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Statistical methods for identifying adaptive mutations from population genetic data face

several obstacles: assessing the significance of genomic outliers, integrating correlated

measures of selection into one analytic framework, and distinguishing adaptive variants from

hitchhiking neutral variants. Here, we introduce SWIF(r), a probabilistic method that detects

selective sweeps by learning the distributions of multiple selection statistics under different

evolutionary scenarios and calculating the posterior probability of a sweep at each genomic

site. SWIF(r) is trained using simulations from a user-specified demographic model and

explicitly models the joint distributions of selection statistics, thereby increasing its power to

both identify regions undergoing sweeps and localize adaptive mutations. Using array and

exome data from 45 ‡Khomani San hunter-gatherers of southern Africa, we identify an

enrichment of adaptive signals in genes associated with metabolism and obesity. SWIF(r)

provides a transparent probabilistic framework for localizing beneficial mutations that is

extensible to a variety of evolutionary scenarios.
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Adaptive mutations that spread rapidly through a popula-
tion, via processes known as selective sweeps, leave dis-
tinctive signatures on genomes. These genomic signatures

fall into three categories: differentiation among populations, long
shared haplotype blocks, and changes in the site frequency
spectrum (SFS). Statistics that are commonly used to detect
genomic signatures of selective sweeps include fixation index
(FST)1 for measuring population differentiation, integrated
haplotype score (iHS)2 for identifying shared haplotypes, and
Tajima’s D3 for detecting deviations from the neutral SFS. Some
approaches, like SweepFinder4 and SweeD5 integrate information
across sites by modeling changes to the SFS. Often, statistical
scans for adaptive mutations proceed by choosing a particular
genomic signature and a corresponding statistic, obtaining the
statistic’s empirical distribution across loci in a genome-wide
dataset, and focusing on loci that fall past an arbitrary, but
conservative threshold2,6,7.

Recently, there has been increased focus on developing com-
posite methods for identifying selective sweeps, which combine
multiple statistics into a single framework;8–15 we refer to the
statistics that are aggregated in composite methods such as these
as “component statistics.” Most composite methods draw upon
machine learning approaches like support vector machines8,11,
deep learning15, boosting10,13, or random forest classification14 in
order to identify genomic windows containing selective sweeps.
These windows vary in size from 20 to 200 kb, often identifying
candidate sweep regions containing many genes14,15. One
method, the Composite of Multiple Signals or “CMS”9,12, uses
component statistics that can be computed site by site in pursuit
of localizing adaptive variants within genomic windows, but the
output from this method cannot be interpreted without com-
parison to a genome-wide distribution. In addition, CMS must
rely on imputation or other methods of compensation when
component statistics are undefined, a complication that typically
does not arise when using window-based component statistics. In
a subset of populations from the 1000 Genomes Project, we found
that more than half of variant sites had at least one undefined
component statistic (Supplementary Table 1); iHS was frequently
undefined because it requires a minor allele frequency of 5% to be
computed2, and along with cross-population extended haplotype
homozygosity (XP-EHH)16, cannot be calculated near the ends of
chromosomes or sequenced regions. This poses a particular
problem when scanning for complete sweeps, defined here as
sweeps in which the beneficial allele has fixed in the population of
interest.

Here we introduce a probabilistic classification framework for
detecting and localizing adaptive mutations in population-
genomic data called SWIF(r) (SWeep Inference Framework
(controlling for correlation)). SWIF(r) has three major features
that enable genome-wide characterization of adaptive mutations:
first, SWIF(r) computes the per-site calibrated probability of
selective sweep, which is immediately interpretable and does not
require comparison with a genome-wide distribution; second,
SWIF(r) can be run without imputing undefined statistics; and
third, we explicitly learn pairwise joint distributions of selection
statistics, which gives substantial gains in power to both identify
regions containing selective sweeps and localize adaptive variants.
Existing composite methods for selection scans have subsets of
these features (e.g., CMS9,12 returns site-based scores, and evol-
Boosting10, evoNet15, and other machine learning approa-
ches13,14 leverage correlations among component statistics), but
SWIF(r) combines all three in a unified statistical framework. Our
approach incorporates the demographic history of populations of
interest, while being robust to misspecification of that history,
and is also agnostic to the frequency of the adaptive allele,
identifying both complete and incomplete selective sweeps in a

population of interest. We assess SWIF(r)’s performance in
simulations against state-of-the-art univariate and composite
methods for identifying genomic targets of selective sweeps, and
we confirm that we can localize known adaptive mutations in the
human genome using data from the 1000 Genomes Project. We
then apply SWIF(r) to identify previously unidentified adaptive
variants in genomic data from the ‡Khomani San, an under-
studied hunter-gatherer KhoeSan population in southern Africa
representing the most basal human population divergence. Open-
source software for training and running SWIF(r) is freely
available at https://github.com/ramachandran-lab/SWIFr.

Results
Overview. Here we describe the theoretical framework of SWIF(r),
and compare SWIF(r) to existing methods that scan genome-wide
datasets and identify genomic sites or regions containing adaptive
mutations. We then apply SWIF(r) to data from the 1000 Genomes
Project and from the ‡Khomani San population of southern Africa.
Note that we train SWIF(r) on simulations of hard sweeps (see
Methods); our focus here is not on the relative roles of various
modes of selection in shaping observed human genomic variation
(for recent treatments on this question see refs. 17–19), although we
note that SWIF(r) is extensible to multi-class classification, and
could be used in future applications to explore multiple modes of
selection. In this study, our focus is on localizing genomic sites of
adaptive mutations that have spread through populations of
interest via hard sweeps.

Implementation of SWIF(r). SWIF(r) draws on statistical
inference and machine learning to localize the genomic site of a
selective sweep based on probabilities that incorporate depen-
dencies among component statistics. Unlike genomic outlier
approaches, the output of SWIF(r) can be interpreted directly for
each genomic site: given a set of n component statistics for a site,
SWIF(r) calculates the probability that the site is neutrally evol-
ving or, alternatively, is the site of a selective sweep. We will refer
to these two classes as “neutral” and “adaptive,” respectively, and
these posterior probabilities can be computed as follows:

P adaptive S1 ¼ s1; :::; Sn ¼ snjð Þ ¼
πP s1;:::;sn adaptivejð Þ

πP s1;:::;sn adaptivejð Þþ 1�πð ÞP s1;:::;sn neutraljð Þ ;

P neutral S1 ¼ s1; :::; Sn ¼ snjð Þ ¼
1� P adaptive S1 ¼ s1; :::; Sn ¼ snjð Þ;

ð1Þ

where s1,...,sn represent observed values for n component statistics
such as iHS and FST, and π is the prior probability of a sweep,
which may be altered to reflect different genomic contexts. If a
component statistic is undefined at a site, it is simply left out of
Eq. 1, and does not need to be imputed. The data for learning the
likelihood terms, P(s1,...,sn|adaptive) and P(s1,...,sn|neutral), come
from calculating component statistics on simulated haplotypes
from a demographic model with and without simulated selective
sweeps comprising a range of selection coefficients and present-
day allele frequencies (see Methods). We note that this general
framework is similar to that used by Grossman et al.9 for CMS,
which assumes that the component statistics are independent,
and computes the product of posterior probabilities P(adaptive|si)
for each statistic si. SWIF(r) strikes a balance between computa-
tional tractability and model accuracy by learning joint dis-
tributions of pairs of component statistics, thereby relaxing this
strict independence assumption.

