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Abstract: Two-terminal, non-volatile memory devices are the fundamental building blocks of
memory-storage devices to store the required information, but their lack of flexibility limits their
potential for biological applications. After the discovery of two-dimensional (2D) materials, flexible
memory devices are easy to build, because of their flexible nature. Here, we report on our flexi-
ble resistive-switching devices, composed of a bilayer tin-oxide/tungsten-ditelluride (SnO2/WTe2)
heterostructure sandwiched between Ag (top) and Au (bottom) metal electrodes over a flexible
PET substrate. The Ag/SnO2/WTe2/Au flexible devices exhibited highly stable resistive switching
along with an excellent retention time. Triggering the device from a high-resistance state (HRS)
to a low-resistance state (LRS) is attributed to Ag filament formation because of its diffusion. The
conductive filament begins its development from the anode to the cathode, contrary to the formal
electrochemical metallization theory. The bilayer structure of SnO2/WTe2 improved the endurance
of the devices and reduced the switching voltage by up to 0.2 V compared to the single SnO2 stacked
devices. These flexible and low-power-consumption features may lead to the construction of a
wearable memory device for data-storage purposes.

Keywords: resistive switching; memristor; 2D-materials; flexible devices; transparent

1. Introduction

Two-terminal, non-volatile memory devices are becoming the most effective and no-
table devices because of their data-storage capability and fast operating speed. Besides
these, there are flash memory devices that operate on a charge storage mechanism but
have comparatively low operation capabilities [1,2]. Resistive-switching random-access
memory (RRAM) provides a substitute for ordinary silicon-based devices, and presents
various appealing packages, consisting of: configuration for a simple two-terminal appli-
ance, unmatchable reliability, a less time-consuming operation speed, and reduced power
consumption [3,4]. The fundamental working of RRAMs is based on their triggering from
a high-resistance state (HRS) to a low-resistance state (LRS), or vice versa, by applying
suitable programming voltages. Furthermore, transitional resistance states can likewise be
reached, leading to extra functionalities, for example, multibit capacity, mathematical and
neuromorphic processing, and data storage [5–7]. Until today, a variety of materials have
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been discovered to display resistive switching, of which the most familiar are transition
metal oxides [8], perovskite oxides [3], and chalcogenide phase-change alloys [9].

Resistive-switching properties have also been displayed by different carbon materials,
consisting of amorphous carbons [10], oxygenated amorphous carbon [11], and graphene
oxide [12]. A few prior studies suggest that graphene oxide (GO), among all the above
choices for RRAM, has significantly more precise and viable utilizations on a scientific and
commercial scale, due to its significantly lower cost of fabrication, naturally sustainable
manufacturing process, and high mechanical flexibility; all of these properties make it a per-
fect priority for future electronics [12]. However, it is also reported in previous studies that
GO memory devices have produced contradictory and inconsistent findings. For instance,
a few authors have observed bipolar resistive switching in Au/GO/Pt structures [13], but
others have not [14]. Similarly, some structures, such as Al/GO, have displayed perfect
memory characteristics on both types of substrate (flexible and rigid) [12]. While for the
identical structure, no switching was experienced in further studies [15]. Most commonly,
the memory devices switch from the HRS to the LRS (called the SET process) because of
metal filament formation [5,14–17]. These filaments are formed due to the diffusion of
the metal ions and their stacking. Materials with a large bandgap and electric resistivity
are considered more promising for memory devices [17]. Because of their direct use for
biological purposes, flexible gadgets are also in high demand from the wearable device
industry. The inadequate adhesive capability of the channel materials, the metal electrodes,
and their cracking issues are the main barriers to fabricating the next generation of flexible
memory devices. The manufacture of flexible memory devices was the most difficult task
for researchers before the discovery of flexible two-dimensional (2D) materials. These two-
dimensional materials now have a wide range of applications, including photodetectors,
diodes, high-frequency devices, and solar cells [18–22].

