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Abstract

Species abundance distributions (SADs) link species richness with species

abundances and are an important tool in the quantitative analysis of ecological

communities. Niche-based and sample-based SAD models predict different

spatial scaling properties of SAD parameters. However, empirical research on

SAD scaling properties is largely missing. Here we extracted percentage cover

values of all occurring vascular plants as proxies of their abundance in 1725

10-m2 plots from the GrassPlot database, covering 47 regional data sets of
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19 different grasslands and other open vegetation types of the Palaearctic bio-

geographic realm. For each plot, we fitted the Weibull distribution, a model

that is able to effectively mimic other distributions like the log-series and log-

normal, to the species–log abundance rank order distribution. We calculated

the skewness and kurtosis of the empirical distributions and linked these

moments, along with the shape and scale parameters of the Weibull distribu-

tion, to plot climatic and soil characteristics. The Weibull distribution provided

excellent fits to grassland plant communities and identified four basic types of

communities characterized by different degrees of dominance. Shape and scale

parameter values of local communities on poorer soils were largely in accor-

dance with log-series distributions. Proportions of subdominant species tended

to be lower than predicted by the standard lognormal SAD. Successive accu-

mulation of plots of the same vegetation type yielded nonlinear spatial scaling

of SAD moments and Weibull parameters. This scaling was largely indepen-

dent of environmental correlates and geographic plot position. Our findings

caution against simple generalizations about the mechanisms that generate

SADs. We argue that in grasslands, lognormal-type SADs tend to prevail

within a wider range of environmental conditions, including more extreme

habitats such as arid environments. In contrast, log-series distributions are

mainly restricted to comparatively species-rich communities on humid and

fertile soils.

KEYWORD S
lognormal distribution, log-series distribution, Palaearctic grassland, plant cover, spatial
scaling, species abundance, Weibull distribution

INTRODUCTION

More than 80 years after the seminal work of Motomura
(1932), the concept of the species abundance distribution
(SAD) in ecological communities remains a focus of eco-
logical interest (Matthews & Whittaker, 2014; McGill
et al., 2007; Ulrich et al., 2010). SADs link species rich-
ness with relative species abundances and exhibit a con-
sistent general form with many rare and few abundant
species (McGill et al., 2007). They are important in the
quantitative analysis of ecological communities, particu-
larly in the quantification of rarity (Kunin, 1997), com-
petitive hierarchies (Mac Nally et al., 2014), niche
partitioning (Sugihara et al., 2003; Tokeshi, 1999),
changes in species functional traits (Dantas de Miranda
et al., 2019), and the concept of neutral community
assembly (Hubbell, 2001; May, 1975). Recent interest has
shifted from statistical distribution fitting (Alonso
et al., 2008; Baldridge et al., 2016; Morlon et al., 2009;
Ulrich et al., 2010) and the testing of the underlying
niche-based and stochastic theories (Connolly
et al., 2005; Magurran & Henderson, 2003) toward the

analysis of observed and predicted changes in relative
abundances across spatial (Borda-De-�Agua, et al., 2012;
Ferreira de Lima et al., 2020; Šizling et al., 2009) and tem-
poral (Tomašových & Kidwell, 2010) scales. A greater
understanding of the scaling of SADs and the functional
consequences of SAD scaling patterns are not just of the-
oretical interest, and will likely be useful in biodiversity
management (Matthews & Whittaker, 2015).

Competitive and niche-orientated approaches have
often assumed SADs to be generic properties of ecological
communities determined by species interactions (Centuri�on
& L�opez Gappa, 2011; Tokeshi, 1999) and niche par-
titioning (Sugihara, 1980). Niche-orientated SAD model
parameters are determined by species richness and the
specific pattern of niche division, but not by the temporal
or spatial dynamics of community assembly. However,
sample-based theoretical work has demonstrated that the
parameters of important SAD models change with increas-
ing sample size (Green & Plotkin, 2007; Šizling et al., 2009)
and patterns of spatial aggregation (Dornelas & Connolly,
2008). These models include the exponential series, charac-
terized by identical proportions of species along the gradient
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of log-transformed species abundance (Motomura, 1932),
the log-series sample distribution, characterized by a few
highly abundant species and an excess of species represen-
ted by a single individual (Fisher et al., 1943), and the log-
normal distribution, characterized by a comparatively high
number of species with intermediate abundance and similar
numbers of relatively abundant and rare species (Gaston &
Blackburn, 2000; Preston, 1948). Importantly, Locey and
White (2013) demonstrated that the shape of SADs is deter-
mined by the interplay of the total numbers of individuals
and species. Both increase with increasing sample area.
Therefore, the sample behavior of SADs should automati-
cally translate into changes in SAD shape across spatial
scales. The situation is complicated by the fact that local
communities are not simply random samples from the
larger regional species pools. Instead, they result from three
basic processes: species-specific dispersal, habitat filtering,
and local species interactions (e.g., D’Amen et al., 2017;
Török et al., 2018; Vellend, 2016). These three processes
operate differently at different spatial scales. As such, for
this reason, we also cannot expect SADs to be invariant of
spatial scale.

At spatial extents above the local community, two
contrasting theoretical approaches predict different SAD
shapes. Neutral approaches generally predict that log-
series SADs will characterize regional species pools
(Hubbell, 2001), as reported by Wu et al. (2019). In con-
trast, Connolly et al. (2005) reported scale-invariant log-
normal regional SADs of exhaustively sampled marine
fish and coral reef communities, arguing that the
observed invariance results from the corresponding scal-
ing of multiple ecological processes that force SADs into
a lognormal shape. We note that Šizling et al. (2009)
argued against exact scale invariance of lognormal SADs.
These authors showed that, if the SAD at one scale is log-
normal, the SADs at other scales converge on right-
skewed distributions that can appear roughly lognormal,
resulting in apparent scale invariance.