We base SWIF(r) on a machine learning classification frame-
work called an averaged one-dependence estimator (AODE)20,
which is built from multiple one-dependence estimators (ODEs),
each of which conditions on a different component statistic in
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order to compute a posterior sweep probability at a given site. An
ODE conditioning on Sj assumes that all other component
statistics are conditionally independent of one another, given the
class (neutral or adaptive) and the value of Sj. As shown in Eq. 2,
this assumption effectively reduces the dimensionality of the
likelihood terms P(s1,...,sn|class) in Eq. 1. The AODE then reduces
variance by averaging all possible ODEs to produce a posterior
probability that incorporates all pairwise joint probability
distributions (Eq. 3; see Methods).

Assumption made by ODEj (ODE conditioning on Sj):

Pðs1; :::; sn classj Þ ¼ PðSj ¼ sj classj Þ
Y
i≠j

PðSi ¼ sijSj ¼ sj; classÞ:

ð2Þ

SWIF(r):

PðadaptivejS1 ¼ s1; ¼ ; Sn ¼ snÞ ¼
π
Pn
j¼1

PðSj¼sjjadaptiveÞ
Q
i≠j

PðSi¼sijSj¼sj;adaptiveÞ
� �

π
Pn
j¼1

PðSj ¼ sjjadaptiveÞ
Q
i≠j

PðSi ¼ sijSj ¼ sj; adaptiveÞ
" #"

þð1� πÞPn
j¼1

P Sj ¼ sjjneutral
� �Q

i≠j
PðSi ¼ sijSj ¼ sj; neutralÞ

" ##
:

ð3Þ

Calibration of posterior probabilities calculated by SWIF(r). A
desirable property of probabilities, like those calculated by SWIF(r),
is that they be well calibrated: in this context, for the variant
positions where the posterior probability reported by SWIF(r) is
around 60%, approximately 60% of those sites should contain an
adaptive mutation, and approximately 40% should be neutral. We
implemented a smoothed isotonic regression (IR) scheme to cali-
brate the probabilities calculated by SWIF(r) (see Methods). Briefly,
when applying SWIF(r) to a given dataset, we calculate the
empirical frequencies of neutral and sweep variants that are
assigned posterior probabilities between 0 and 1 in simulation, and
use IR21 to map the posterior probabilities to their corresponding
empirical sweep frequencies (Supplementary Figs. 1, 2). We then
impose a smoothing function that prevents multiple posterior
probabilities from being mapped to the same calibrated value
(Supplementary Figs. 1e, 2e, 3). This calibration procedure relies on
the relative makeup of the training set; a classifier that is calibrated
for a training set made up of neutral and sweep variants in equal
parts would not be well calibrated for a training set in which sweep
variants only make up 1% of the whole. For each application of
SWIF(r) in this study, we calibrated SWIF(r) for a specific training
set makeup (see Methods; also see Supplementary Figs. 1, 2).

The calibrated probabilities reported by SWIF(r) can be
interpreted directly as the probability that a site contains an
adaptive mutation, or fed into a straightforward classification
scheme by way of a probability threshold; in this study, we classify
sites with a posterior probability above 50% as adaptive SWIF(r)
signals. The classifier may be tuned by altering either this
threshold or the prior sweep probability π (Supplementary Fig. 4).

Performance of SWIF(r) using simulated data. We imple-
mented SWIF(r) using the following component statistics: FST1,
XP-EHH16 (altered as in Wagh et al.22; Supplementary Note 1),
iHS2, and difference in derived allele frequency (ΔDAF). These
statistics can each be calculated site by site in a genomic dataset,

and all but iHS leverage cross-population comparisons. Training
simulations used the demographic model of Europeans, West
Africans, and East Asians inferred by Schaffner et al.23, and
simulated selective sweeps within each of those populations (see
Methods). We compared SWIF(r)’s performance against each
component statistic, SweepFinder4, composite method CMS9

(altered by excluding ΔiHH because of non-normality; Supple-
mentary Note 2 and Supplementary Fig. 5), and window-based
sweep-detection methods evoNet15, and evolBoosting10. We also
evaluated the robustness of SWIF(r) to both demographic model
misspecification and background selection.

In Fig. 1a and Supplementary Fig. 6, we evaluate the ability of
SWIF(r) to localize the site of an adaptive mutation against that of
its component statistics, the composite method CMS, and
SweepFinder. The performance of each component statistic varies
with different sweep parameters: for example, iHS is most
powerful for identifying adaptive mutations that have not yet
risen to high frequency within the population of interest, while
XP-EHH and ΔDAF are more effective for those that have
(Supplementary Fig. 7). This underscores the advantage of
composite methods for detecting selective sweeps when the
parameters of the sweep are unknown8–15. Aggregating over
many different sweep parameters, SWIF(r) outperforms each
component statistic, as well as CMS and SweepFinder, improving
the tradeoff between the false-positive rate (fraction of neutral
variants incorrectly classified as adaptive) and true-positive rate
(fraction of adaptive mutations that are correctly classified as
such) (Fig. 1 and Supplementary Fig. 6). SWIF(r) also outper-
forms CMS in distinguishing adaptive mutations from linked
neutral variation (Supplementary Fig. 8). The performance of
SWIF(r) is particularly striking for incomplete sweeps: for
example, in Fig. 1b, SWIF(r) achieves up to a 50% reduction in
the false-positive rate relative to CMS for adaptive mutations that
have only swept through 20% of the population at the time of
sampling (see also Supplementary Fig. 6a–c, noting that
SweepFinder was designed to identify complete sweeps in a
population of interest). For the same incomplete sweep simula-
tions summarized in Fig. 1b, Fig. 1c shows the performance of
each of the individual ODEs (Eq. 2); in this particular
evolutionary scenario, conditioning on FST or ΔDAF results in
the best performance. However, the best-performing ODE
changes based on the parameters of the selective sweep (Fig. 1d).
By averaging across all ODEs, SWIF(r) is robust to variable
performance of ODEs in the absence of prior knowledge of the
true sweep parameters (Fig. 1a–c).

While few composite methods for sweep detection operate site
by site, there are a handful of machine learning composite
approaches that identify genomic windows containing adaptive
mutations10,13–15. In order to compare SWIF(r) against such
methods, we had to alter SWIF(r) to calculate window-based
sweep probabilities; there are many potential ways to do this that
may be differentially powerful, and here we chose simply to use
the highest probability assigned to any variant within a given
genomic window as the probability for that window. We
compared window-based SWIF(r) to two state-of-the-art compo-
site window-based methods: evolBoosting10, which combines
120 statistics using boosted logistic regression, and evoNet15,
which was developed to jointly infer demography and selection
using 345 component statistics within a deep learning framework.
When comparing SWIF(r) with evolBoosting, we use 40 kb
windows following Lin et al.10, and for comparison with evoNet,
we use 100 kb windows following Sheehan and Song15. We show
that SWIF(r) outperforms both methods across a range of sweep
parameter values (Supplementary Figs. 9, 10). We note that while
the alterations we make to SWIF(r) in order to produce window-
based probabilities likely downplay the strengths of SWIF(r),
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SWIF(r) does benefit from the inclusion of cross-population
statistics, while both evolBoosting and evoNet rely on component
statistics defined for single populations.

We also evaluated the performance of SWIF(r) and other
methods in the context of the tradeoff between power and false
discovery rate (FDR). Power-FDR curves for site-based methods
in Fig. 1e and Supplementary Fig. 6f assume a training set
composition of 99.95% neutral variants and 0.05% adaptive
variants. Curves for other training set compositions can be found
in Supplementary Fig. 11. To generate a training set for window-
based methods (Supplementary Figs. 9f, 10f), we assume that 1%
of windows contain a sweep. Finally, we evaluated the sensitivity
of SWIF(r) to demographic misspecification and background
selection (see Methods). We find that SWIF(r) is robust to
misspecification of multiple parameters including divergence
times, bottleneck strength, population sizes, and population size
changes (Supplementary Figs. 12, 13), and that the presence of
background selection does not induce SWIF(r) to identify false-
positive signals (Supplementary Fig. 14).

