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Abstract: The prevention of aging is one of the most fascinating areas in biomedicine. The 

first step in the development of effective drugs for aging prevention is a knowledge of the 

biochemical pathways responsible for the cellular aging process. In this context it seems 

clear that free radicals play a key role in the aging process. However, in recent years it has 

been demonstrated that the families of enzymes called sirtuins, specifically situin 1 

(SIRT1), have an anti-aging action. Thus, the natural compound resveratrol is a natural 

compound that shows a very strong activation of SIRT1 and also shows antioxidant effects. 

By activating sirtuin 1, resveratrol modulates the activity of numerous proteins, including 

peroxisome proliferator-activated receptor coactivator-1α (PGC-1 alpha), the FOXO 

family, Akt (protein kinase B) and NFκβ. In the present review, we suggest that resveratrol 
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may constitute a potential drug for prevention of ageing and for the treatment of several 

diseases due to its antioxidant properties and sirtuin activation. 
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Introduction 

One of the hallmarks of pharmacological science is the development of safe drugs for the treatment 

of diseases. One proposed strategy for the treatment of neurodegenerative disorders that has gained 

considerable attention is the use of natural antioxidant agents, since one common advantage of all 

these compounds is their human safety [1]. A considerable amount of research has been conducted in 

humans with dietary vitamins E and C [2]. In patients with moderately severe Alzheimer’s Disease the 

administration of vitamin E led to a slight delay of disease progression, thus providing evidence for the 

beneficial effects of this vitamin as part of a potential treatment in AD [2,3]. In keeping with these 

results, other studies with vitamin C, carotenoids and other antioxidants in AD patients have argued 

that these antioxidants might also have a protective effect against this disease [5,6]. Thus, antioxidant 

drugs could have a potential application in neuropharmacology. In this context, attention has turned to 

resveratrol (RESV), a naturally-occurring polyphenolic compound with strong antioxidant properties 

and abundantly found as a component of red wine [7–9]. Research has described several beneficial 

properties of this compound, including anti-carcinogenic, anti-ageing, neuroprotective, analgesic, anti-

diabetic and anti-obesity effects [9–18]. The aim of the present review is to discuss the potential 

beneficial effects of RESV in the treatment of neurological disorders, not only as concerns its 

antioxidant properties, but also through the activation of sirtuin 1 [18–26]. 

Resveratrol as an Antioxidant Drug 

One leading theory about the causes of neurodegenerative diseases and aging suggests that free 

radical damage and oxidative stress play a major role in the pathogenesis of all such diseases, for 

example, Parkinson’s and Alzheimer’s diseases [27–31]. Oxidative stress is known to induce 

intracellular cell damage that affects all the biological components such as DNA, lipids, sugars and 

proteins [1,4,5,27,30,32,33]. Therefore, the imbalance between intracellular ROS and antioxidant 

defence mechanisms results in oxidative stress that is harmful for neurons.  

RESV (3,5,4’-trihydroxystilbene), the main non-flavonoid polyphenol found in black grapes and 

red wine, is characterized as a phytoalexin and is produced by a variety of plants in response to stress. 

It was used as a natural plant compound in traditional Chinese and Japanese medicine) [7–9]. Although 

interest in this compound was initially almost exclusively focused on its antioxidant properties, it has 

since been reported to possess a wide range of other biological and pharmacological activities 

including anti-inflammatory, anti-mutagenic, and anti-carcinogenic effects [10–14].  

Experimental studies indicate that RESV increased the plasma antioxidant capacity and decrease 

lipid peroxidation in rats [8]. Its strong antioxidant properties have been associated with the beneficial 

effects of red wine consumption in protecting against coronary heart disease [7,8,14]. Moreover, in 

spontaneously hypertensive rats RESV significantly reduced markers of oxidative stress such as  
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8-hydroxyguanosine in urine [7,9,17]. Likewise, in guinea pigs RESV induced catalase activity in 

cardiac tissue and decreased the concentration of reactive oxygen species (ROS) generated by 

menadione [14]. These results indicate that resveratrol can suppress pathological increases in the 

peroxidation of lipids and other macromolecules in vivo, and also that these effects are direct, or the 

result of upregulating endogenous antioxidant enzymes [8,14]. 