Across taxa, studies have reported changes in the
(i) parameters of the models that best fit local SADs with
increasing spatial scale and (ii) type of SAD model that
provides the most accurate representation of the empiri-
cal distribution (in what follows referred to as the SAD
shape). For example, Borda-de-�Agua et al. (2017)
reported that the variance and skewness of arthropod
SADs changed predictably according to an allometric
function along spatial gradients. Wu et al. (2019) found
consistent directional temporal changes in initially vari-
ably shaped local forest tree SADs toward regional log-
series distributions as predicted by neutral, dispersal-
driven models (Hubbell, 2001). Ferreira de Lima
et al. (2020) identified a decreasing hierarchy of factors
that trigger variability in Brazilian Atlantic forest SAD

shapes across spatial and temporal scales: sample size,
conspecific aggregation, and β-diversity. Antão et al. (2021)
found that Poisson lognormal models, including those
with multiple modes, provided the best fit to large-scale
SADs of multiple taxa (the log-series never provided the
best fit to the largest-scale SADs), whereas a mix of log-
series and Poisson lognormal models provided the best
fits to the SADs of smaller areas.

This prior work has not resolved the question of
whether observed changes in SAD shapes with grain
size and in response to the aforementioned three
basic processes (interactions, filtering, dispersal) occur
in a predictable way and whether they are taxon- or
community-specific. It also remains unclear whether
SAD scaling involves gradual changes in parameter
values within the same type of distribution or, instead,
large and abrupt shifts (i.e., breakpoints) in parameter
values and thus switching between different types of
distributions. Sample theory (Green & Plotkin, 2007)
assumes gradual changes in SAD model parameter values
within the same general distribution shape, whereas certain
neutral models (e.g., Hubbell, 2001) predict larger shifts
from regional log-series SADs toward local lognormal-type
distributions, depending on the degree of dispersal limita-
tion. Such changes in relative abundance have strong impli-
cations for the scaling of the ecological processes that
determine the hierarchy of species abundances. An empiri-
cal assessment of the type of scaling and the respective scal-
ing parameters would allow for an improved extrapolation
of observed abundance distributions.

Except for the influence of dispersal, few empirical
studies have dealt with the ecological drivers that influ-
ence the spatial scaling of SADs, particularly for plants.
Global comparisons of woody (Matthews et al., 2019;
Ulrich et al., 2018) and dryland plants (Ulrich et al.,
2016) and local comparisons of forest gaps (Salvador-van
Eysenrode et al., 2003) have highlighted the importance
of climatic variability and environmental stress. Work on
other plant groups is lacking, as are scaling analyses
focused on fine, local-scale SAD data. Here we fill this
knowledge gap by focusing on extra-tropical grasslands
and other open vegetation communities. We use an
exceptionally large Palaearctic data set, the GrassPlot
database (Biurrun et al., 2019, 2021; Dengler et al., 2018),
to address the questions around the scaling of abundance
distributions, using percentage cover estimates as proxies
of abundance. The GrassPlot data stem from diverse site
conditions (e.g., from sea level to more than
5000 m above sea level [a.s.l.], from very wet to very dry
sites, and from humid to semiarid climates) and manage-
ment regimes (e.g., natural, seminatural, intensified)
(Dengler et al., 2020). This variation makes it possible to
link the observed changes in SAD parameter values to
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environmental characteristics. Importantly, our data
allow us to study the scaling of SADs within identical
vegetation types and to compare the patterns of scaling
among vegetation types.

Based on the preceding discussion of empirical and
sample theoretical predictions, we examine (i) which
types of SADs are realized in extra-tropical grasslands,
(ii) how SAD shape changes across environmental gradi-
ents across the Palaearctic, and (iii) whether and how the
scaling of SADs along spatial gradients might influence
inferences of SAD variability at larger, geographical spa-
tial scales.

MATERIALS AND METHODS

Vegetation-plot data

We compiled data from 3531 plots across 56 data sets from
the collaborative vegetation-plot database GrassPlot
(Biurrun et al., 2019; Dengler et al., 2018, https://edgg.org/
databases/GrassPlot). Using a minimum species richness
threshold of 20 to filter these data, we extracted vascular
plant data from 1725 single plots across 47 data sets each
covering an area of 10 m2 (data sets, metadata, and refer-
ences in Ulrich et al., 2021). In total, these plots come from
20 different countries in Europe and Asia (Appendix S1:
Figure S1) and cover 19 broad vegetation types (2nd level
of the ecological-physiognomic typology of GrassPlot;
Biurrun et al., 2019). The lower richness boundary
(20) allowed for sufficiently precise SAD fits and enabled
us to assess the change in community parameters along
gradients of increasing richness and abundance (cf. Ulrich
et al., 2010). Abundances for all species in a plot were
assessed by the percentage cover (typically used in plant
SAD studies rather than actual abundances) (Anderson
et al. 2012; Chiarucci et al., 1999). Cover data are often
more strongly correlated with plant biomass than with the
number of ramets, that is, single shoots (Chiarucci
et al., 1999). Therefore, cover-based SADs are particularly
effective at quantifying the distribution of plant species bio-
mass within and across vegetation plots.