SWIF(r) localizes canonical adaptive mutations in humans. For
application to data from phase 1 of the 1000 Genomes Project, we
used training simulations from the Schaffner demographic model23,
calibrated SWIF(r) for a training set composed of 0.01% sweep
variants and 99.99% neutral variants (Supplementary Fig. 1), and
applied it to SNP (single-nucleotide polymorphism) array data from
West African (YRI), East Asian (CHB and JPT), and European
(CEU) populations (Supplementary Note 3). SWIF(r) reports high
sweep probabilities at multiple SNPs within known and suspected
selective sweep loci in each of these populations (Supplementary
Datas 1, 2). Figure 2 illustrates the ability of SWIF(r) to localize sites
of adaptive mutations within genomic regions containing canonical
sweeps. Adaptive SNPs have been determined via functional
experiments in SLC24A524, DARC25, and HERC226; we find that
modeling the dependency structure among component statistics
within SWIF(r) enables statistical localization of these experimen-
tally identified adaptive mutations (Fig. 2a, c, d). Methods that treat
component statistics as independent, as CMS does, cannot localize
these mutations (Supplementary Figs. 15, 16). In CHB and JPT,
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Fig. 1 SWIF(r) outcompetes existing site-based sweep-detection methods for a range of sweep model parameters. For comparison against window-based
sweep-detection methods, see Supplementary Figs. 9 and 10. a Receiver operating characteristic (ROC) curves comparing SWIF(r) with CMS9, FST, iHS,
XP-EHH, and ΔDAF across all simulated neutral and sweep scenarios (see Methods). False-positive rate is the fraction of simulated neutral sites that are
incorrectly classified as adaptive, and the true-positive rate is the fraction of simulated sites of adaptive mutations that are correctly classified. SWIF(r)
constitutes an improvement in the tradeoff between true and false positives. SweepFinder4 is not visible here or in b (Supplementary Fig. 6). b ROC curves
for incomplete sweeps in which the beneficial allele has a population frequency of 20%. SWIF(r) reduces the false-positive rate by up to 50% relative to
CMS. c ROC curves for SWIF(r) and the four component ODEs for incomplete sweeps in which the beneficial allele has a frequency of 20%. Since the
AODE is an average of the ODEs, there will always be individual ODEs that match or outperform SWIF(r); in this case, the ODEs conditioned on FST and
ΔDAF both achieve this. d The two highest-performing ODEs for different sweep parameters. Performance is defined as area under the ROC curve. The
statistic that leads to the highest-performing ODE is listed first in bold, followed by the second best. Colors correspond to ROC curves in panels a–c. While
ODEs conditioned on ΔDAF tend to perform extremely well for sweeps that are at lower frequency, ODEs conditioned on FST and XP-EHH tend to perform
better for sweeps that are near-complete or complete in the population of interest. By averaging the ODEs, SWIF(r) is robust to uncertainty about the true
parameters of the sweep. e Power-FDR curves for SWIF(r), CMS, FST, iHS, XP-EHH, ΔDAF, and SweepFinder. Power is equivalent to true-positive rate as
defined in a–c, and false discovery rate is defined as the fraction of sites classified as adaptive that are actually neutral. These curves assume a training set
composed of 99.95% neutral variants and 0.05% adaptive variants. See Supplementary Fig. 11 for curves based on other training set compositions
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Fig. 2 SWIF(r) localizes canonical adaptive mutations and provides additional evidence for suspected sweeps in YRI, CHB and JPT, and CEU63. Plotted
points indicate the calibrated posterior sweep probability calculated by SWIF(r) at each site, using prior sweep probability π= 10−5. Plots were made with
LocusZoom64. Where available, functionally verified adaptive SNPs are depicted as filled diamonds and labeled with rsids. a, b In YRI, two loci where SWIF
(r) reports high sweep probabilities are DARC and DOCK3. DARC encodes the Duffy antigen, located on the surface of red blood cells, and is the receptor for
malaria parasites. The derived allele of the causal SNP shown has been determined to be protective against Plasmodium vivax malaria infection25. DOCK3,
along with neighboring genes MAPKAPK3 and CISH, are all associated with variation in height, and have previously been shown to harbor signals of
selection in Pygmy populations65. CISH may also play a role in susceptibility to infectious diseases, including malaria66. c, d In CEU, we uncover multiple
loci in genes involved in pigmentation, including rs1426654 in SLC24A5, which is involved in light skin color24, and rs12913832 in the promoter region of
OCA2, which is functionally linked with eye color and correlates with skin and hair pigmentation26. rs1426654 has the highest sweep probability reported
by SWIF(r) in SLC24A5 (0.9992 after smoothed calibration; see Supplementary Data 1); note each panel depicts genomic windows containing multiple
genes. e, f In CHB and JPT, SWIF(r) recovers a strong adaptive signal in the vicinity of EDAR; multiple GWA studies have shown rs3827760 to be
associated with hair and tooth morphology67,68. SWIF(r) also identifies variants with high sweep probability in ADAM17, which is involved in
pigmentation69, and has been identified in other positive selection scans in East Asian individuals70,71
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SWIF(r) recovers a strong adaptive signal in the vicinity of EDAR,
offering new hypotheses for targets of selection in this genomic
region. Whole-genome results with gene annotations can be found
in Supplementary Figs. 7, 8, 9 and Supplementary Data 1 (see also
Supplementary Fig. 20). False discovery estimates can be found in
Supplementary Table 2. Of the 126 genes across these populations
with SWIF(r) signals (i.e., at least one variant within the gene has
posterior hard sweep probability >50%), 63% were identified in at
least one positive selection scan conducted in humans (Supple-
mentary Data 2).

KhoeSan sweeps are enriched for metabolism-related genes.
We applied SWIF(r) to samples from the ‡Khomani San, a for-
merly hunter-gatherer KhoeSan population of the Kalahari desert
in southern Africa, using Illumina SNP array data for 670,987
phased autosomal sites genotyped in 45 individuals27 (Supple-
mentary Note 4). The KhoeSan have likely occupied southern
Africa for ~100,000 years, and maintain the largest long-term Ne

of any human population28, a feature that facilitates adaptive
evolution. We trained SWIF(r) on simulations from the Gronau
demographic model29 (see Methods, Supplementary Fig. 21, and
Supplementary Table 3), and implemented an ascertainment
modeling scheme to produce a training dataset with population-
level site frequency spectra similar to the observed array data.
Briefly, for each simulated haplotype, SNPs were subsampled to
match the empirical three-dimensional unfolded SFS for YRI,
CEU, and CHB and JPT individuals in the 1000 Genomes Project
on the chips used to genotype the ‡Khomani San (see Methods
and Supplementary Figs. 22, 23). We calibrated SWIF(r) for this
dataset based on a training set composed of 0.05% sweep variants
and 99.95% neutral variants (Supplementary Fig. 2). After
applying SWIF(r) to SNP data, we then examined whether
genomic regions identified by SWIF(r) contain annotated func-
tional mutations identified in high-coverage exome data from the
same 45 individuals30 (Supplementary Note 5).

SWIF(r) identifies a number of genomic regions bearing
signatures of selective sweeps in the ‡Khomani San, driven by
extreme values in multiple component statistics that together
produce a posterior sweep probability >50% (Fig. 3a, b; see also
Supplementary Figs. 24, 25 and Supplementary Table 4). These
signals comprise 108 SNPs, of which 94 are distributed across 80
genes, and the remaining 14 are intergenic, defined as genomic
variants that do not land within 50 kb of an annotated gene
(Supplementary Data 3). We observe an abundance of SWIF(r)
signals within the major histocompatibility complex (MHC), a
region of immunity genes for which studies have indicated
ongoing selection in many populations31,32, including an iHS
outlier scan in the ‡Khomani San33. We show in Supplementary
Fig. 26 that the SWIF(r) signals in this region are not qualitatively
different from the SWIF(r) signals we see throughout the genome,
despite the fact that balancing selection is typically thought to be
the primary mode of selection in the MHC34.