Here, we introduce a highly stable and flexible memory device composed of a bilayer
structure of tin-oxide/tungsten-ditelluride (SnO2/WTe2) sandwiched between Ag (top)
and Au (bottom) metal electrodes over a flexible polyethylene terephthalate (PET) substrate.
The flexible nature of the two-dimensional WTe2 provides a crack-free, superior platform
for the SnO2 to fabricate a flexible memory device over the PET substrate. The filament
formation, which is responsible for the resistive switching, is explained with its underlying
mechanism. Repeatable cycles of resistive switching are reported while changing the
thickness of the SnO2. A few layers of thick WTe2 films provide highly repeatable resistive
switching with a thicker SnO2. The Ag/SnO2/WTe2/Au devices exhibited excellent reten-
tion and bending endurance. This research might lead to the development of highly stable
and flexible resistive-switching memristor devices for next-generation wearable electronics.

2. Experimental Details
Device Fabrication and Characterizations

The fabrication of the device was accomplished by depositing a bottom electrode of
Au/Cr (20/5 nm) over a flexible PET substrate via a thermal evaporator in a high-vacuum
chamber. A metal mask was used over the PET substrate to pattern the bottom electrode.
The thin films of the WTe2 and SnO2 were directly synthesized at room temperature
via RF-magnetron sputtering over the Au/Cr electrode. The working pressure during
the flow of Argon gas was set to 2 × 10−3 torr, while the chamber pressure was set to
3 × 10−6 torr. The EDS analysis and elemental mapping are illustrated in Figure S1a–c and
Table S1 for WTe2 while theEDS analysis, elemental mapping, and their weight percentage
ratio for SnO2 are illustrated in Figure S2a–c and Table S2. Finally, the silver (Ag) top
electrode, as an electrochemically active electrode (50 nm), was grown over it via a thermal
evaporator. The schematic diagram is depicted in Figure 1a, illustrating the device geometry.
The optical image of the final device is illustrated in Figure 1b. The quality of the 2D
WTe2 film was verified under Raman spectroscopy analysis and the X-ray photoelectronic
spectroscopy (XPS) spectra. In Raman analysis of the WTe2 films on the flexible PET
substrate, the four prominent peaks, which appear because of in-plane and out-of-plane
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modes of vibration [23,24], were observed around 110, 142.1, 168.1, and 222 cm−1, as
shown in Figure 2a. Furthermore, the surface analysis of the synthesized WTe2 films
was investigated under the XPS to observe the chemical surface states, as illustrated in
Figure 2b. The initial four characteristic peaks [25,26] belong to the tungsten metal W (4f),
while the rest of the characteristic peaks belong to the Te (3d), as shown in Figure 2c,d.
The XPS spectra for the SnO2 are presented in Figure 2e,f. Two characteristic peaks for
Sn (3d) and one characteristic peak for O (1s) were observed during the XPS analysis, which
confirms the quality of the synthesized SnO2. To measure the resistive-switching behavior
of the Ag/SnO2/WTe2/Au devices, the direct current (DC) voltage pulses were applied to
the top Ag electrode, and the bottom Au electrode was grounded. The I-V characteristics
were studied at room temperature by using the Agilent B1500 semiconductor parametric
analyzer in its DC sweep mode.
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Figure 1. (a) Schematic illustration of the resistive-switching devices composed of bilayer 
SnO2/WTe2 sandwiched between Ag and Au metal electrodes. Measurement geometry of the 
electrical connections is also shown for memristive behavior. (b) The optical image of the memristive 
device is also illustrated and marked with yellow boxes. 

Figure 1. (a) Schematic illustration of the resistive-switching devices composed of bilayer SnO2/WTe2

sandwiched between Ag and Au metal electrodes. Measurement geometry of the electrical connec-
tions is also shown for memristive behavior. (b) The optical image of the memristive device is also
illustrated and marked with yellow boxes.
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Figure 2. (a) Raman Spectroscopy of WTe2 on a flexible PET substrate with 6 nm and 12 nm thickness. (b) XPS spectra of W
and Te elements in WTe2 films. (c) W 4f level and (d) Te 3d level in WTe2 films indicating the presence of non-stoichiometric
WOx films under the influence of reactive Ag top electrode. (e,f) The XPS analysis from the surface of the SnO2 depicting
the Sn3d and O1s peaks.