For the analysis of spatial SAD scaling, we selected
40 plot clusters from the data sets, that is, groups of plots
from the original data set with identical vegetation type
that contained at least 15 individual plots (in total 1550
plots) (Ulrich et al., 2021). For each cluster, we started
SAD fitting with a randomly chosen plot of at least 20 spe-
cies and gradually added the cover values of all other
plots in random order to obtain a cumulative plot
sequence (CPS), which also reflects increasing sample
area. This additive process implies that cumulative cover
values might be larger than 100. We note that these CPSs

do not form sequences of spatially continuous vegetation
but are aggregations of discontinuous plots. Of course,
the SAD at the starting point and the specific ordering of
plots during accumulation might influence the inferred
scaling behavior and increase the variance in scaling pat-
terns across these CPSs. However, we did not average
values of several runs of random accumulation within
each plot series because such averaging would artificially
smooth the spatial scaling and bias the pattern toward
what is predicted from sample theory in homogeneous
environments. The high number of individual plots
within each CPS guaranteed that the assessment of
changes in SAD parameters across a CPS would not be
influenced by the ordering of plot combination.

For each individual plot and each accumulation step
of the CPS, we fitted the Weibull distribution to the spe-
cies rank–ln-abundance distribution (Whittaker repre-
sentation) (Whittaker, 1965) using ln-transformed
relative cover values according to standard practice. The
final step of each CPS provides a rough estimate of the
abundance distribution of the regional species pool for
that cluster. The complete data set, including fitted
parameters and moments of the SAD distributions, is
contained in Ulrich et al. (2021).

Environmental variables

The GrassPlot data set contains a range of environmental
and geographical variables known to be important drivers
of plant diversity and distributions; certain variables are
only available for a subset of plots. In this study, for all
plots we used the geographical variables latitude, longitude,
and elevation. For 1111 plots, information on mean soil
depth, for 569 plots information on soil organic matter con-
tent (OMC), and for 338 plots information on soil C/N ratio
was available. Additionally, we retrieved data for average
annual temperature, annual precipitation, temperature
range and precipitation variability for all plots from the
CHELSA climate database (Karger et al., 2016). The com-
plete geographical and environmental raw data for each
plot are contained in Ulrich et al. (2021).

Data analysis

Prior work on the variation in SAD shape between sites
largely relied on comparing the fits of different standard
models. However, reliable model comparisons need large
sample sizes, at least on the order of 20 species (Ulrich
et al., 2010; Wilson, 1993). Therefore, here we take a two-
pronged approach. First, we rely on model-independent
moments of SADs: the variance (σ2, second moment) as a
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measure of the range in plant cover, the skewness
(γ, third moment) as a measure of an excess of relatively
rare or abundant species, and the kurtosis (δ, fourth
moment) as a quantification of the proportion of species
with relatively intermediate cover. Additionally, we fitted
the two-parameter Weibull distribution to the observed
plant cover data. Recently, Ulrich et al. (2018, 2020) dem-
onstrated that this distribution is sufficiently flexible to
mimic a wide range of observed SAD shapes. The model
allows for a continuous tracing of the changes in the two
Weibull parameter values (scale and shape) in order to
assess the scaling properties of observed SADs and to
relate these to environmental correlates.

Fitting the Weibull model to empirical SADs

The two-parameter form of the Weibull distribution has
the probability density function (PDF)

p x >0;φ;λð Þ¼φ
λ

x
λ

� �φ�1
e�

x
λð Þφ ð1Þ

where φ is the shape and λ the scale parameter. The
Weibull shape parameter (φ) decreases with increasing

skewness of the distribution, and the scale parameter (λ)
increases with the observed range in abundance (Ulrich
et al., 2018). Consequently, λ and σ2 are positively corre-
lated (present data: r = 0.73). The φ/λ quotient is more
closely related to the empirical variance of the SAD by a
power function (cf. Appendix S1: Figure S2 for the pre-
sent data set). Shape parameters around φ = 2 mimic log-
normal distributions, whereas φ = 1 refers approximately
to log-series distributions. When applied to species abun-
dances, the random variate x must contain log-
transformed abundances calculated for all species (S).
The Fortran code used for asymptotic ordinary least-
squares fitting of the Weibull distribution (using a
pattern-seeking algorithm) has already been presented in
Ulrich et al. (2018) and is freely available from the
corresponding author upon request. As a measure of
goodness of fit we used the average sum of least squares:
fit¼ 1

S

PS
1 lnpi� lnwj
� �2

,where ln pi and ln wj denote the
ln-transformed observed and Weibull fitted relative abun-
dances, respectively. Ulrich et al. (2018) compared differ-
ent types of SAD from small to intermediate sized
Japanese forest tree communities (<100 species) and
reported fit values <0.05 as being excellent, whereas fit
values >0.3 were considered poor. Figure 1 contains six
typical examples from the present data set of excellent to

F I GURE 1 Six example fits of the Weibull distribution to grassland community species abundance distributions (SADs), with different

values of the goodness-of-fit measure. Goodness of fit was calculated as the average sum of least squares: fit¼ 1
S

PS
1 lnpi� lnwj
� �2

, where ln

pi and ln wj denote ln-transformed observed and Weibull fitted relative percentage cover values. Letters (e.g., RO_AP) refer to CPS plot code

(Appendix S1: Table S5) (Ulrich et al., 2021)
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poor fits and demonstrates that fit values <0.3 can still be
considered very good. Weibull model fits to the SADs of
each plot, including observed and estimated cover values
for each species together with respective SDs of the esti-
mates, are contained in Ulrich et al. (2021).