We tested for a common functional or phenotypic basis among
the 80 genes bearing SWIF(r) signals by conducting a gene
ontology enrichment analysis across public databases with
Enrichr35. We found that these genes are significantly enriched
for dbGaP categories related to adiponectin, body mass index
(BMI), and triglyceride phenotypes (Fig. 3c and Table 1).
Specifically, SNPs in genes related to adiponectin (ADIPOQ,
PEPD, DUT, and ASTN2) have among the highest posterior
sweep probabilities (all ≥75%). SWIF(r) also identified SNPs
within three other genes (PDGFRA, SIDT2, and PHACTR3) that
have previously been associated with obesity and metabolism
phenotypes (Fig. 3b and Table 1). Some of the genes highlighted
in Fig. 3b are also involved in muscle-based phenotypes

(Supplementary Note 6), but here we focus on the substantial
evidence supporting the association of the highlighted genes with
obesity and metabolism phenotypes in prior genome-wide
association (GWA) and functional studies (Table 1).

One variant that SWIF(r) identifies, rs6444174, has a calibrated
sweep probability of 90%, driven by extreme values at this SNP in
FST, XP-EHH, and ΔDAF (Fig. 3a; empirical p values 4.4 × 10−4,
4.0 × 10−4, 5.5 × 10−4, respectively). This variant lies in ADIPOQ,
which is expressed predominantly in adipose tissue36, and codes
for adiponectin, a regulator of glucose and fatty acid metabolism.
In a study of associations between ADIPOQ variants and
adiponectin levels and obesity phenotypes in 2,968 African-
American participants, rs6444174 was found to be associated with
serum adiponectin levels in female participants (p = 6.15 × 10−5),
and with BMI in all normal-weight participants (p = 3.66 × 10−4).
The allele at high frequency in the ‡Khomani individuals studied
here corresponds to decreased adiponectin levels and increased
BMI, respectively37.

Exome support for ‡Khomani San sweep loci. This SWIF(r)
scan was performed using SNP array data ascertained from pri-
marily Eurasian polymorphisms, a common feature of commer-
cial SNP array platforms. Thus, the observed SWIF(r) signals are
likely tagging haplotypes common in the ‡Khomani San, and
may not themselves be causal polymorphisms. We examined
high-coverage exome data30 within each gene to identify puta-
tively functional mutations near the sites identified by SWIF(r)
(see Supplementary Data 4 for full results). This allows us to
identify variants not captured on SNP array platforms, including
variants that are unique to the ‡Khomani San. We note that we
did not include the MHC genes in this exome analysis, because of
potential issues with mapping and phasing of exome sequence
data in the MHC region. In ADIPOQ, we identify a missense
mutation, rs113716447, for which the nearest SNP that is present
on the SNP array is rs6444174 (<1 kb away); rs6444174 has a
calibrated SWIF(r) sweep probability of 90%, the highest in
ADIPOQ (Fig. 4). The missense T allele at rs113716447 is at high
frequency in the ‡Khomani San relative to all other populations
sequenced in the 1000 Genomes Project (27% vs. <0.5%; Fig. 4).
Furthermore, in the Simons Genome Diversity Project, whose
samples are drawn from 130 diverse and globally distributed
human populations, only four copies of the missense allele at
rs113716447 are found: two copies in a ‡Khomani San individual,
and one copy each in a Namibian San individual and a Ju|’hoansi
San individual. This SNP defines the two major haplogroups
within the ADIPOQ gene in a median-joining haplotype network
for the gene region (Supplementary Fig. 27), providing some
support for selection at this SNP.

Two other genes highlighted in Fig. 3b harbor promising
polymorphisms that may be related to the underlying causal
haplotypes. In PEPD, we identify a polymorphism at 10%
frequency in the ‡Khomani (chr19:33,882,361) which is a
missense mutation approximately 42 kb from the SNP identified
by SWIF(r). We also identify a missense mutation in the first
exon of PHACTR3 at 38% frequency in this sample, which is at
<2% frequency in other global populations including other
Africans sequenced as part of the 1000 Genomes Project. Because
the SNP array density is low, we expect that SWIF(r) signals in
this population may in many cases be somewhat removed from
the causal variants that these signals tag. We note that intronic
variants in both PEPD and PHACTR3 have been identified as cis-
expression quantitative trait loci that affect RNAseq expression in
adipose tissue, in two independent northern European cohorts38.

For some of the genes identified by SWIF(r), exome data either
were not generated or did not reveal nearby functional
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polymorphisms with differential allele frequencies between the
‡Khomani San and other worldwide populations. One such gene
is RASSF8, previously annotated as under positive selection in the
Namibian and ‡Khomani San populations relative to western
Africans using XP-EHH;39 in our SNP array analysis, we detect a

cluster of four SNPs in RASSF8 within 70 kb of each other, each
with SWIF(r) sweep probability >98%. RASSF8 is present in the
BMI, triglycerides, lipids, and cholesterol dbGaP categories
(Fig. 3c), yet functional mutations underlying this SWIF(r) signal
remain elusive.
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Fig. 3 Genome-wide SWIF(r) scan for adaptation in ‡Khomani San SNP array data. a Empirical genome-wide univariate distributions of three of the
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observations than lighter bins). The number of sites in each genome-wide univariate distribution differs due to some component statistics being undefined
more often than others. In pink are the corresponding distributions for the 108 variants that SWIF(r) identifies as having posterior sweep probabilities of
>50% (variants above the dashed pink line in b). The full set of distributions can be found in Supplementary Fig. 25. b The value plotted for each position
along the genome is the calibrated posterior probability of adaptation computed by SWIF(r) (per-site prior for a selective sweep is π= 10−4 to detect
signals of relatively old sweeps given the high long-term Ne of the ‡Khomani San); only SNPs with a calibrated posterior sweep probability >1% are plotted
and the horizontal line indicates a probability cutoff of 50%. A strong signal of adaptation over the major histocompatibility complex on chromosome 6 is
shown in black. Gene names are listed for genes previously associated with metabolism-related and obesity-related traits (colors match categories in c;
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oxidation), body mass index, and triglycerides. Genes in these categories containing SWIF(r) signals are listed next to category names. p values, q values,
and the total number of genes are shown for each category, and categories are ranked by a combined score computed by Enrichr35. Adiponectin, body
mass index, and γ-glutamyltransferase all have q values below 5%
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Discussion
In this paper, we have presented a method for selective sweep
detection, SWIF(r), and insight into adaptive evolution in the
‡Khomani San. SWIF(r) outperforms existing summary statistics
and composite methods when detecting both complete and
incomplete sweeps in simulation (Fig. 1), and localizes
experimentally validated adaptive mutations using genomic
data alone (Fig. 2). When analyzing genotype and exome data
from 45 ‡Khomani San individuals, we found that SWIF(r)
signals are enriched in genes associated with metabolism and
obesity (Figs. 3, 4 and Table 1).