Resveratrol and Sirtuin 1 Activation 

It has been proposed that the protective mechanism related with RESV neuroprotection, namely as 

an agonist of the sirtuins (also called SIRT—or silent information regulator two—proteins), which 

belong to the histone deacetylase family [31,33–37], is independent of its antioxidant properties. 

Current research is therefore focused on understanding the mechanisms involved in the ability of 

RESV to increase the activity of sirtuin 1 (SIRT1) and the intracellular pathways activated or regulated 

by SIRT1.  

Likewise, interest in SIRT1 has also intensified due to its role as a longevity factor in multiple 

model organisms [35,36]. AS mentioned, SIRT1 belongs to the histone deacetylases (HDACs) family 

that have been divided into four groups [35–37]. Class I and II HDACs are similar to the yeast Rpd3p 

and Hda1p proteins. Class III HDACs share common features with the yeast transcriptional repressor 

Sir2p and are referred to as sirtuins [17]. Class I and II HDACs are characterized by their sensitivity to 

inhibition by trichostatin A (TSA), whereas the characteristic feature of class III HDACs is that they 

are nicotinamide adenine dinucleotide (NAD+)-dependent. A fourth class includes the deacetylase 

HDAC119 L. Class III histone deacetylases were named after the founding member, the 

Saccharomyces cerevisiae silent information regulator 2 (Sir2) proteins [6]. Analyses of SIRT1 

enzymatic activity has revealed that it functions differently from previously-described histone 

deacetylases. Studies using purified SIRT1 revealed that for every acetyl lysine group removed, one 

molecule of NAD+ is cleaved, and nicotinamide and O-acetyl-ADP-ribose are produced [6–8]. 

Therefore, SIRT1 appears to possess two enzymatic activities: The deacetylation of a target protein 

and the metabolism of NAD+. These two activities suggest that SIRT1 could act as a metabolic or 

oxidative sensor, regulating cellular machinery based on such information [8]. Therefore, it can be 

hypothesized that the benefits of RESV are due either to its antioxidant properties or to a specific 

activation of SIRT1, which is involved in responding to molecular damage and metabolic  

imbalances [17]. 

Resveratrol and Aging 

As mentioned earlier, in yeast, worms and flies extra copies of the genes that encode sirtuins are 

associated with extended lifespan [34]. Inbred knockout mice that lack SIRT1 show developmental 

defects and have a low survival rate and a significantly shorter lifespan compared with wild-type mice, 

although out breeding seems to improve the phenotype significantly [16,18]. It has been postulated that 

the main function of sirtuin proteins is to promote survival and stress resistance in times of adversity. 

An evolutionary advantage arising from the ability to modify lifespan in response to environmental 

conditions could have allowed these enzymes to be conserved among all species, and to take on new 

functions in response to new stresses and demands on the organism. This could explain why the same 
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family of enzymes has dramatic effects on lifespan in disparate organisms with seemingly dissimilar 

causes of aging. 

An in vitro screen for activators of SIRT1 identified RESV as the most potent of 18 tested inducers 

of deacetylase activity. Subsequent work has shown that RESV extends the lifespan of S. cerevisiae, 

Caenorhabditis elegans and Drosophila melanogaster, but only if the gene that encodes SIR2 is 

present in these organisms [16,17]. More recently, RESV was shown to extend the maximum lifespan 

of a species of short-lived fish by up to 59%, concomitant with the maintenance of learning and motor 

function with age and a dramatic decrease in aggregated proteins in elderly fish brains; however, the 

extent to which this effect is Sir2-dependent, if at all, is not known [38–40]. The importance of 

substrate choice in vitro highlights the possibility that RESV might alter the substrate specificity of 

SIRT1 in vivo. Indeed, this is the case in Caenorhabditis elegans, where RESV treatment has been 

shown to have SIR-2-dependent effects that are substantially different from those obtained by simple 

over-expression. At all events, the question of whether enhanced SIRT1 activity and/or RESV 

treatment will increase mammalian lifespan and be of use in ageing-research therapy remains 

unresolved. 

As pointed out above, one important mechanism that controls or favours the process of aging is the 

dramatic increase in oxidative stress. Previous studies suggest that antioxidant enzymes such as 

catalase and superoxide dismutase (SOD) could induce lifespan extension. However, the efficacy of 

antioxidant drugs as anti-ageing molecules is unclear because the lifespan extensions could be 

abolished in the presence of ROS [8,17]. Thus, it could be argued that the potential beneficial effects 

of RESV on ageing are not exclusively mediated by its antioxidant properties.  

