 1.6-electrophilic ring closure reaction generates the cadi-
nenyl cation from which δ-cadinene and γ-muurolene are formed (Figure 10) [98].
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2.3.2. Caryophyllane Skeleton

SS with a caryophyllane skeleton have 11 compounds identified in Vitex species
(Figure 4). EβC and caryophyllene oxide are the most relevant in this group. Furthermore,
EβC is one of the most representative volatile SS in the Vitex genus, appearing in 15 species,
and is the major compound in six species: V. megapotamica, V. capitata, V. rufescens, V. negundo,
V. trifolia, and V. agnus-castus [25,105,106]. Furthermore, it was identified in high concen-
trations in V. quinata and V. rivularis [29,85]. On the other hand, caryophyllene oxide
was reported in almost all Vitex species except for V. rotundifolia. It was one of the main
compounds of V. gardneriana, V. negundo, V. rehmannii, V. obovata ssp. obovata, V. pooara,
V. trifolia, and V. kwangsiensis [25,27,33,106,107].

EβCs were already identified and characterized in several plant species and were
extensively reported in the literature [72–74,76]. Generally, this enzyme produces EβC as
the main product and its α-humulene isomer in smaller amounts. EβCs are probably being
expressed in Vitex species; EβC was identified as the main product and α -humulene as the
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secondary product or in lower concentrations. On the other hand, there are no reports in
the literature of specific shyntases for caryophyllene oxide; however, there is a consensus
that it is formed by oxidation of EβC [108–110].

2.3.3. Eudesmane Skeleton

There are 14 bicyclic sesquiterpenes in Vitex species that have the eudesmane parental
skeleton (Figure 4). Among them, β-selinene appears in 13 species and is the marjority SS
in V. pooara [33]. ZmTps21 from corn (Zea mays) encodes β-selinene synthase, producing
β-selinene as the dominant product along with β-elemene at lower concentrations [111].
This can be observed in V. pooara, suggesting that this sesqui (TPS) is expressed in this
species. β-selinene is simply formed by a deprotonation of a eudesmane carbocation,
which was reported to originate from germacrene A to form 5-epi-aristolochene [10,111,112].
It is suggested that the primary cyclization that occurs for the formation of β-selinene is of
type 1.10 (Figure 11).
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2.4. Other Bicyclic Sesquiterpenes

Bicyclogermacrene is structurally similar to germacrene with a classic bicycloger-
macrene skeleton. This compound appears in six Vitex species and is one of the main
products of V. agnus-castus [24,55,56,59,113] and V. pseudo-negundo [34,105,114]. OvTPS4
from oregano [115] and EgranTPS041 from Eucalyptus [116] were the first genes identified
in plants responsible for the expression of a synthase that resulted in the production of bi-
cyclogermacrene by heterologous expression. However, CmTPS1 from Citrus medica L. was
the first gene responsible for the synthesis of bicyclogermacrene by homologous expression
in vivo [117]. Although the gene responsible for the biosynthesis of bicyclogermacrene
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in Vitex species was not identified, its precursor was confirmed to be the germacradienyl
cation (1.10-cyclization) in other plants (Figure 10) [47,118,119].

6,9-guaiadiene has a guaiane skeleton, which is rarely reported in plants, with two
fused rings of five and seven carbons, respectively. It appears in five Vitex species, and it
is the major compound of V. gardneriana [25,120]. δ-selinene synthase identified and
characterized from Abies grandis catalyzed the formation of 34 different sesquiterpenes;
among them, 6,9-guiadiene was one of the secondary products, with germacrene C as
a precursor [121]. Although guaiane-type sesquiterpenes are common in nature and
some enzymes described as producing guaianes as secondary reaction products were
described [81,121], the guaiane synthases that catalyze the formation of this class of SS as
their dominant reaction product were first reported in Aquilaria crassna [89]. Later, they were
also found in Aquilaria sinensis, Vitis vinifera, and Stellera chamaejasme [122–125]. So far,
α and δ-guaiene synthase were identified and characterized in these species with similar
product profiles, with α or δ-guaiane as the main products and α-humulene and β-elemene
in smaller amounts. In all these studies, germacrene A was the precursor of α or δ-guaiane.