Composite classification frameworks such as SWIF(r) quanti-
tatively ground a common qualitative approach used in scans for
adaptive sweeps based on summary statistics: evidence for
selection at a locus is considered stronger when extreme values

are observed for more than one statistic (Fig. 3a). Furthermore,
machine learning approaches like SWIF(r) that incorporate joint
distributions of selection statistics can detect sweep events that
individual univariate statistics cannot (Supplementary Fig. 28).
SWIF(r) additionally reports calibrated probabilities site by site,
resulting in a transparent probabilistic framework for localizing
adaptive mutations rather than adaptive regions. While approa-
ches such as approximate Bayesian computation can exploit
higher-dimensional correlations in order to distinguish between
selective sweep modes at candidate loci40, this comes at the cost of
genome-scale tractability, and can be vulnerable to the curse of
dimensionality15. The AODE framework allows us to transpar-
ently calculate probabilities without the need for imputation of
undefined statistics, and our priors are made explicit, allowing for
clearer interpretation. Future applications of SWIF(r) and other

Table 1 Multiple published functional and association studies link genes identified by SWIF(r) to metabolism-related and
obesity-related phenotypes

Gene SNP(s) DAF P (sweep) Studies relating gene to metabolism-obesity phenotype Refs.

DNM3 rs12121064 54% 70% Associated with waist–hip ratio in Europeans (rs1011731, GWA p= 7.5 × 10−9) 73

Associated with waist circumference in Hispanic women (GWA replication p= 1.5 × 10−3) 74

Associated with weight loss after gastric bypass surgery 75

ESRRG rs11808388 62% 99.2% Regulates adipocyte differentiation by modulating the expression of adipogenesis-related
genes

76

Candidate obesity-susceptibility gene based on epigenetic profile and association with BMI 77

May be involved in increasing the potential for energy expenditure in brown adipocytes 78

Mediates hepatic gluconeogenesis 79

Contributes toward maintenance of hepatic glucose homeostasis 80

Necessary for metabolic maturation of pancreatic β-cells 81

Significantly up-regulated under treatment with cholesterol drug fenofibrate 82

TTN rs16866534 44% 76% Isoform composition in cardiac tissue is regulated by insulin signaling, possibly contributing to
altered diastolic function in diabetic cardiomyopathy

83

MYH15 rs3957559 49% 76% Variant rs3900940, along with four other variants, contributes to elevated risk for coronary
heart disease

84

ADIPOQ rs6444174 56% 90% rs6444174 associated with adiponectin levels in African-American women 37

Associated with plasma adiponectin levels in Europeans (rs17366568, GWA p= 4.3×10−24) 85,86

Associated with plasma adiponectin levels in African Americans (rs4686807, GWA p= 1.6 ×
10−11)

87

Associated with plasma adiponectin levels in East Asians (rs822391, GWA p= 1.6 × 10−10) 87

Associated with coronary heart disease, BMI, childhood obesity, metabolic syndrome, and
type II diabetes

37,88–92

Serum adiponectin levels are associated with metabolic health and cardiovascular risk 93,94

PDGFRA rs4530695 64% 75% Used in molecular biology as a marker for white adipocytes 95

Controls pancreatic β-cell proliferation 96

Plays a role in the link between obesity and inhibited placental development 97

ASTN2 rs16934033 50% 76% Contributes to genetic variation of plasma triglyceride concentrations 98

marginally associated with childhood obesity in Hispanic individuals (GWA p= 2.4 × 10−6) 99

SIDT2 rs11605217 27% 57% Important regulator of insulin secretion 100

Mice without the gene are glucose intolerant and have decreased serum insulin 101,102

Associated with triglyceride levels (rs1242229, GWA p= 3.1×10−20) 103

RASSF8 rs16929850 61% 95.3% Expression is significantly altered by fasting in mice 104

rs16929965 64% 99.9%
rs2729646 68% 98.4%
rs956627 64% 99.9%

DUT rs11637235 33% 76% Missense variant causes a syndrome characterized in part by early onset diabetes mellitus 105

PEPD rs12975240 62% 76% Associated with adiponectin levels in multiple populations (rs731839, rs4805885, rs8182584,
rs889139, rs889140, GWA p values between 1.1 × 10−9 and 2.2 × 10−13)

87,106

Associated with type II diabetes (rs3786897, GWA p= 1.3 × 10−9) 107

Associated with fasting insulin levels (rs731839, GWA p= 5.1 × 10−12) 108

Associated with serum lipid levels 109

Expression is modulated by n-3 fatty acids 110

PHACTR3 rs1182507 54% 76% Regulation in adipose tissue is BMI-dependent 38

Candidate obesity gene based on epigenetic profile 77

The second column contains all variants within the genes listed that have posterior sweep probability ≥50% as calculated by SWIF(r). Column 3 shows the DAF in the ‡Khomani San at the SNP in
column 2, and column 4 shows the calibrated posterior sweep probability calculated by SWIF(r) at that site. For GWA studies, GWA p values are given for the strongest SNP associations. Bold rsid
indicates a result about the specific SNP identified by SWIF(r) in column 2. All genes highlighted in Fig. 3b are included in this table except MCC and MLIP, for which additional associations to
metabolism-related and obesity-related phenotypes could not be found beyond the dbGaP categories in Fig. 3c
BMI, body mass index; DFA, derived allele frequency; GWA, genome-wide association; SNP, single-nucleotide polymorphism; SWIF(r), SWeep Inference Framework (controlling for correlation)
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composite sweep-detection frameworks can easily incorporate
new summary statistics such as iSAFE41, which ranks candidate
adaptive mutations in a predefined region under selection (Sup-
plementary Fig. 29). Future applications of SWIF(r) can addi-
tionally assign variable site-specific prior sweep probabilities
according to genomic annotations: for example, one could assign
a smaller prior for synonymous variants relative to non-
synonymous variants, or a higher prior in regulatory regions
relative to intergenic regions. Our algorithm for modeling SNP
ascertainment in training simulations (see Methods) can also
enable the application of SWIF(r) to genotype array data from
diverse understudied populations, as well as the use of SFS sta-
tistics, which are more vulnerable to ascertainment bias, within
the SWIF(r) framework.

In order for the class probabilities reported by SWIF(r) to be
practically interpretable, we calibrated SWIF(r), such that k%
of variants with a posterior sweep probability of k% are indeed
sweep variants. We have implemented a calibration scheme
based on isotonic regression (IR) for SWIF(r) that maps the
posterior sweep probabilities to their empirical sweep pro-
portions in simulated data (Supplementary Figs. 1–3), but
importantly, this calibration relies on the composition of the
training set used. While for some classifiers, the proportions of
classes are known, or can be reliably estimated (e.g., see Scheet
and Stephens42), the proportion of sites throughout the human
genome that are adaptive is unknown. For calibrating SWIF(r),
we chose training sets made up overwhelmingly of neutral
variants; while our calibration of SWIF(r) always preserves the
rank order of posterior probabilities (Supplementary Fig. 3),
the specific choice of training set makeup can have a dramatic
effect on the calibration, and future applications of SWIF(r)
can use different criteria for calibration. For example, one
could calibrate SWIF(r) based on specific strengths of selec-
tion, or perform different calibrations for scenarios in which
certain component statistics are undefined. In each case, a
direct interpretation of the posterior probabilities reported by
SWIF(r), or any other classifier that calculates probabilities,
must incorporate knowledge of the scenarios used for training
and calibration.

One caveat for interpretation of the SWIF(r) results presented
here is that we train SWIF(r) on hard selective sweeps. In
simulation, we found that SWIF(r) is also sensitive to sweeps

from standing variation with a low initial frequency (Supple-
mentary Fig. 30); indeed, the sweep in West Africans in the gene
DARC, for which SWIF(r) calculates a high sweep probability
(Fig. 2a) has recently been shown to have originated from
standing variation in the ancestral population43. Given the mul-
tiple metabolism-related and obesity-related sweep targets iden-
tified by SWIF(r) in the ‡Khomani San (Fig. 3), we also suspect
that some putative adaptive mutations identified by SWIF(r) may
be components of polygenic adaptation.