Recent studies have also demonstrated that the positive effects of RESV on aging tissues, 

specifically brain, heart and skeletal muscle, were not associated with an increase in SIRT1 expression. 

Thus, it has been proposed that the anti-aging effects of RESV may be independent of SIRT1 activity. 

At all events, the complexity of the mechanism of action of RESV is increasing, since recent data 

suggest that the administration of RESV does not reduce the levels of oxidative stress markers of DNA 

damage. Therefore, it is also not clear how RESV and dietary restriction increase life span, although it 

has been proposed that mTOR activation might constitute an additional pathway involved in this 

process that is activated by food deprivation. Further in-depth studies are required regarding the 

potential interaction between RESV and mTOR activation [24].  

Resveratrol and Neurodegenerative Diseases  

Research has described several important roles for SIRT1 in the central nervous system (CNS), 

mainly in terms of neuronal development and neuroprotection [6,17]. Previous studies demonstrating 

high SIRT1 levels in the embryonic brain suggest that it might have a role in neuronal and/or brain 

development. This idea is consistent with some of the phenotypes associated with SIRT1 knockout 

mice, who show developmental defects and in which postnatal survival is infrequent [34]. 

As in other mammalian cells SIRT1 promotes survival and stress tolerance in central nervous 

system (CNS) neurons. In the adult rat brain, SIRT1 can be found in the hippocampus, cerebellum and 

cerebral cortex. Interestingly, SIRT1 expression is regulated by oxidative stress, since the antioxidant 

vitamin E has been shown to reduce oxidative damage and reduction of SIRT1 caused by a high fat 

and sugar diet, with the subsequent restoration of SIRT1 levels [6]. This study suggests that SIRT1 
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levels in the brain are affected by oxidative stress and energy homeostasis. An interesting recent study 

employing organotypic hippocampal slice culture as an in vitro model of cerebral ischemia showed 

that RESV given as pre-treatment mimics ischemic preconditioning via SIRT1 [41]. When SIRT1 was 

inactivated by sirtinol after ischemic preconditioning or RESV pre-treatment, neuroprotection was 

abolished. Therefore, this study demonstrates a neuroprotective role for SIRT1 in ischemic injury, 

which could be elicited by a small molecule such as RESV, and is therefore of substantial  

clinical interest.  

Resveratrol and Huntington’s Disease 

The neurotoxin 3-nitropropionic acid, a mitochondrial complex II inhibitor is a well-established 

experimental model of Huntington’s disease. Previous studies have reported that the beneficial effects 

of RESV against this neurotoxin might be attributed to its antioxidant activity [42]. However, several 

findings in particular suggest that the neuroprotective effects of SIRT1 could be extended to 

degenerating neurons. Parker et al. showed that resveratrol, acting through Sir-2.1 and SIRT1 

activation, respectively, protected Caenorhabditis elegans and mouse neurons against the cytotoxicity 

of the mutant polyglutamine protein huntingtin. Huntingtin is the product of the gene mutated in the 

hereditary neurodegenerative disorder Huntington’s disease, where the expansion of a polyglutamine 

stretch results in a mutant polypeptide that can form cytotoxic aggregates in neurons [43]. Although 

Caenorhabditis elegans has no huntingtin orthologue, over-expression of a huntingtin fragment in 

touch receptor neurons resulted in a gain-of function mechanosensory defect that was able to model 

the disease. Both RESV and an increased sir-2.1 gene dosage alleviated the worm neuronal 

dysfunction in a DAF16-dependent manner. Furthermore, RESV decreased cell death associated with 

neurons cultured from mutant huntingtin (109Q) knock-in mice in a manner that could be reversed by 

two SIRT1 inhibitors, sirtinol and nicotinamide. 

Resveratrol and Alzheimer’s Disease 

A link between SIRT1 and Alzheimer’s disease (AD) is also increasingly evident [6]. The amyloid 

hypothesis argues that the aetiological agent of AD pathology is extracellular plaques consisting of 

aggregated beta-amyloid (Ab) peptide generated from proteolytic cleavages of the amyloid precursor 

protein (APP) [29]. Both intracellular and extracellular soluble oligomeric forms of Ab were shown, in 

fact, to initiate synaptic malfunctions and the onset of AD symptoms [29,30]. NF-κB signalling in 

microglia is known to play a critical role in neuronal death induced by Ab peptides [1,5]. The 

activation of SIRT1 and modulation of NF-κB signalling may result in other beneficial effects such as 

anti-inflammation, with inflammation being another contributory factor in the neurodegenerative 

process of this disease. 