It is postulated that 6,9-guaiadiene is synthesized through two cyclization reactions,
the first constituting 1.10-cyclization to produce germacradienyl cation, which undergoes
deprotonation in germacrene C. The second cyclization event occurs between C2 and C6 to
generate the guaianyl carbocation followed by the subsequent deprotonation or addition
of water (Figure 12) [89,122,125,126].

1 
 

 
 
 

 

Figure 12. Types of primary cyclization of aromadrendanes, bicyclogermacrene, and 6,9-guiadiene.

2.5. Tricyclic and Tetracyclic Sesquiterpenes

Thirty-nine tricyclic SS were identified in Vitex species (Figure 13). The aromadren-
dane skeleton was the most representative of this group with 14 compounds reported.
It was the skeleton with the highest number of compounds within the criteria adopted in
this work. Among them, allo-aromadendrane, spathulenol, globulol, viridiflorol, ledol,
and viridiflorene were the most relevant. Allo-aromadrendene appeared in 10 species,
with significant concentrations in V. rufecens [25] and V. agnus-castus [31,59]. Spathulenol
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was also identified in 10 species and is one of the main compounds of V. agnus castus [26,31],
V. rehmannii [33], and V. obovata ssp. obovata (in lower concentrations) [33]. Globulol was
reported in eight species and is the majority sequiterpene of the flowers of V. negundo [127]
and the major SS in V. zeyheri [33]. Viridiflorol was identified in eight species and is
the major compound in V. negundo [32,128]. It is also found in V. agnus-castus at lower
concentrations [31]. Ledol was present in nine species, the secondary product being in
V. rufescens [25]. Finally, viridiflorene was reported in seven species and was found in
V. capitata, V. megapotamica, and V. rufescens in significant concentrations [25].

A small number of sesqui (TPS) specific for the formation of compounds from the
aromadrendane skeleton in plants were identified. To date, α-gurjunene synthase from
Solidago canadensis [129] and Taiwania cryptomerioides [130], viridiflorol synthase (MqTPS1
and MqTPS2) from Melaleuca quinquenervia [131], and viridiflorene synthase (SlTPS31) from
Solanum lycopersicum [132] were reported in plant species. This is probably because the
aromadrendane skeleton has the largest number of representative compounds in Vitex
species, and specific synthases for the formation of these compounds may play an important
role in the taxonomy of this genus.

The aromadendrane skeleton is characterized by the fusion of the gem-dimethylcyclopropane
ring with the hydroazulane ring [133]. Several authors postulated that bicyclogermacrene
is the biogenetic precursor of sesquiterpenoids with a gem-dimethylcyclopropane ring,
including aromadendranes [95,133,134]. In addition, bicyclogermacrene is used as an
intermediate platform for biomimetic access to various aromadendrane sesquiterpenoids,
such as ledene, viridiflorol, palustrol, and spathulenol [135]. It was suggested that in
Psidium guineense Sw., Eucalyptus, Humulus lupulus, and Citrus junos species, bicycloger-
macrene is the key intermediate for aromadendrene derivatives [95,136,137]. However,
in grapes and wines, the aromadendrane skeleton was reported to be structurally similar
to the guaiane precursor. 6,11-cycloguaiane is referred to as an aromadendrane in which a
cyclopropyl ring was formed by further cyclization of a guaiane precursor [46,47].

The catalysis of aromadrendanes in plants, the precursor being bicyclogermacrene or
guaiane, as proposed in the literature, begins with 1.10-cyclization. This is supported by
the previously proposed mechanism for the formation of viridiflorol based on quantum
chemical calculations, starting with type 1.10 cyclization [84]. It was also proposed that
the initial cyclization that originates viridiflorol in fungi is of the 1.10 type, although it
occurs via the (E,E)–FPP and (3R)–NPP routes [138,139]. This indicates that viridiflorol
biosynthesis in fungi can occur via both pathways.