Genes with SWIF(r) signals in our high-throughput genomic
scan for selective sweeps in the ‡Khomani San have been inde-
pendently identified in multiple GWA studies and functional
experiments as associated with metabolism-related and obesity-
related phenotypes (Table 1). One way to interpret this signal is
through the lens of the “thrifty gene” hypothesis, which posits that
ready fat storage was positively selected for in hunter-gatherer
populations due to the survival advantage it conferred in unre-
liable food cycles44. The hypothesis further states that modern
disease phenotypes such as type 2 diabetes and obesity are the
consequence of a radical shift from ancestral environments and
forager subsistence strategies to a contemporary environment
with abundant food in the form of simple sugars, starches, and
high fat, though this is a subject of much debate (e.g., see ref. 45).
Although most indigenous Khoe and San groups of the Kalahari
are classically considered small and thin, populations such as the
Khoekhoe cow/goat pastoralists are characterized by steatopygia
(i.e., extensive fat accumulation along the buttocks and thighs in
women), as notoriously described by early European explorers
and anthropologists46,47. While the thrifty gene hypothesis would
predict an increase in metabolic pathology for these individuals,
studies have shown that accumulated subcutaneous gluteofemoral
fat, found in patients exhibiting steatopygia48, is protective
against diabetes and other metabolic disorders49. The mutations
and genes identified by our SWIF(r) scan, such as ADIPOQ, are
natural targets for functional assays to determine the origins and
consequences of subcutaneous vs. visceral fat; future studies could
merge such assays with phenotypic data on diabetes and meta-
bolic syndromes in KhoeSan groups to gain new insight into the
“obesity-mortality paradox”50.

In this selection scan, we also see an abundance of SWIF(r)
signals in the MHC region involved in immunity. It is possible
that this signal reflects balancing selection, which is the mode of
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Fig. 4 Missense mutation rs11316447 is a potential causal mutation in ADIPOQ. Worldwide distribution of rs11316447 generated by the Geography of
Genetic Variants Browser72 (http://popgen.uchicago.edu/ggv/) shows that the T allele carried by 27% of ‡Khomani San individuals (pie chart outlined in
black) is extremely rare throughout phase 3 of the 1000 Genomes63, at a maximum of 0.5% in the Luhya population of Kenya. The diagram of ADIPOQ
highlights the positions of the variant identified by SWIF(r) (rs6444174) and the nearby missense variant (rs11316447). These two variants are within 1 kb
of each other, suggesting that the SWIF(r) signal at rs6444174 is tagging this missense variant
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selection canonically thought to be occurring within this
region34. Indeed, it has been shown that the signatures of bal-
ancing selection and incomplete or recurrent sweeps may be
similar to signatures of positive selection51,52. We note, how-
ever, that other studies using different methodologies have
detected signatures of directional selection in the MHC in
human populations32,53, and others have noted that fluctuating
directional selection is a possible mechanism for pathogen-
mediated selection in this region54.

The probabilistic framework of SWIF(r) suggests two natural
extensions for future applications. First, while the use of SNP-
based component statistics enables us to localize adaptive
mutations, SWIF(r) could easily incorporate region-based
component statistics, including composite likelihood approa-
ches like XP-CLR55, and SFS-based measures in order to help
detect older selection events, for which haplotype-based statis-
tics are less powerful. Second, future studies can exploit the
flexibility and interpretability of SWIF(r) to conduct multi-class
classification. Supplementary Figure 31 illustrates a preliminary
extension of SWIF(r) that classifies sweeps based on the start
time of positive selection. Recent methods have attempted
multi-class sweep classification using hierarchical binary clas-
sification or other machine learning approaches10,14,18, but
without the benefit of a transparent probabilistic framework in
which priors are made explicit. Using the probabilistic frame-
work of SWIF(r), future studies could determine the mode of
adaptive evolution at genomic sites, including background
selection or sweeps from standing variation or recurrent
mutation17,18, or infer the timing or selective strength of an
adaptive event40. Thus, SWIF(r) offers a technical advance in
genome-wide sweep detection that can yield new insight into the
modes and roles of selection in shaping population-genomic
diversity.

Methods
Simulation of haplotypes for 1000 Genomes analysis. Simulations based on the
demographic model of African, Asian, and European populations outlined in
Schaffner et al.23 were carried out with the following alterations necessary for
allowing the simulation of recent selective sweeps (within the past 30 kya): no
modern population growth (within the past 30 generations), and migration ending
500 generations following the Asian/European split instead of continuing to the
present. We carried out 100 simulations of 1 Mb regions from this neutral
demographic model using cosi. We generated a new recombination map for each
simulation with the recosim package within cosi, using a hierarchical
recombination model that assumes a regional rate drawn from the observed dis-
tribution of rates in the deCODE genetic map56, and then randomly generates
recombination hotspots with randomly drawn local rates23. For each simulation,
we generated 120 1-Mb-long haplotypes from each of the three populations
(Supplementary Note 7).

Selective sweeps continued until the time of sampling, and were simulated
for a range of sweep parameters: start time ranging over (5, 10, 15, 20, 25, 30
kya), final allele frequency ranging over (0.2, 0.4, 0.6, 0.8, 1.0), and population
of origin ranging over (African, Asian, European). Note that these sweeps cover
a range of incomplete as well as complete sweeps in a population of interest.
The selection coefficients for each parameter set are fully determined by the
effective population size, sweep start time, and final allele frequency, and are
displayed in Supplementary Table 3. We calculated these selection coefficients
using Eq. 4 for complete sweeps (by which we mean sweeps where the beneficial
mutation has reached fixation in the population of interest), and Eq. 5 for
incomplete sweeps, where t1 is the sweep start time and t2 is the sweep end time,
both measured in generations from the present, Ne is the effective population
size, ts ¼ ðt1 � t2Þ=2Ne, and ϕ is the present-day frequency of the beneficial
allele, 0 < ϕ ≤ 157. The range of selection coefficients corresponds to a range of
α = 2 Ns of ~100–4,500. For each set of sweep parameters, we generated
100 simulations with the adaptive allele located halfway along the 1 Mb region,
for a total of 9000 sweep training points.
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Simulation of haplotypes for ‡Khomani San analysis. To train our classifier to
identify selective sweeps in the ‡Khomani San, we used the demographic model
inferred by Gronau et al.29 based on six diploid whole-genome sequences, one from
each of six populations: European, Yoruban, Han Chinese, Korean, Bantu, and San.
We used the inferred population sizes, coalescent times, and migration rates
reported by Gronau et al.29, which are calibrated based on a 6.5 million year
human–chimpanzee divergence, the presence of migration between the Yoruban
and San populations, and 25 years per generation to construct a demographic
model for the Han Chinese, European, Yoruban, and San, shown in Supplementary
Fig. 21.

Because Uren et al.27 showed that the ‡Khomani San have experienced recent
gene flow from both Western Africa and Europe, we replaced migration in the
Gronau model with two pulses of recent migration: one pulse from the Yoruban
population with migration rate 0.179 at 7 generations ago, and one pulse from the
European population with migration rate 0.227 at 14 generations ago. We found
that these rates resulted in present-day admixture levels that matched those found
in Uren et al.27 (Supplementary Note 4).

Using cosi23, we simulated 1Mb genomic regions, comprising both neutral
and sweep scenarios as described earlier, with sample sizes matching the number of
individuals in the filtered 1000 Genomes dataset, and the number of San
individuals in our study.