Statistical analysis

For each of the individual plots and each accumulation
step of the CPSs, we calculated the skewness (γ) and the
kurtosis (δ) of the SAD. We note that a symmetric lognor-
mal distribution has a skewness of γ = 0, while a negative
skewness indicates an excess of relatively rare species
(note that this regards log-abundance distributions: distri-
butions of raw abundances with an excess of rare species
are right skewed) (e.g., Šizling et al., 2009). A standard
lognormal distribution is characterized by a kurtosis of
δ = 3. Higher kurtosis values mark an excess of species
with intermediate abundances. Additionally, we calcu-
lated the proportional β-diversity of each cumulative plot
series as β¼ 1�α=γ, where α is the average local (plot)
and γ the total species richness of the CPS.

Graphical comparisons of λ-values of single plots
(Figure 2a) and CPS (Figure 3a) against total cover
indicated the existence of four clearly separated groups
of SADs. We optimized classification using k-means
clustering applied to the quotient of λ/ln(cover values)
and fitted ordinary logarithmic least-squares regres-
sions to each group individually. Discriminant analysis
served to relate these groups to environmental vari-
ables. Nested linear mixed-effects modeling (GLM) and
parametric ANOVA with post hoc Tukey tests were
used to relate the SAD parameters to community spe-
cies richness, total ln-abundance, and environmental
variables. To infer any nonlinear patterns with regard
to changes in the various SAD moments and parame-
ters (γ, δ, φ, λ) with spatial scale, we included the
squared zero centered ln-cover term (separately calcu-
lated for each of the 40 CPSs into the analysis). Because
the spatial extent of the study area, that is, the area
encompassed by the plots within the CPSs, might influ-
ence the results we also added the average pairwise
plot distance within each CPS as a covariate. We esti-
mated the impacts of predictor variables from partial η2

values,

F I GURE 2 Plots of (a, c) Weibull scale parameter λ and (b, d) shape parameter φ against (a, b) total plant cover values and (c, d)

species richness for all 1725 single plots returned four clearly defined groups of plots (A, B, C, D) with respect to the intercept value of λ.
Groups were less clearly defined with respect to φ. Community membership of these four groups is provided in Ulrich et al. (2021).

Regression lines refer to (a, b) ordinary least-squares logarithmic and (c, d) linear regressions. Broken lines in (a) indicate boundaries of

group membership
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partial η2 ¼ SSeffect
SSeffectþSSerror

,

where SS denotes the sum of squares. Calculations
were undertaken using Statistica 12.0.

We also applied polynomial ordinary linear segmented
least-squares regression to the SAD parameter values versus
ln-cover of each of the 40 CPSs, as implemented in
SigmaPlot 14. A significant breakpoint indicates a nonlinear
scaling of the respective parameters along the total cover
value (and therefore area) axis of a given CPS. As the spatial
distribution of the analyzed GrassPlot plots was clustered
and absolute spatial distances might be important, we used
eigenvector mapping and added the dominant eigenvector
(EV1) of the Euclidean plot distance matrix to the GLM
models as a covariate.

RESULTS

Goodness of fit

The majority of the grassland plant SADs were very well
fitted by the Weibull distribution (fits in Ulrich

et al., 2021, Figure 1; Appendix S1: Figure S3). Among
the 1725 individual plots, 400 (23.2%) had fit values <0.1,
indicating excellent to very good fits (e.g., Figure 1a),
1135 plots (65.8%) had fit values <0.3, indicating very
good fits (e.g., Figures 1b, c), and only 196 (11.4%) were
comparatively weakly fitted by the Weibull distribution
(fit >0.75, e.g., Figure 1e,f). Goodness of fit differed sig-
nificantly between plots (Appendix S1: Table S1). Species
richness did not significantly influence goodness of fit
(Appendix S1: Table S1).

Variability in SAD parameters between
SAD groups

With 868 individual plots (50.3%) and 1263 CPS aggre-
gation steps (81.5%), most fitted SADs were character-
ized by φ > 2.0, equivalent to lognormal-type SADs.
Only 423 individual plots (24.5%) and 47 of the CPS
aggregation steps (3.0%) had φ < 1.5, equivalent to a
log-series SAD. SAD skewness γ decreased with plot
abundance, indicating an excess of rare species at

F I GURE 3 Plots of (a, c) Weibull fit scale parameter λ and (b, d) shape parameter φ against (a, b) plant cumulative cover and (c, d)

species richness for all aggregation steps of cumulative plot series highlight the four clearly defined groups of plots (A, B, C, D) with respect

to the intercept value of λ. Groups were less clearly defined with respect to φ. Community membership of these four groups is provided in

Ulrich et al. (2021). Regression lines refer to ordinary least-squares logarithmic regressions. Broken lines in (a) indicate boundaries of group

membership
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higher total cover values (Appendix S1: Figure S4c).
Kurtosis δ was largely independent of cover and rich-
ness (Appendix S1: Figure S4d,h).

Plots of φ and λ against cover values and species rich-
ness in combination with k-means cluster analysis
pointed to four distinct groups of grassland SADs differ-
entiated by the scaling of λ with plant cover (Figures 2a
and 3a; Appendix S1: Table S2). Group differentiation
was less obvious with respect to φ (Figures 2 and 3;
Appendix S1: Table S2), although k-means clustering still
confirmed >40.0% group memberships (Figures 2b,d
and 3b,d; Appendix S1: Table S2). The four groups did
not significantly differ with respect to α-, β-, and
γ-diversity or to local cover (Figure 4a). One-way
ANOVA indicated that there was a moderate effect of
vegetation type on group membership (partial
η2 = 0.08, p<0.001). In particular, Group B dominated in
alpine, xeric, rocky, and sandy dry grassland communi-
ties, while Group C dominated in meso-xeric, mesic,
and Mediterranean grasslands, as well as in wetlands
(Appendix S1: Figure S3a).