The tetracyclic compound (Figure 13) identified was not representative within the
criteria adopted in this review.
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3. Insecticide and Response Activity of Sesquiterpenes Identified in Vitex Species

Plants are often exposed to attack by a variety of herbivorous arthropods and pathogenic
microorganisms. In response to pest attacks, plants developed defense mechanisms to
protect themselves [17,140]. Chemical defense strategies involve secondary metabolites,
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including SS, which can act directly through allelopathic or antimicrobial activity [27,140]
or by indirect activation of systemic defenses in host and neighboring plants [17,141].

Sesquiterpenes are one of the main constituents of volatile mixtures released after
damage by herbivorous insects or pathogens [140]. The induction of these compounds
has frequently been reported as signaling molecules to attract natural enemies (predators
and parasitoids) of herbivores, induce resistance responses against pathogens, and also
act as precursors for the biosynthesis of sesquiterpenoid phytoalexins [13,17,111,140,142].
In addition, induced volatile mixtures can also play an important role in plant commu-
nication, functioning as airborne signals to induce defense in neighboring plants or to
prepare unattacked plant tissue for defense responses to potential subsequent attack from
herbivores [141,143,144].

Over the past two decades, studies showed evidence that sesqui (TPSs) and their corre-
sponding products play a key role in defense in response to herbivory and phytopathogenic
systems [140,145]. As an example, the induced rice sesqui (TPS) (OsSTPS2) gene plays a role in
the antixenosis mechanism against the infestation of the brown gecko, Nilaparvata lugens [146].
Sesqui (TPS) from Medicago truncatula (MtTPS10) was specifically expressed in its roots
after inoculation with the pathogen Aphanomyces euteiches, and its corresponding products
inhibited mycelial growth and zoospore germination [145]. The longifolene synthase gene
(PmTPS21) played a positive role in the defense mechanism of Pinus massoniana against
the nematode, Bursaphelenchus xylophilus [147]. Two sesqui (TPS) (CsAFR and CsNSE2)
from Camellia sinensis tea plants were up-regulated by damage from Ectropis obliqua Prout
herbivores, emitting α-farnesene and (E)-nerolidol [148].

All aforementioned studies clearly showed the modulation of the plant defense against
herbivores and pathogens through sesqui TPSs and their enzymatic terpenoid products.
The following section summarizes the insecticidal activities and defensive responses of the
main SS found in Vitex species.

3.1. Acyclic Sesquiterpenes

EβF is the main component of the aphid alarm pheromone, which is released by
most aphid species when disturbed in the presence of predators and parasitoids [149,150].
This compound is detected in the bark oil of Citrus junos and in the leaves of the wild potato
Solatium berthaultii Hawkes and is expected to play a similar role in these plants [62,151].
EβF can also induce oviposition in an aphidophagous float [152]. It can be used for
biological control of aphids, releasing it in the field due to its deterrent and repellent
effect in addition to attracting its natural enemies, such as predators and parasitic wasps
(Hymenoptera: Braconidae) [153]. A previous study reported that inducible production
of EβF via engineered TPS in genetically modified wheat may be necessary for the suc-
cessful recruitment of natural enemies of the parasitic wasp Aphidius ervi [154]. Transgenic
Arabidopsis thaliana produced large amounts of EβF, which showed a repellent effect for
Myzus persicae [155].

Recently, a study found the expression of PvTPS16 and PvTPS02 genes in Switchgrass
(Panicum virgatum L.) leaves, which are strongly correlated by the emission of high amounts
of EβF, after treatment with the salicylic acid phytohormone, which simulates herbivory
or infection by pathogens, and after treatment by S. frugiperda larvae [42]. The consti-
tutive expression of the tps 46 gene reported in rice that is responsible for biosynthesis
and constitutive emissions of Eβf may play a crucial role in the rice’s defense against
Rhopalosiphum padi [156]. “It was suggested that constitutive release of defensive volatiles
should occur when plants are growing in an environment where there is a high probability
of herbivore attack” [156].