Because the ‡Khomani have been isolated for so long, we included additional
sweep scenarios, with sweeps beginning and ending between 30 and 60 kya. We
called these “old sweeps” and trained SWIF(r) on three classes: neutral, “old
sweeps,” and “recent sweeps” (those occurring within the past 30 kya). Since we
found that SWIF(r) did not have enough power to reliably distinguish between old
and recent sweeps (Supplementary Fig. 31), in applications to data, we only
considered the total probability of a sweep, given by the sum of the posterior
probabilities for both sweep classes.

Analysis of demographic robustness. We first assessed the sensitivity of SWIF(r)
to the demographic model used in training simulations using two demographic
models of West Africans, Europeans, and East Asians, from Schaffner et al.23

(“Schaffner model”) and Gronau et al.29 (“Gronau model”). We trained SWIF(r)
using simulations from the Gronau model (including simulation of ascertainment
bias), and tested SWIF(r) on simulated haplotypes drawn from the Schaffner model
(with and without selective sweeps). To test SWIF(r)’s robustness to mis-
specification of recent population growth, we generated a set of simulations using a
demographic model from Gravel et al.58 that estimates recent exponential popu-
lation expansions with rates of 0.38% for Europe and 0.48% for East Asia over the
last 23,000 years. We also implemented a version of the same demographic model
with doubled rates of expansion (0.75% for Europe and 0.96% for East Asia). Since
the simulation software cosi23 cannot simulate sweeps and population-level
changes simultaneously, we allowed the expansion to last from 23,0000 years ago to
5000 years ago, to allow for sweeps beginning 5000 years ago. We also included the
migration rates inferred by Gravel et al.58 between Europe, East Asia, and Africa,
and between Africa and the ancestral population of Europe and East Asia. As in
other analyses, We simulated selective sweeps spanning a range of present-day
allele frequencies from 20 to 100%.

Simulation of background selection. For evaluating SWIF(r)’s robustness to
background selection, we generated three sets of simulations of 1Mb each using
forward simulator slim59: neutral regions, regions with a hard sweep, and genic
regions. For genic regions, we followed Messer and Petrov17 to simulate gene
structure: each simulation had one gene with 8 exons of 150 bp each, separated by
introns of 1.5 kb, and flanked by a 550 bp 5′-untranslated region (UTR) and a 250 bp
3′-UTR. Within exons and UTRs, 75% of sites were assumed to be functional.
Mutations were assumed to be codominant, and fitness effects across different sites
were assumed to be additive. Functional sites were divided into 40% “strongly
deleterious” sites with selection coefficient −0.1, and 60% “weakly deleterious” sites
with selection coefficients between −0.01 and −0.0001. The mutation rate was set at
2.5 × 10−8 per-site per generation, and the recombination rate at 10−8.

For all three sets of simulations, we simulated two populations with Ne = 5,000,
which split from each other 40,000 years ago. For sweep simulations, we drew
selection coefficients for the beneficial allele from an exponential distribution with
mean 0.03, and set sweeps to begin 10,000 years ago. For testing the robustness of
SWIF(r) to background selection, we trained SWIF(r) to distinguish between neutral
mutations (from simulated neutral regions), and adaptive mutations (from simulated
sweep regions), and then applied this classifier to variants in simulated genic regions
undergoing background selection (mutations in UTR, exonic, and intronic sites).

Implementation of SWIF(r). For ease of comparison, we built SWIF(r) using the
same statistics that comprise CMS9,12 (Supplementary Note 8): FST, XP-EHH
(adapted for improved performance on incomplete sweeps; Supplementary
Note 1), iHS, and change in derived allele frequency (ΔDAF). ΔiHH was excluded
in applications to real data because of non-normality (Supplementary Note 2 and
Supplementary Fig. 5). To avoid overfitting the joint distributions modeled in the
AODE framework (Eq. 3), we fit Gaussian mixture models with full covariance
matrices (i.e., containing nonzero off-diagonal entries) to the joint probability
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distributions of each pair of statistics Si and Sj within each scenario C (neutral or
sweep), P(Si = si,Sj = sj|C), with the number of components ranging between three
and five based on Bayesian information criterion (BIC) curves. Joint probabilities
were learned using sites for which both component statistics were defined. We used
the python package scikit-learn60 to compute the BIC curves and fit the mixture
models. These mixture models capture the salient features of each pairwise joint
distribution, as illustrated in the example in Supplementary Fig. 32. Given the
smoothed joint distribution learned for a pair of statistics (Si,Sj), we calculate the
conditional probability distributions Sj|si as one-dimensional gaussian mixtures:

Sjjsi �
X
k

wðkÞN
�
μðkÞj þ σðkÞj

σðkÞi

ρðsi � μðkÞi Þ; ð1� ðρðkÞÞ2ÞðσðkÞj Þ2
�

where N(μ,σ2) denotes the normal distribution with mean μ and variance σ2, k
indexes the components in the joint Gaussian mixture, w(k) is the weight assigned
to each component, μi and μj are the components of the joint mean, and σi, σj,
and ρ are taken from the joint covariance matrix.

We find that SWIF(r) loses power to identify sites with adaptive mutations
when iHS is undefined, likely because iHS is far more powerful for detecting
incomplete sweeps than the other four statistics. SWIF(r) loses very little power
when other component statistics are undefined (Supplementary Fig. 33).

Calibration of SWIF(r) probabilities. There are a few techniques for calibrating
probabilities returned by a binary classifier so that of all of the data points that are
given a k% probability of belonging to class A by the classifier, k% of those are indeed
drawn from class A, and (100−k)% are drawn from class B21,61. IR is a popular
method because it makes no assumptions about the mapping function beyond
requiring that it be monotonically increasing62. In the case of SWIF(r) probabilities,
IR calibration works by grouping sweep and neutral variants from a training dataset
into posterior probability bins, and mapping each bin to the empirical proportion of
variants in the bin that are sweep variants. We used 10 bins for calibration, because
we found that using more bins increased the risk of overfitting. This can be mitigated
by performing more simulations, but in our case, even with 1000 neutral simulations
of 1Mb each, mid to high posterior probabilities were extremely rare at neutral
variants. For localizing sweep sites in data from the 1000 Genomes Project, we
calibrated SWIF(r) based on a training dataset composed of 99.99% simulated
neutral variants and 0.01% simulated sweep variants, and for application to the
‡Khomani San SNP array data, we calibrated SWIF(r) based on a dataset composed
of 99.95% simulated neutral variants and 0.05% simulated sweep variants (Supple-
mentary Figs. 1–3). The slightly larger fraction of sweep simulations in the ‡Kho-
mani San training set relative to the 1000 Genomes training set allowed for more
sensitivity to older sweeps, and accounted for the sparser SNP density of this dataset.
In both datasets, we restricted the simulated sweep variants to those with present-day
allele frequencies over 50%, since we have the most power in this realm (Supple-
mentary Fig. 6), and wanted to avoid overcorrection of strong signals.

A downside to IR is that by its nature, it maps a range of input values to the
same output value, which removes some information about which probabilities are
larger than others. We implemented a “smoothed” IR for calibration that
interpolates the piecewise constant mapping function learned by IR
(Supplementary Fig. 3). In practice, we find that both methods of calibration
produce equally well-calibrated classifiers; that is, after either method, the data
points in our simulated dataset that have a calibrated posterior sweep probability of
k% are made up of approximately k% sweep simulations and (100−k)% neutral
simulations (Supplementary Figs. 1, 2). Unlike IR alone, however, smoothed IR has
the advantage of preserving strict monotonicity of posterior probabilities.