3. Results and Discussions

Initially, the role of the WTe2 film is examined via a Ag/WTe2/Au device. The current-
voltage (I-V) curve extracted from the Ag/WTe2/Au shows pure Ohmic behavior, but no
resistive switching was observed, as shown in Figure 3a. The resistive switching of the
Ag/SnO2/Au device is also depicted in Figure 3b. To measure the resistive switching of
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the Ag/SnO2/WTe2/Au devices, the bottom, inert Au electrode is grounded, and the top,
active Ag electrode is set to apply the voltage bias. To trigger the memory device from
an HRS to an LRS, a long voltage sweep is initially required, which forms a conducting
filament, as shown in Figure S3. Interestingly, the filament formation voltage (SET) for our
Ag/SnO2/WTe2/Au devices was not as high as those observed in previously reported
memristor devices [27,28]. The I-V curves represent the bipolar resistive-switching (RS)
characteristics for both the devices Ag/SnO2/WTe2/Au and Ag/SnO2/Au. The I-V
curves obtained show that SnO2 grown over the WTe2 surface enhances the device’s
performance and stability after multiple bending cycles. However, while the Ag/SnO2/Au
devices exhibited stable resistive switching before flexible testing, after multiple bending
cycles, it deteriorated the device performance. The flexible nature of the 2D WTe2 films
means they provide an excellent platform to fabricate flexible memory devices with metal
oxides. Several cracks were observed over the surface of the SnO2 after bending cycles if
it grew directly over the PET substrate, but the SnO2 grown over the WTe2 illustrated a
crack-free surface, as shown in the scanning electron microscopy (SEM) images presented
in Figure S4a,b.

Initially, the bilayer structure of the SnO2/WTe2 was in an HRS, so a large voltage
sweep was applied with a compliance current (Icc) limit of 5 mA to avoid the permanent
breakdown of the memristive devices. During this voltage sweep, the diffusion of the Ag
ions takes place, and their stacking causes filament formation, which shorts the circuit. As
the filament forms completely, the device suddenly switches to an LRS and reaches Icc,
as shown in Figure 3c. This filament-formation biasing voltage is also marked as a SET
voltage, after which a large threshold in current is observed abruptly. Furthermore, when
the applied voltage is swept from 0 V to the negative, it suddenly triggers the device to the
HRS, which is marked as a RESET voltage. The Ag/SnO2/WTe2/Au device stability was
tested over up to 150 consecutive cycles, which showed its reproducibility over the flexible
PET substrate. The I-V curves obtained from the 150 consecutive cycles are illustrated
in Figure 3d.
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The statistical variation in device resistance as per the number of measurement cycles
is plotted in Figure 4a. The Ag/SnO2/WTe2/Au device was tested for the consecutive
150 cycles, and its LRS and HRS are plotted together. The cumulative probability for
150 cycles was plotted as the function of the device resistances to examine the endurance of
the memory devices. The devices showed very stable and repeatable resistive levels of the
HRS and LRS for each cycle with a stable rectification ratio. The device retention is also
illustrated in Figure 4b, in which the device’s resistive levels are plotted as the function of
the time. There was no significant variation in the extracted HRS and LRS values, which
confirms the device’s stability over the flexible PET substrate. Furthermore, the physical
mechanism behind the RESET and SET state of the device was elaborated in detail. The HRS
level was achieved in all fabricated devices over the PET substrate. However, evolution
from an HRS to an LRS during the SET process occurs due to the sudden enhancement
of current up to Icc when the sweeping voltage reaches the SET voltage (VSET). At LRS,
the current which runs from the device is higher because of the high conductivity of
the Ag metallic filaments. In hybrid devices, this switching mechanism occurs just by
swapping the stacking sequence of the solid electrolyte. Moreover, in hybrid devices, RS
characteristics perform better results as compared to single-thin-film devices. The reactions
possible for the formation/rupture of the Ag electrochemically active electrode filaments
in the active layer during the SET/RESET process are shown below.