3.2. Monocyclic Sesquiterpenes

Recently, it was reported that α-humulene showed contact toxicity with high per-
sistence after 48 h and repellency against the wheat grain pest Sitophilus granarius [157].
This compound was responsible, at least in part, for the deterrent effect of the oil of



Molecules 2021, 26, 6405 18 of 29

Commiphora leptophloeos, a spiny deciduous tree native to South America, causing deter-
rence from the oviposition of A. aegypti [158]. Furthermore, α-humulene showed strong
contact activity against the cigarette beetle (Lasioderma serricorne) and was one of the com-
ponents of the essential oil of Piper aduncum responsible for repelling the Tetranychus urticae
mite [159,160]. After treatment with methyl jasmonate (MeJa), an elicitor of plant defensive
responses, the AcHS1–3 gene up-regulated α-humulene synthase expression in Aquilaria
crassina cell culture [75].

Germacrene D was implicated in plant-insect interactions. It is used to select host
plants by the antenna receptors of the caterpillar tobacco moth Heliothis virescens [161].
It can also act as an anti-attractant to protect plants from beetle attacks [162]. They are
repellent to aphids and bovine ticks [154,163,164]. Tozin et al. [165] identified a 126%
increase in germacrene D in glandular trichomes of Ocimum gratissimum after attacks by
leaf-cutting ants, Acromyrmex rugosuse.

Elemenes are natural sesquiterpenes present in essential oils in a mixture of β-elemene,
γ-elemene, and δ-elemene. β-elemene showed significant toxic effects on fall armyworm
Spodoptera exigua (Hubner) [166]. Taniguchi et al. [86] identified that the β-elemene synthase
gene in rice was up-regulated by treatment with the plant hormone jasmonic acid (JA),
which works as a signaling molecule in the regulation of plant defense. In the same study,
it was reported to have antifungal activity against the rice pathogen Magnaporthe oryzae.

3.3. Bicyclic Sesquiterpenes

Cadinene is a group of sesquiterpenes with isomeric hydrocarbons, including
δ-cadinene, that were implicated in the defense of the cotton plant against pathogens
and pests [40,167]. Several δ-cadinene synthases were already identified and character-
ized in cotton species and are responsible for producing δ-cadinene, the precursor for
the biosynthesis of cadinane-type phytoalexins, such as gossypol [40,142]. This is an im-
portant arthropod resistance compound that provides constitutive and inducible defense
against cotton pests and diseases [167,168]. The expression of the δ-cadinene synthase gene
was induced by rhizosphere bacteria, and plants that produced δ-cadinene were consid-
ered resistant to Spodoptera exigua (Hubner) [168]. Oxidative cadinene showed significant
antifungal and antibacterial activities against phytopathogenic fungi and bacteria [169,170].

EβC is involved in the indirect defense of several plants, attracting the natural enemies
of above and below-ground pests [12,17,171,172]. The attack of herbivorous insects or
treatment with MeJa induced the expression of genes responsible for the transcription of
EβC synthase from corn (ZmTPS23), rice (OsTPS3), sorghum (SbTPS4), cotton (GhTPS1),
and Switchgrass (PvTPS14), which were responsible for the emission of EβC, attracting
herbivore parasitoids and entomopathogenic nematodes [16,42,172–175]. In addition,
EβC can also act in direct defense against bacterial pathogens that invade floral tissues [27].
A previous study showed that caryophyllene-rich rhizome oil from Zingiber nimmonii
has a significant inhibitory activity against Bacillus subtilis and Pseudomonas aeruginosa
bacteria [176]. Previous studies also reported that EβC and caryophyllene oxide decreased
the growth and survival of Heliothis virescens and Hymenaea species [177,178].

Caryophyllene oxide showed toxicity against the aphid Metopolophium dirhodum
(Hemiptera: Aphididae), and in mixtures with citral and EβC, it was also effective against
the aphid Myzus persicae [108,179]. This compound also showed excellent repellent proper-
ties against A. aegypti and Anopheles minimus mosquitoes, with better performance than
the commercial repellent N,N-diethyl-meta-toluamide (DEET) [109]. Furthermore, it is one
of the main constituents of the oil of Artabotrys hexapetalus Bhandari, which was shown
to have strong repellent activity against females of Anopheles gambiae, a species of malaria
vector in Africa [180].