Likewise, it has been reported that SIRT1 is up-regulated in mouse models of AD. In the inducible 

p25 transgenic mouse, a model of AD and tauopathies, RESV reduced neurodegeneration in the 

hippocampus and prevented learning impairment [44]. Furthermore, over expression of SIRT1 via a 

lentivirus in the hippocampus of p25 transgenic mice conferred significant neuroprotection. 

Accordingly, an increase in SIRT1 activation may be a potential target for the treatment of 

neurodegenerative disorders. Another possible link between SIRT1 and AD comes from the potential 
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benefits of CR (RESV mimics the effects of CR) on AD symptoms and progression. It is well known 

in the epidemiology of neurodegenerative diseases that the incidence of both sporadic Parkinson’s and 

Alzheimer’s disease is correlated with multiple genetic factors, diet and social behaviour [6,30,31,42]. 

It has been hypothesised that high calorie diets are associated with an increased risk of AD, and caloric 

restriction (CR) has been proposed to protect against both PD and AD [35,45]. Firmer evidence for this 

idea was obtained when Patel et al. showed that short-term CR substantially decreased the 

accumulation of Ab plaques in two AD-prone APP/presenilin transgenic mice lines, and also decreased 

gliosis marked by astrocytic activation. In another study, it was showed that a CR dietary regimen 

prevents Ab peptide generation and neuritic plaque deposition in the brain using a mouse model of AD 

(Tg2576 mice) [46]. The authors suggested that CR resulted in the promotion of APP processing via 

the non-amyloidogenic α-secretase-mediated pathway. They observed a significant increase in the 

concentration of brain sAPPα (a product of α-secretase cleavage) and in ADAM10 (a putative  

α-secretase) levels in CR animals compared to controls. Furthermore, it was demonstrated that CR 

reduced the content of Ab in the temporal cortex of squirrel monkeys, in a manner that was inversely 

correlated with SIRT1 protein concentrations in the same brain region [45].  

The potential link between RESV and AD is also supported by studies which suggest that moderate 

consumption of wine is associated with a lower incidence of AD and improved neuropathology in a 

mouse model of the disease [47–51]. Different in vitro and in vivo studies have investigated the 

molecular neuroprotective mechanisms associated with RESV. β-amyloid peptide induces cell death 

through apoptosis in many cell types via reactive oxygen species and such an effect was also blocked 

by RESV [49,50,52]. More interestingly, RESV can rescue hippocampal primary neurons and PC12 

cells from the toxicity of β-amyloid peptide [49]. Thus, a treatment with RESV, administrated 2 h after 

the amyloid β peptide (25–35) (20 μM), significantly attenuated the amyloid β peptide-induced cell 

death in a concentration-dependent manner [50]. As regards the other potential pathways involved in 

RESV neuroprotection against β-amyloid, research has demonstrated the role of PKC activity in this 

effect. In contrast, studies in SH-SY5Y neuroblastoma cells showed that RESV can induce the 

activation of the MAP kinases, ERK1 and ERK2 [47]. Recently, in two different APP695-transfected 

cell lines (HEK293 and N2A), RESV (20–40 μM) could markedly reduce the secretion of the amyloid 

β peptide (1–40) [52]. This effect of RESV occurred without directly affecting β and γ-secretases, 

since RESV has no effect on these enzymes [52,53]. The reduction of amyloid β peptide secretion 

could be due to an increase in its degradation. Metalloendopeptidases such as neprilysin or endothelin-

converting enzyme ECE-1 or ECE-2 are candidates for the amyloid β peptide-degrading enzyme in 

brain [53–55], although RESV did not promote the decrease of amyloid β peptide through the activity 

of these metalloendopeptidases. It has been proposed that the amyloid β peptide itself may lead to 

proteasome inhibition[55], suggesting that high levels of the amyloid β peptide in the brain of 

Alzheimer’s patients may inhibit the proteasome and block the degradation of regulators of its own 

clearance. The treatment of cells with the selective proteasome inhibitors lactacystin, Z-GPFL-CHO or 

YU101 significantly blocked the RESV-induced decrease of the amyloid β peptide [52]. These results 

suggest that RESV can activate the proteasome involved in the degradation of the amyloid β peptide. 