Ag Ag+ + 1e− (Oxidation) Ag+ + 1e− Ag (Reduction)
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As an outcome of this redox reaction, the metal ions (Ag+) drift through the insulator
(switching material) to form the conduction filament. Owing to a positive bias voltage
applied to the top electrode during the SET process, the Ag ion isolates from the top
electrode, travels through the switching material, and decisively settles down as an Ag atom
at the bottom electrode after being reduced. In this approach, Ag filaments form and make
the connection between the top and bottom electrodes. Prior studies have explained that ion
migration and redox reaction rates are the reason why several conduction filament modes
are predicted [29]. A nanocluster of Ag nucleates moves through the electrolyte when an
external bias is applied. Moreover, overall ion migration is caused by the movement of the
nanocluster. Contrarily, when the top electrode is negatively biased, the filaments formed
during the SET process are ruptured. The physical mechanism of filament formation and
its rupture is illustrated in Figure 4c,d. The electric field track and the redox reaction that
occur at the electrode are liable for successful ion drift [29]. Moreover, if the redox reaction
rate is high but the ion migration rate is low, then the filament formation materializes
inside the dielectric material and on the cathode side of the filament; a large amount of
metal is hoarded in this situation. This is an uncompleted filament after the initial filament
formation. In a reverse condition, where the redox reaction is lower and the migration
rate is higher, a branched cut filament is produced from the inert to active electrode. The
inadequate supply of ions is the fundamental reason why the reduction reaction occurs
at the edges of the filament [29]. The Ag ion transport rate is hindered by the SnO2 layer,
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causing a low ion transport rate in the oxidized layer. However, for the formation of the
conductive filaments, the nucleation or the growth of the Ag filaments must be balanced for
its continuous growth during the SET process. This effect is balanced by inserting the WTe2
layers. The Ag ion transmission rate is relatively high in 2D materials. The movement
process of the Ag ions in a 2D layer corresponds to the forming process. So, the use of a
2D interfacial layer results in highly stable memristive switching and highly concentrated
SET/RESET voltage distribution. After the filament reaches the Au bottom electrode, the
device reaches its ON-state. In addition, the weakest link of the Ag conductive filament
happens at the 2D material and oxide layer interface, which is the reason an abrupt rupture
has been observed during the reverse bias, whereas for the single-layer SnO2 memory
stack, gradual switching with a high RESET and low ON/OFF ratio has been observed.
This low ON/OFF ratio (4 × 102) of the Ag/SnO2/Au devices is possibly attributed to the
defect states; hence, the use of a 2D-based bilayer stack results in the drastic improvement
of the switching parameters. Secondly, Schottky emission also occurs because of thermal
activation. When the positive bias is applied to the top Ag electrode, thermally activated
electrons receive a sufficient amount of energy to jump from the valence band to the
conduction band [30–32]. Therefore, it can be concluded that different material devices
with diverse geometry and parameters can provide an outcome of conducting filament
occurrence conditional to the ion migration rate and redox reaction. At the electrode, the
migration and redox reaction rate of an Ag ion fluctuates depending upon the physical
and chemical properties of different materials.

4. Conclusions

In summary, we synthesized a bilayer structure of tin-oxide/tungsten-ditelluride
(SnO2/WTe2), sandwiched between Ag (top) and Au (bottom) metal electrodes over a
flexible PET substrate. The flexible nature of the two-dimensional WTe2 was utilized
to achieve a better platform for the SnO2 to fabricate a highly stable flexible memory
device. The flexible memory device is triggered from a high-resistance state (HRS) to a
low-resistance state (LRS) by filament formation between the top and bottom electrodes,
attributed to the diffusion of the Ag ions. The filament formation, which is responsible for
the resistive switching, has been explained with its underlying mechanism of ion diffusion
and Schottky emission. The repeatable cycles of resistive switching are reported with the
bilayer structure of SnO2/WTe2. A few layers of a thick film of WTe2 provide highly repeat-
able resistive-switching results with a low switching voltage. The Ag/SnO2/WTe2/Au
devices exhibited excellent retention and bending endurance. This research might lead
to the development of highly stable and flexible resistive-switching devices for the next
generation of wearable electronics.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14247535/s1, Figure S1: (a,b) The elemental mapping of the W and Te elements are
presented with a scale bar of 1 um. (c) The corresponding peaks belonging to W and Te are presented
in yellow color, Figure S2: (a,b) The elemental mapping of the Sn and O is presented with a scale bar
of 1 um. (c) The corresponding peaks belonging to Sn and O are presented in yellow color, Figure S3:
The filament formation is illustrated during the 1st sweep which triggered the device from HRS to
LRS, Figure S4: (a) The SEM image of the SnO2 film showing cracks and (b) bilayer SnO2/WTe2
cracks free film over the flexible PET substrate after the 100 bending cycles, Figure S5: (a) Optical
image of flexible bilayer memristive structure based on flexible PET substrates, and (b) displaying its
transmittance measurements, Table S1: The atomic and weight percentage of each element present in
WTe2 is illustrated, Table S2: The atomic and weight percentage of each element present in SnO2.
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