Linear modeling detected significant differences among
the four SAD groups with respect to the γ and δ of the SAD
distribution and the Weibull parameter values (Table 1,
Figure 4). Groups A and B SADs were on average character-
ized by a slightly negative empirical γ, indicating an excess
of rare species (Figure 4b), while the SADs of Groups C and
D were significantly right skewed in accordance with an
excess of abundant species (Figure 4b). For all four groups,
δ ranged between 2 and 3, with a decrease toward Group D
(Figure 4b). Weibull φ was lowest (<2.0) for Group D com-
munities (Figure 4b).

Environmental influences

The climatic variables used here, in addition to eleva-
tion and latitude, did not significantly influence the
observed SAD shapes (Table 1; Appendix S1:
Figure S5). φ and λ increased and γ decreased with soil
OMC (Appendix S1: Figure S6e,g,h), while γ increased
and λ decreased with soil C/N ratio (Appendix S1:
Figure S6i,l). Discriminant analysis also did not detect
any significant influence of climatic variables on SAD
group membership (Appendix S1: Table S3). However,
we found a strong indirect influence of soil characteris-
tics on SAD group membership and therefore on SAD
shape (Figure 4c; Appendix S1: Table S3). Group C
communities were related to deeper soils with
increased C/N ratios, while increased OMC was most
common for Group A communities (Figure 4c). Group
A communities dominated at higher, and Group D
communities at lower, elevation (Figure 4c).

Spatial scaling of SAD parameters

The Weibull parameters increased with increasing cumu-
lative cover values (equivalent to increasing area) in a

F I GURE 4 (a) Average values of α-, β-, and γ-diversity, and
average local cover values (Clocal) for cumulative plot sequences (CPS)

within the four species abundance distribution (SAD) groups

(uppercase letters) identified in Figure 2. There were no significant

differences between types. (b) Average values of skewness (γ),
kurtosis (δ), shape (φ), and scale (λ) parameters of single grassland

SADs, within the four groups. All group comparisons significantly

differed within each parameter. (c) Average soil depth, soil organic

matter content (OMC), soil C/N ratios, and plot elevation within the

four groups. For soil depth, Groups B and C significantly differed

from Groups A and B; for OMC Group A significantly differed

from B, C, and D; for C/N ratios C and D differed from A and B; and

for elevation A and D differed and both differed from B and C. Error

bars denote SEs. Significances at the two-sided 1% error level between

groups were tested with one-way ANOVA and post hoc Tukey tests
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TAB L E 1 General linear modeling detected significant differences in empirical species abundance distribution (SAD) skewness (γ) and
kurtosis (δ), and Weibull shape (φ) and scale (λ) parameters, between four groups of grassland plant communities (as defined in Figure 2)

and between vegetation types

Variable df

γ δ φ λ

Partial η2 β Partial η2 β Partial η2 β Partial η2 β

SAD group 3 0.29*** … 0.04*** … 0.36*** … 0.94*** …

Vegetation type 18 0.03*** … 0.05*** … 0.02*** … 0.04*** …

Tmean 1 0.02*** �0.24 0.01** 0.23 0.03*** 0.32 <0.01 �0.01

Trange 1 <0.01 0.05 0.01** �0.20 0.01** �0.13 0.01** 0.04

Pmean 1 <0.01 0.06 <0.01 0.00 <0.01 �0.03 <0.01 0.00

Pseasonality 1 0.02*** 0.28 0.01** �0.18 0.04*** �0.33 <0.01 �0.02

EV1 1 <0.01 0.02 <0.01 �0.03 <0.01 0.02 <0.01 0.02

S 1 <0.01 �0.01 <0.01 0.02 <0.01 0.04 0.01** �0.02

ln C 1 0.04*** �0.20 <0.01 �0.04 0.03*** 0.17 0.34*** 0.20

r 2 … 0.39*** … 0.10*** … 0.44*** … 0.95*** …

Note: Tmean, Pmean, annual mean temperature and precipitation; Trange, temperature range; Pseasonality, precipitation seasonality; ln C, ln-transformed cover

values; S, species richness; and the dominant eigenvector of plot spatial distances (EV1) served as metric covariates.
Vegetation type entered the model as a random effect. Partial η2- and β-values are shown.
Parametric significances: **p < 0.01, ***p < 0.001. N = 1719 for all four models.

F I GURE 5 Plots of the relationships between species abundance distribution (SAD) skewness (γ), kurtosis (δ), Weibull fit shape (φ),
and scale parameters (λ), and ln-transformed cover values for four representative cumulative plot series. Red regression lines show

significant (p < 0.001) and gray lines nonsignificant (p > 0.10) piecewise regressions. The oval in (o) denotes a step change in scale value.

Site information for each of the four sites can be found in Ulrich et al. (2021).
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CPS-specific manner within and among each of the four
groups (Figure 3). A hierarchical GLM detected highly
significant influences of group membership (largely con-
gruent with geographic position), vegetation type, and
cumulative cover on the SAD moments and Weibull
parameters (Table 3). The latter effect was not visible
when single plots were used (Appendix S1: Table S4).
The spatial distances of plots within each CPS had only a
minor influence on parameter variation (Table 3).

Segmented linear regression of ln-transformed cover
values against γ, δ, φ, and λ, within each CPS, revealed
highly variable nonlinear and often irregular relation-
ships and, in 69% of the CPSs, significant breakpoints
(Figure 5, Table 3; Appendix S1: Table S5). In 47% of the
CPSs, the studied parameters decreased or increased con-
tinuously with increasing cover values (Appendix S1:

Table S5). Frequently, parameter values peaked at inter-
mediate cumulative cover values (γ: 27.5%, δ: 45.0%, φ:
40.0%, λ 7.5%) (Appendix S1: Table S5). Patterns of
parameter change were generally not consistent within
each CPS (Figure 5; Appendix S1: Table S5).