Implementation of CMS. We implemented CMS following the algorithm descri-
bed in Grossman et al.9 and personal communication with the authors. Based on
the simulations and component statistics described above, CMS is computed as the
product of individual posterior distributions:

CMS ¼ Qn
i¼1

PðsweepjSi ¼ siÞ ¼
Qn
i¼1

πPðSi¼si jsweepÞ
πPðSi¼si jsweepÞþð1�πÞPðSi¼si jneutralÞ ; ð6Þ

where π, the prior probability of a sweep, is 10−6.
When one or more component statistics are undefined at a locus, CMS is not

well defined. If statistics are simply left out of the product, this artificially inflates
the reported score. Some compensation is thus required to avoid such a bias, which
is not discussed by Grossman et al. 20109. We implemented a conservative
compensation scheme: if statistic Si is undefined at a locus, we set its value to the
mean of the distribution for that statistic learned from neutral simulations.

For the purpose of evaluating CMS using YRI, CEU, and CHB and JPT samples
from the 1000 Genomes, we use CMS Viewer (https://pubs.broadinstitute.org/mpg/
cmsviewer/; use date: 26 April 2016), an interactive tool designed by Grossman
et al.12 for visualizing genome-wide CMS scores.

Implementation of window-based methods. We implemented evolBoosting
using the R package released by Lin et al.10 (http://www.picb.ac.cn/evolgen/
softwares/) using default settings. We trained and tested evolBoosting on the

simulations of YRI, CEU, and CHB and JPT described above, including all sweep
durations and present-day allele frequencies, splitting the simulations in two
equally sized groups for training and testing. We used the middle 40 kb of each 1
Mb simulation, and generated window-based SWIF(r) probabilities by taking the
maximum posterior sweep probability for all SNPs within the 40 kb window.

We implemented evoNet using the software package released by Sheehan and
Song15 (https://sourceforge.net/projects/evonet/) using default settings and 345
component statistics described by the authors (personal communication with S.
Mathieson). Training and testing was done as described above for evolBoosting10,
except that we used the central 100 kb windows of each 1Mb simulation (following
Sheehan and Song15). For comparison with SWIF(r), we generated window-based
SWIF(r) probabilities by taking the maximum posterior sweep probability for all
SNPs within the 100 kb window.

ROC analysis. To generate the receiver operating characteristic (ROC) curves for
CMS, SweepFinder, and the component statistics (Fig. 1a–c), we varied the
threshold for classifying a mutation as adaptive in order to cover the range from
~0% false-positive rate to ~100% true-positive rate. For SWIF(r) and the ODEs, we
varied the prior π, and sites with scores >0.5 were classified as adaptive (Supple-
mentary Fig. 4). To generate Fig. 1d, we partitioned all simulations by present-day
frequency of the adaptive mutation and sweep start time. For each pair of these
parameters, we approximated the area under the ROC curves (AUROC) by
summing the areas of the trapezoids defined by each pair of neighboring points in
the ROC plane, then identified the summary statistics with the highest and second-
highest AUROC. ROC curves for window-based SWIF(r), evoNet, and evol-
Boosting were generated in much the same way, except that we varied the threshold
for classifying a window as containing an adaptive variant.

Ascertainment modeling. For our selection scan in the ‡Khomani San popula-
tion, we use genotype data from two SNP arrays;27 the ascertainment bias of these
arrays means that the simulated haplotypes we generate from the four populations
(‡Khomani San, YRI, CEU, and CHB and JPT) for training SWIF(r) differ dra-
matically from the observed data for these populations at the sites genotyped on the
arrays. To account for this, we implemented an ascertainment modeling algorithm
that prunes sites from simulated haplotypes in order to provide SWIF(r) with
simulations for training that match the SFS of the observed data as closely as
possible. The key to this algorithm is to define regions of joint SFS space that are
similar in terms of representation on the SNP arrays (e.g., SNPs with low derived
allele frequency in all populations are fairly common, while SNPs that are highly
differentiated across multiple populations are relatively rare). Defining these
“equivalence classes” (hereafter referred to as “SFS regions”) in joint SFS space
allows us to learn the density of SNPs from each SFS region along the SNP arrays,
and then to thin simulations in order to re-create those densities. This first requires
smoothing of the joint SFS to account for sparsity. The full algorithm is as follows:

Step 1: Learn the empirical three-dimensional (3D) SFS for YRI, CEU, and
CHB and JPT individuals in the 1000 Genomes Project, restricted to SNPs present
in the overlap between the Illumina OmniExpress and OmniExpressPlus platforms
(Supplementary Note 5). This results in a 3D array of SNP counts for each triplet of
derived allele frequencies (DAFYRI, DAFCEU, and DAFCHB and JPT). For this dataset,
given 87 YRI individuals, 81 CEU individuals, and 186 CHB and JPT individuals,
the dimensions of this three-dimensional array are 175 × 165 × 373 (2n + 1 in each
dimension for n individuals).

Step 2: To account for sparseness in the empirical 3D SFS, subdivide each axis
into 40 evenly spaced bins to create a new 40 × 40 × 40 array where each entry is
the average SNP count within that 3D bin; this array approximates the original
empirical 3D SFS. Use the one-dimensional histogram of average SNP counts
across all 403 bins to define five intervals that span the range of counts, then assign
each bin to its interval (Supplementary Fig. 34). Groups of bins belonging to the
same interval will be hereafter referred to as “SFS regions.” We note that we choose
a 40 × 40 × 40 array for smoothing because it resulted in SFS regions with well-
defined boundaries in 3D space; these dimensions may need to be altered for other
datasets to achieve well-defined boundaries as in Supplementary Fig. 34.

Step 2a: In most SFS regions, the SNP counts in the 3D SFS are relatively
invariant; however, in the SFS region with the highest SNP counts (the region in
red in Supplementary Fig. 34, corresponding predominantly to SNPs with low
derived allele frequency in all populations), there is a wide range of SNP counts
(this is analogous to the higher variability in counts of low-frequency variants in
the one-dimensional site frequency spectrum relative to that of medium-frequency
and high-frequency variants). To account for this increased variability, apply a
similar procedure as above: subdivide each bin in the highest SFS region by 2 in
each dimension (resulting in 8 sub-bins), re-learn the average SNP count within
that sub-bin, use a histogram of average SNP counts across sub-bins to again define
five intervals, and assign each sub-bin to its interval, thereby defining an additional
set of SFS regions that gives better resolution in higher-density areas.

Step 3: For each 1Mb block along the SNP array, count the number of SNPs
that fall in each SFS region, based on the observed derived allele frequencies at each
SNP for YRI, CEU, and CHB and JPT. This provides a measure of SNP density
(counts per Mb) for each SFS region. Applying this over a sliding window of 1Mb
across the entire SNP array results in a distribution of densities for each SFS region.
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Step 4: Within each 1Mb block of simulated sequence data, assign each
simulated SNP to its SFS region. For each SFS region, draw a value from the
distribution of SNP densities learned in step 3, then randomly downsample the
number of simulated SNPs that fall in that region to match this value. In the rare
case in which downsampling is not possible for a given SFS region (i.e., there are
fewer simulated SNPs in that region than the value drawn from the distribution of
densities), retain all simulated SNPs that belong to the SFS region.

Step 5: For training the classifiers, restrict the simulated ‡Khomani San
genotype data (as well as the simulated data from the 1000 Genomes populations)
to the downsampled set of SNPs.

Software availability. SWIF(r) repository: https://github.com/ramachandran-lab/
SWIFr
selscan repository: https://github.com/szpiech/selscan

Data availability. 1000 Genomes phase 1 data: ftp://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/phase1/analysis_results/integrated_call_sets/.
‡Khomani San genotype data were first described by Uren et al.27, and ‡Khomani
San exome data were first described by Martin et al30. Queries regarding access to
‡Khomani San data analyzed here should be sent to the South African San Council
for research and ethics review by contacting both Leana Snyders
(leanacloete@ymail.com) and admin@sasi.org.za.
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