Although sesquiterpenes belonging to the selinene family were widely reported
in different plants, there are limited studies investigating the insecticidal activity of
β-selinene. However, this compound was detected in corn only in the context of pathogen
attack [181,182]. Ding et al. [111] reported β-selinene synthase (ZmTps21) in maize being
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transcribed after fungal elicitation, long-term root herbivory, and combined field pres-
sures. Its products β-selinene and its nonvolatile acid derivative, β-costic acid inhibited
the growth of pathogenic fungi and corn root larvae (Diabrotica balteata). A previous study
identified the presence of ZmTps21 in the transcriptome analysis of resistant maize lines
associated with enhanced antifungal defenses [183]. It was suggested that α-selinene from
TPS05 in switchgrass roots serves as a precursor of α-costic acid, which may exhibit similar
functions in the antimicrobial defense of this plant. β-selinene also showed contact toxicity
against the vinegar fly, Drosophila melanogaster [184].

There are no reports that bicyclogermacrene, as a nonoxygenated sesquiterpene,
has insecticidal activity; however, its non-volatile oxygenated derivatives, such as Mandolin
A and Parteniol, showed an inhibitory activity on acetylcholinesterase and fungistatic
activity against the growth of Aspergillus niger [133,185,186].

6,9-guaiadiene was the major compound of the essential oil of V. gardneriana, which showed
acaricide and larvicide activity against Aceria guerreronis and A. aegypty, respectively [25,120].
Studies showed that the gene expression in Aquilaria species was up-regulated, encoding
δ-guiene synthase in response to mechanical injury and MeJa treatment and inducing
δ-guaiene production [126,187,188]. Recently, transcriptome analysis of western aspen-
balsam infected roots (Populus trichocarpa) by Phytophthora cactorum (Oomycetes) revealed
the induction of the PtTPS5 gene, forming the compounds (1S, 5S, 7R, 10R)-guaia-4(15)-en-
11-ol and (1S, 7R, 10R)-guaia-4-en-11-ol [189].

3.4. Tricyclic Sesquiterpenes

In this group of sesquiterpenes, some aromadrendane compounds showed insecticidal
activity due to the conformational rigidity that the gem-dimethylcyclopropyl group im-
poses, the lipophilic character of the methyl groups, and the variation in oxygen functions
between the compounds; it can favor the binding with lipoprotein receptors, trigger-
ing several biological responses, including insecticidal activity [133]. The compound
spathulenol, for example, showed toxicity against the aphid Metopolophium dirhodum
(Hemiptera: Aphididae) and two types of insects from stored products, Tribolium casta-
neum and Lasioderma serricorne [190,191]. This compound also showed repellency against
mosquitoes (A. stephensi and A. aegypti), a leaf-cutting ant (Atta cephalotes), a red flour beetle
(Tribolium castaneum), and a smoke beetle (Lasioderma serricorne) [191–193]. Furthermore,
antifungal activity against the pathogen affecting cucumber crops, Cladosporium cucumerinum,
was reported [194]. Allo-aromadendrane and its derivative, alloaromadendrane-4β,10β-diol,
were effective inhibitors of the growth of the fungi Cladosporium herbarum and P. oryzae [195,196].

The compound viridiflorol also showed antifungal activity, inhibiting the growth of
phytopathogenic fungi, Colletotrichum truncatum, Pyricularia oryzae, and Cladosporium cuc-
umerinum [138,194,197]. A diet rich in this compound was able to reduce the fecundity and
survival of melaleuca weevil larvae (Oxyops vitiosa) and influence the oviposition of Boreio-
glycaspis melaleucae adults [198,199]. Like the compounds mentioned above, globulol also
showed activity against the phytopathogenic fungus C. cucumkrinum [194]. Furthermore,
it was emitted in larger quantities in Eucalyptus benthamii after the herbivory of the bronze
insect, Thaumastocoris peregrinus, indicating that this compound is involved in defensive
strategies of this plant [200].