DISCUSSION

Model fits and Weibull parameters

Our study shows that the two-parameter Weibull distri-
bution generally provides excellent fits to cover-based
plant community SAD data (Figure 1; Appendix S1:
Figure S3). This is in agreement with previous work that
found the model did a good job of mimicking the

TAB L E 2 General linear modeling detected significant differences in empirical species abundance distribution (SAD) skewness (γ) and
kurtosis (δ), and Weibull shape (φ) and scale (λ) parameters, between four groups of grassland plant communities (as defined in Figure 2)

and between vegetation types

Variable df

γ δ φ λ

Partial η2 β Partial η2 β Partial η2 β Partial η2 β

SAD group 3 0.14*** … 0.01 … 0.23*** … 0.89*** …

Vegetation type 10 0.04 … 0.02 … 0.04 … 0.05* …

Soil depth 1 0.01* 0.13 <0.01 0.04 <0.01 �0.06 <0.01 <0.01

Organic matter content 1 <0.01 �0.02 0.01 �0.13 <0.01 0.02 <0.01 �0.02

EV1 1 <0.01 0.08 <0.01 <0.01 <0.01 0.06 <0.01 �0.02

S 1 0.01 0.08 <0.01 �0.02 <0.01 �0.04 0.06*** �0.08

ln C 1 0.01* �0.12 <0.01 �0.01 0.02** 0.16 0.46*** 0.30

Elevation 1 <0.01 0.04 <0.01 �0.02 <0.01 �0.05 0.01* 0.04

r 2 … 0.26*** … <0.01 … 0.32*** … 0.94*** …

Note: ln C, ln-transformed cover values; S, species richness; and the dominant eigenvector of plot spatial distances (EV1) served as metric covariates.
The C/N ratio was not included because of the low number of remaining data points. Vegetation type entered the model as a random effect. Partial η2 effect
sizes and standardized slope parameters (β-values) are shown.
Parametric significances: **p < 0.01, ***p < 0.001. N = 442 plots for which all soil data were available.

TAB L E 3 Hierarchically nested general linear modeling (vegetation type nested in cumulative plot sequence [CPS], Z-transformed

cover values ZC, separately calculated for each CPS, and squared cover values ZC
2 nested in vegetation type) detected significant nonlinear

dependencies of empirical species abundance distribution (SAD) skewness (γ) and kurtosis (δ), and Weibull shape (φ) and scale (λ)
parameters, with increasing ln-transformed cover values within each CPS

Variable Nested in df γ δ φ λ

CPS 23 0.74*** 0.69*** 0.81*** 0.92***

Vegetation type CPS 5 0.07*** 0.14*** 0.17*** 0.29***

ZC Vegetation type 8 0.08*** 0.06*** 0.17*** 0.42***

ZC
2 Vegetation type 8 0.04*** 0.02** 0.04*** 0.05***

Distance 1 <0.001 0.02*** 0.02*** <0.001

r 2 … 0.78*** 0.74*** 0.87*** 0.94***

Note: CPS and vegetation type entered the model as random effects. Given are partial η2 effect sizes.
Parametric significances: **p < 0.01***, p < 0.001. The average distance of plots within each CPS served as covariate. N = 1550 for all four models.
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distributions of Japanese woody plant communities
(Ulrich et al., 2018, 2020). Together with these previous
studies, our results indicate that the Weibull model pro-
vides a useful tool for researchers interested in SADs and
their ecological implications. Based on the Weibull fits,
we detected four different types of local communities
characterized by different φ and λ parameter combina-
tions. These types were not directly linked to differences
in richness, abundance, and environmental conditions. It is
worth highlighting that these four groups might not have
been detected in SAD analyses based on classical fits to spe-
cies number–log abundance distributions (Preston represen-
tations, Matthews & Whittaker, 2014) or in analyses based
solely on the moments of distributions or model goodness
of fit (e.g., Gross et al., 2017; Ulrich et al., 2010).

In answer to our first question, what types of SADs
are realized for vascular plants in extra-tropical grass-
lands, we found that in more than half of all single com-
munities, particularly Group A and B communities, and
in more than two-thirds of CPSs, φ was greater than
2, indicating lognormal-type abundance distributions
across the spatial scales examined (Figure 3). These
results are in line with Ulrich et al. (2016), who reported
a similar prevalence of lognormal distributions in global
dryland plant communities. Lognormal SADs are gener-
ally considered to be characteristic of closed, dispersal-
limited local communities that are strongly controlled by
biotic interactions (Hubbell, 2001; Magurran & Hender-
son, 2003; Ulrich et al., 2010), although Connolly
et al. (2005), Enquist et al. (2019), and Antão et al. (2021)
found evidence that plant and animal communities also
exhibited lognormal SADs at large spatial scales. With
respect to grassland plants, relative abundances at the
local scale are generally thought to be mainly determined
by life form and, therefore, by habitat-filtering mecha-
nisms and competitive interactions, not by dispersal
(Eriksson & Jakobsson, 1998). Silva et al. (2010) and Wu
et al. (2019), who analyzed SADs of sample distributions
in Brazilian Cerrado grasslands and Chinese forest trees,
respectively, indicated that regional understory forest
plant SADs are of the log-series type, as assumed by
dispersal-driven ecological drift models (Hubbell, 2001).
Our results contrast with these findings. We note that the
cumulative areas of the CPSs considered here are much
smaller than those of Silva et al. (2010) and Wu
et al. (2019), which may explain these differences. None-
theless, our results do not provide support for ecological
theories based on the assumption of local and regional-
scale log-series SADs, such as the maximum entropy the-
ory of ecology (Harte, 2011), although we cannot exclude
the possibility that larger, continental grassland species
pools might still be log-series distributed, while at inter-
mediate scales lognormal-type distributions prevail.