Recently, it has been suggested that RESV is an inhibitor of acetylcholinesterase, and this new 

pharmacological effect lends support to the potential application of RESV in AD [48]. 
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Resveratrol and Parkinson’s Disease 

Parkinson’s disease (PD) is a neurodegenerative disease characterized at the clinical level by 

bradykinesia, tremor and rigidity and at the cellular level by a loss of dopamine neurons in grey matter 

and the frequent presence of intraneuronal inclusions named Lewy bodies, which are mainly composed 

of α-synuclein [56,57]. Like AD, the familial form of PD concerns only a small proportion of patients 

(10%). The majorities of them suffer from a sporadic form, and although the genetic causes are fairly 

well identified the reasons for the emergence of these sporadic forms remains unclear. The 

involvement of mitochondrial dysfunction in PD has been established for over two decades, since it 

was discovered that the administration of 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine (MPTP) 

causes the emergence of parkinsonism in both laboratory animals and humans through its active 

metabolite ion MPP+, which inhibits complex I in the chain of mitochondrial electron transfer [57,58]. 

Complex I inhibition is known to be the major source of free radicals, and it is thought that the 

alteration in its functions could, above and beyond the declining production of ATP, give rise to 

increased oxidative stress, thus explaining the emergence of the disease [58].  

Previous in vivo studies suggest that RESV exerts beneficial effects in experimental models of PD 

[59–61]. For example, the administration of a diet containing RESV or treatment with RESV to adult 

mice prior to treatment with the neurotoxin MPTP exerts neuroprotective effects on dopaminergic 

neurons [56]. Furthermore, in vitro studies have also demonstrated the neuroprotective effects of 

RESV with different neurotoxins [59–61]. However, it has been suggested that SIRT1 activation does 

not play a major role in the protective effect of RESV against MPP+ cytotoxicity, because sirtuin 

inhibitors such as nicotinamide and sirtinol did not counteract neuroprotection by RESV [58]. In 

contrast, all studies in this area propose that antioxidant actions are responsible for the neuroprotection 

by RESV against MPP+ [58–59]. However, there are recent reports that genetic inhibition of SIRT2 via 

small interfering RNA rescued α-synuclein toxicity. Furthermore, inhibitors of this enzyme protected 

against dopaminergic cell death both in vitro and in a Drosophila model of Parkinson’s disease, and it 

has also been shown that inhibition of SIRT2 (another sirtuin protein) rescued α-synuclein toxicity and 

modified inclusion morphology in a cell model of Parkinson’s disease [60]. At all events, increased 

SIRT2 expression or activity delays the toxic effects induced by α-synuclein, the protein that forms 

insoluble aggregates in several age-onset pathologies including Parkinson’s disease. Accordingly, 

RESV could be an interesting candidate for potential application in the treatment of PD, although 

probably only on the basis of its antioxidant properties; at present it remains to be clarified if RESV 

could activates SIRT1 and offers neuroprotection in PD. 

Conclusions 

In the last decade, sirtuin biology has come a long way from the original description of yeast 

NAD+-dependent class III HDACs, which control yeast lifespan. Hence, modulating the expression of 

SIRT1 or its activity by using sirtuin-activating compounds such as RESV will have pleiotropic 

effects. SIRT1 is a major modulator of metabolism and also seems to be endowed with neuroprotective 

activities, as suggested by research with models of PD or AD [62–65]. Furthermore, other sirtuins 

might play important roles in some diseases, as illustrated by SIRT2, which could be involved in the 

treatment of both cancer and PD. Interestingly, low doses of RESV exert the same beneficial effects as 
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caloric restriction in mice [66–69]. Thus, although dietary restriction is not an appropriate strategy for 

the treatment of neurological disorders, its beneficial effects could be obtained via RESV [64]. 

Obviously, further studies in both animal models and humans are needed to define the exact role of 

sirtuins in the pathophysiology of human diseases. However, it is reasonable to assume that therapeutic 

interventions that aim to activate or block sirtuins, depending on the context, will one day become 

useful in the treatment of human diseases. 
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