4. Discussion

The diversity of sesquiterpenes in Vitex species draws attention to a possible sig-
nificant expression of genes encoding sesquiterpene synthases. The most relevant and
representative sesquiterpenes of the genus Vitex mentioned in this review are derived
from the germacredienyl cation, including the bicyclogermacrene pathway, which gives
rise to aromadrendanes as the largest number of representative compounds in the genus,
and the germacrene C pathway, which forms the rare compound 6,9-guiadiene in plants.
This indicates that 1.10-cyclizing sesquiterpene synthases responsible for the formation
of these compounds may play an important role in the taxonomy of the genus and in
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the chemosystematics among species. A previous study by our research group that used
a metabolomic approach, molecular markers, and statistical analysis through a cluster-
ing algorithm identified a notable presence of aromadrendane compounds in four plants
collected in northeastern Brazil, suggesting that aromadrendanes ring closure can be con-
sidered a more specific signature of the chemical profile for species in the Vitex genus [25].

Much was discussed in recent decades about the great taxonomic redelimitation of
Lamiaceae and Verbenaceae. This was confirmed by [201] using morphological mark-
ers and later consolidated by [202] using molecular markers from conserved parts of
chloropaste of different species distributed in several subfamilies. As a result, an important
part of the Verbenaceae family was redistributed among several subfamilies in Lamiaceae,
including Viticoideae, which contains Vitex as the largest genus. However, Viticoideae
was recognized as the least satisfactory among the subfamilies that were circumscribed,
with morphological, phytochemical, and molecular evidence suggesting it as clearly para-
phyletic and possibly polyphyletic [201]. In the phylogenetic study by [202], Neptododeae
belongs to a clade very close to Vitcoideae, evidencing a genetic proximity between these
subfamilies. Interestingly, aromadrendadanes were proposed as chemotaxonomic mark-
ers for the genera Marsypianthes and Hypenia, which belong to Neptododeae [203,204].
Therefore, it is suggested that sesquiterpene synthases and their cyclization mechanism
for the formation of aromadrendanes may be correlated with this proximity of the clades,
indicating a conserved base of genes among these subfamilies, constituting an interesting
approach that can help in the development of a better understanding of the taxonomy of
the family Lamiaceae.

In addition to 1.10-cyclization, sesquiterpenoids derived from 1.6-cyclization as well
as a 1.11-cyclization mechanism were also identified in Vitex. These enzymes were found
to appear to group together not only according to gene sequence similarity but also by
cyclization mechanism [205]. Phylogenetic analysis in fungi allowed us to offer a predictive
framework for the targeted discovery of new sesquiterpene synthases based on the cycliza-
tion mechanism of choice, streamlining the identification and cloning of new sesquiterpene
synthases that produce desirable natural products [205,206]. The availability of an in-
creasing number of sesquiterpene synthases characterized in plants opens the door to the
application of computational predictive phylogenetic analysis to obtain information about
this surprisingly diverse family of enzymes. This may contribute to a greater understand-
ing of how this gene family is organized and how it has evolved over time. Additionally,
by deepening our understanding of carbocation chemistry from the cyclization products
of these enzymes, we can also develop tools for the biosynthetic production of relevant
insecticidal compounds that may not be accessible by traditional chemical syntheses.

5. Conclusions

This review considers the strong presence of sesquiterpenes in Vitex species. The pathways
and mechanisms proposed for the biosynthesis of identified sesquiterpenes were broadly
summarized based on data found in the literature. This provides new insights for a deeper
understanding of taxonomy information about the biosynthesis of sesquiterpenes in this
genus through gene expression. Data and information on the expression for the formation
of enzymes responsible for the biosynthesis of sesquiterpenes in Vitex plants are scarce and
require further investigation.

Modulation of plant defense against herbivores and pathogens through sesqui (TPSs)
and their terpenoid enzymatic products indicate the importance and value of plants that
are rich in sesquiterpenes. For a comprehensive understanding of sesquiterpenes in Vitex
species, further studies should focus on confirming their biosynthesis pathway and the
influence of herbivores and pathogens on the gene regulation and expression mechanism,
elucidating their importance in the defense process of the Vitex plant.
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