There is an ongoing debate on whether the analysis of
SADs can reveal the underlying processes of community
assembly (e.g., Matthews & Whittaker, 2015; Zhou &
Ning, 2017; Wang et al., 2018; Feng et al. 2021). This
debate has two distinct aspects that are often confused.
The first aspect regards the type of SAD model or, more
precisely, whether process-orientated niche division
(e.g., Tokeshi 1998) or neutral models (Fisher et al., 1943;
Harte, 2011) provide better representations of nature.
This question is now arguably answered—both types of
models can mimic observed SADs, making it impossible
to infer the processes behind community assembly from
model fitting alone. Consequently, and based on the
application of Occam’s razor, probabilistic distribution–
based models, like the Weibull model, that make no
explicit assumptions about ecological processes are typi-
cally preferred (Hubbell, 2001; Locey & White, 2013;
Preston, 1948; Ulrich et al., 2018). The second aspect con-
cerns the question of whether the observed parameter
values of well-fitting SAD models tell us something about
the processes of community assembly and whether they
can be related to ecological factors. For example, previous
studies at coarse spatial scales found SAD shape to be
partly driven by variation in climatic factors (e.g.,
Matthews et al., 2019; Ulrich et al., 2016). Our results
indicate that there are strong constraints on the Weibull
parameter space with respect to SAD shape but to a lesser
extent with respect to SAD scale (Figure 4b). Put another
way, observed SADs are characterized more or less by
symmetric distributions (low skewness) but with highly
variable absolute differences in abundances between spe-
cies (Figure 4). Symmetric lognormal-type SAD distribu-
tions imply no excess of highly abundant or rare species.
Such an excess has been found in many animal and plant
SADs, particularly when using heterogeneous samples
across local habitat boundaries, where dispersal might
play a major role (Enquist et al., 2019; McGill, 2003). In
plant communities, dispersal dominates at early succes-
sional stages while species interactions increase in impor-
tance toward climax communities (Makoto & Wilson,
2018). Although we did not quantify the compositional
dynamics of the grassland communities considered in
this study, we assume that the majority are comparatively
stable and hypothesize that compositional stability in
plant communities is linked with more or less equal
numbers of very abundant and very rare species.

Ulrich et al. (2018) related the λ (Weibull scale)
parameter to the magnitude of abundance differences
within a community and, therefore, to the variance (σ2)
of the SAD. This work, in combination with our results
(Appendix S1: Figure S2), indicates that σ2 and λ are not
linked by a simple positive relationship, so each quan-
tifies a different aspect of the SAD. More precisely, σ2 is a
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power function of the φ/λ relationship, with a sharp
lower boundary reflecting minimum possible values of
φ/λ approaching a lower boundary of �0.25 at maximum
observed variance in abundance (σ2 ≈ 16) (Appendix S1:
Figure S2). Ulrich et al. (2020) reported the same lower
value of φ/λ ≈ 0.25 for Japanese woody plants. Importantly,
this boundary is not set by the internal mathematical prop-
erties of the distribution. Therefore, we speculate that this
boundary represents abundance limits for ecologically sta-
ble local plant communities.

The kurtosis δ is a widely, although wrongly,
neglected moment of SADs (Gross et al., 2017). Despite
the discussion on the correct statistical interpretation of
this fourth moment (DeCarlo, 1997), with respect to
SADs we can safely argue that a high kurtosis is linked to
an excess of species with intermediate abundance. Low δ,
in contrast, points to a lack of these middle-class species.
These are subdominants that might gain dominance
either by competitive effects or after disturbances (Ulrich
et al., 2016). Our results do not point to an excess of such
subdominants (Figure 4). Except for communities with
very low abundance differences, we found a median
value of δ = 2.64 (quartiles: 2.20 and 3.26) in line with
distributions narrower than predicted by the standard
lognormal (δ = 3). Unfortunately, most prior work on
SADs did not report δ-values. A reassessment of data pro-
vided by Ulrich et al. (2020) and Gross et al. (2017) ret-
urned a median kurtosis of δ = 2.47 (2.11–3.06) for
Japanese woody plant communities and δ = 2.45 (1.99–
3.09) for global dryland plants. With respect to the SADs
of woody plants, birds, mammals, and miscellaneous
other taxa, a recent meta-analysis also revealed a general
tendency for increased proportions of rare species and,
consequently, a lower proportion of species with interme-
diate abundance (Diaz et al., 2021). We interpret this gen-
eral tendency for local plant communities to exhibit a
deficit of subdominants in terms of competitive exclusion
along the hierarchy of competitive strength. However,
this is an ad hoc assumption that needs to be backed up
by corresponding simulation studies and field observa-
tions in hierarchical (transitive) and intransitive competi-
tive networks of plant species (cf. Soliveres et al. 2015;
Wang et al., 2018). Importantly, our argument is based
on a comparison with the standard lognormal distribu-
tion that serves as a random expectation. Neutral local
communities with reduced dispersal ability will be close
to this assumption (Hubbell, 2001). Nevertheless, a more
appropriate null standard is required to enable better
interpretation of SAD kurtosis values.

A feature of this study concerns the use of cover data
as opposed to the actual numbers of individuals. How-
ever, while the number of individuals is the classical
abundance metric in SAD studies, other measures are

also used (e.g., biomass, cover), particularly in plant stud-
ies where the counting of individuals in most cases is
infeasible because the majority of species exhibit clonal
growth. Anderson et al. (2012) demonstrated how differ-
ent measures of plant abundance influence the assess-
ment of the SAD. Of course, species log cover–rank order
SADs (Whittaker representations) as used here will give
different dominance orders than count data, simply
owing to the much larger variance of count data and the
resultant higher scale parameters of the respective model
distributions (Ferreira de Lima et al., 2020). Clearly,
Whittaker representations are least affected by this cate-
gorization affect. Nevertheless, the metric used to quan-
tify abundance might influence, for instance, the
assessment of the proportion of very abundant or rare
species and might affect comparisons of SADs, for
instance in meta-analyses, based on different types of bin-
ning. Here we used the same abundance cover quantifi-
cation within a 0–100 scale for all plots. Therefore, the
data and, thus, the distribution and model parameters
should be comparable. However, caution should be
applied when comparing the parameter values of this
study with those from other studies using different abun-
dance measures.

Environmental correlates

With regard to our second question of whether SAD
shape changes across environmental gradients across the
Palaearctic, we found evidence supporting the hypothesis
that environmental conditions (climate and soil) influ-
ence the shape of SADs of grassland plant communities
at local scales, to some extent (Tables 1 and 2, Figure 4;
Appendix S1: Figures S3, S5, and S6). For example, we
found a strong signal that deeper soils were associated
with Group B and C SADs characterized by intermediate
Weibull parameters and symmetric distributions without
an excess of either rare or abundance species (Figure 4).
Group A communities were associated with richer soils
with higher OMC and low C/N ratios, as well as high
φ-values and an excess of rare species (Figure 4). Addi-
tionally, our results indicate that such soil conditions
might also favor weaker local competitors, leading to a
shallower dominance hierarchy and increased propor-
tions of subdominants (Figure 4). This finding somewhat
contradicts Feng et al. (2021), who reported that
increased soil nutrient concentrations caused decreased
taxonomic diversity of forest tree species and increased
species dominance and rarity. Prior studies indeed
suggested that higher amounts of resources allow for a
wider range of species to enter local communities, mak-
ing their assembly more colonization driven and leading
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to log-series SADs with an excess of rare species (see also
Magurran & Henderson 2003; Ulrich et al. 2010). Addi-
tionally, Ulrich et al. (2016) found that dryland plant
communities on poorer soils strongly filter for specialist
species, whereas those species for which such soils are
suboptimal are excluded; these processes then drive SADs
toward lognormal shapes. These contrasting findings cau-
tion against simple generalizations. It is possible that, in
grasslands, interaction-driven lognormal type SADs tend
to prevail within a wider range of environmental condi-
tions, including more extreme habitats like arid environ-
ments, while log-series distributions are mainly restricted
to comparatively species-rich communities on humid and
fertile soils.

Spatial scaling

Finally, we asked whether local SAD parameters were
scale-invariant or changed predictably with increasing spa-
tial scale. Such changes are predicted by sample theory
models (Green & Plotkin, 2007; Locey & White, 2013),
although the precise patterns of change are unknown
because, for the lognormal and the Weibull distributions,
no scaling equations exist.

The scaling of SADs is not necessarily a gradual linear
process (Rosindell & Cornell, 2013). Below the interac-
tion neighborhoods of individual plants (sensu Addicott
et al., 1987), SADs are expected to be driven by competi-
tive and facilitation effects (Callaway & Walker, 1997).
Filter effects drive SADs above and below these neighbor-
hoods. With increasing spatial scale, stochastic processes
due to colonization/extinction dynamics take over
(Ferreira de Lima et al., 2020). This discontinuity of eco-
logical processes strongly indicates the existence of scal-
ing regions of SADs and, possibly, scale-specific SAD
shapes. Thus, we hypothesized that the detection of such
scaling regions should be an indicator of changes in the
dominance of ecological processes and, consequently, in
the hierarchy of dominance in abundance. The scaling of
SAD parameters should therefore provide information
about the (dynamic) boundaries of interaction-shaped
local plant communities.

We were surprised to see that the parameters ana-
lyzed here often did not change gradually with increasing
spatial scale (Figure 5; Appendix S1: Table S5), as
predicted by sample theory models (Green &
Plotkin, 2007; Hubbell, 2001; Locey & White, 2013).
Moreover, the signs of the segment slopes were not con-
sistent within study sites and vegetation types (Figure 5;
Appendix S1: Table S5), indicating that SAD scaling is
very location-specific. The comparatively weak effects of
climatic and soil covariates on SAD parameters reported

here point to local stochastic dynamics rather than SADs
in Palaearctic grasslands being shaped by niche and envi-
ronmental drivers. Sampling models do not consider this
specificity and are only based on general assumptions
about the spatial distribution of species that determine
the accumulation of new species with increasing sample
space. In particular, they assume that newly sampled spe-
cies at higher sample sizes should be comparatively rare.
However, our results are in line with a pattern where
stronger species aggregation, but also environmental het-
erogeneity, might cause the newly sampled species at
larger sample sizes to account for comparatively higher
proportions of total abundance. This would result in a
shift toward higher δ- and φ-values as sample size
increases. Future studies need to incorporate such data in
order to develop a precise SAD spatial scaling framework
that provides insight into the dependency of SAD scaling
on the pattern of plant species aggregation.
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