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Abstract
Purpose: Cone beam computed tomography (CBCT) is a standard solution for
in-room image guidance for radiation therapy. It is used to evaluate and com-
pensate for anatomopathological changes between the dose delivery plan and
the fraction delivery day.CBCT is a fast and versatile solution,but it suffers from
drawbacks like low contrast and requires proper calibration to derive density
values. Although these limitations are even more prominent with in-room cus-
tomized CBCT systems, strategies based on deep learning have shown poten-
tial in improving image quality. As such, this article presents a method based on
a convolutional neural network and a novel two-step supervised training based
on the transfer learning paradigm for shading correction in CBCT volumes with
narrow field of view (FOV) acquired with an ad hoc in-room system.
Methods: We designed a U-Net convolutional neural network, trained on axial
slices of corresponding CT/CBCT couples. To improve the generalization capa-
bility of the network,we exploited two-stage learning using two distinct data sets.
At first, the network weights were trained using synthetic CBCT scans gener-
ated from a public data set, and then only the deepest layers of the network
were trained again with real-world clinical data to fine-tune the weights. Syn-
thetic data were generated according to real data acquisition parameters. The
network takes a single grayscale volume as input and outputs the same volume
with corrected shading and improved HU values.
Results:Evaluation was carried out with a leave-one-out cross-validation, com-
puted on 18 unique CT/CBCT pairs from six different patients from a real-world
dataset.Comparing original CBCT to CT and improved CBCT to CT,we obtained
an average improvement of 6 dB on peak signal-to-noise ratio (PSNR),+2% on
structural similarity index measure (SSIM).The median interquartile range (IQR)
Hounsfield unit (HU) difference between CBCT and CT improved from 161.37
(162.54) HU to 49.41 (66.70) HU. Region of interest (ROI)-based HU difference
was narrowed by 75% in the spongy bone (femoral head), 89% in the bladder,
85% for fat, and 83% for muscle. The improvement in contrast-to-noise ratio for
these ROIs was about 67%.

GLOSSARY: CBCT, cone beam computed tomography; CNR, contrast-to-noise ratio; CT, computed tomography; CTV, clinical target volume; DIR, deformable image
registration; Dr , data set containing only real images; Ds, data set containing synthetic CBCT images and real CT; FOV, field of view; FTx , model trained with transfer
learning on x blocks, where x can be 1, 2 or 3; HU, Hounsfield unit; IQR, interquartile range; LOO-CV, leave-one-out cross-validation; MAE, mean absolute error; noFT,
U-Net model trained without transfer learning; pCT, planning CT; PSNR, peak signal-to-noise ratio; ROI, region of interest; SSIM, structural similarity index measure
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Conclusions: We demonstrated that shading correction obtaining CT-
compatible data from narrow-FOV CBCTs acquired with a customized in-room
system is possible. Moreover, the transfer learning approach proved particularly
beneficial for such a shading correction approach.

KEYWORDS
cone beam CT, deep learning, Hounsfield unit recovery, limited FOV, shading correction, transfer
learning

1 INTRODUCTION

Setup correction,efficient target localization,and motion
management are the main challenges of accurate radi-
ation therapy. Radiation therapy starts with the acqui-
sition of a 3D planning CT (pCT), which allows the
definition of tumor and safety margins along with the
dose to be delivered. Weight loss, tumor shrinkage, and
air presence in the bowels are well-known interfrac-
tional discrepancies to be accounted for in radiation ther-
apy, especially for tumors located in the pelvic district.1

Therefore, the common clinical practice involves using
in-room imaging, with cone beam computed tomogra-
phy (CBCT) being the most widely adopted technique
for anatomical evaluation before fraction delivery in con-
ventional and proton therapies.2–5 Although CBCT is a
fast acquiring and versatile solution, it presents limita-
tions with respect to CT modality, such as low contrast
and the need to calibrate with respect to CT scanner
Hounsfield unit (HU) values.6,7 The cone-shaped beam
of CBCT allows much faster imaging compared to a fan
beam. Still, it causes a significant amount of scattered
radiation,resulting in the infamous cupping artifact in the
final image.8

The National Center for Oncological Hadrontherapy
(CNAO, Pavia, Italy) employs an in-house developed
CBCT system with a nonadjustable field of view (FOV).2

This system is used for patient positioning correction
(through the acquisition of radiographs) and daily
anatomical evaluation before fraction delivery. Although
it is not currently employed for daily dose calculation.
Instead, CBCT scans from this system are exploited as
a tool to trigger an off -line adaptive procedure based on
new CT acquisition and revaluation planning.9,10 The
main limitations that prevent a proper dose evaluation
using the CBCT system installed at CNAO are missing
information due to limited FOV and scattering-induced
cupping. At the same time, these limitations hinder the
qualitative inspection of the daily anatomy, which leads
to suboptimal off -line procedures and unnecessary
imaging dose delivered to the patient. In particu-
lar, truncation influences scattering estimation and
correction.11,12 Limited FOV and truncation artifacts are
also not ideal for applying the virtual CT paradigm3,13–16

that aims to recalculate dose on a warped CT to match
daily anatomy. The typical approach to map the CT
anatomy to that of the daily CBCT usually requires the

preprocessing of the CT through deformable image
registration (DIR).17–19 DIR may introduce errors and
require extensive validation,20 especially when the
CBCT volume is flawed and has a narrow FOV. Tradi-
tional methods to estimate and correct for scattering in
CBCT were extensively described in the literature,21,22

being based on prior knowledge of the anatomical tar-
get, scattering models to reject the noise and hardware
solutions. Literature reveals several precedents in inten-
sity correction using planning CT as a prior.For instance,
leveraging the CT information through Monte Carlo (MC)
simulations can accurately reproduce CT HU values and
allow proton dose calculation.23,24 However, the runtime
for these corrections requires hours, being incompatible
with the clinical setup. Additionally, changes in anatomy
between CT and CBCT must be limited, otherwise the
CT-based MC simulation will prove inaccurate for the
daily anatomy. More recently, advanced image process-
ing techniques based on neural networks and deep
learning were investigated, again leveraging the prior
knowledge given by the planning CT. Such networks
have demonstrated the ability to integrate information
about the targeted anatomical district and negate scat-
tering artifacts.19 These methods aimed to correct the
CBCT scattering artifacts using the neural encoding–
decoding based on the U-Net CNN architecture, exploit-
ing supervised training. The main requirement for this
kind of approach is that of anatomical correspon-
dence between the input image and the ground-truth
reference label. Two main approaches characterize
the deep-learning–based techniques, namely, raw-data
domain scatter correction and image domain shading
correction. Regarding raw-data domain scatter correc-
tion, one study proposed to train a U-Net on CBCT
projections corrected with prior information derived
from deformed planning CT.18 Other works focused
instead on training a network by creating MC simulated
labels. In a study, the authors trained a deep residual
CNN with CBCT scans and corresponding MC scatter-
corrected CBCT scans.25 In another proposal, instead,
the authors created both the input and the label by syn-
thetic CBCT generation from existing CT and adding
MC-simulated scatter to the input volumes.11,26 This
was first evaluated on various objects26 and then on
different anatomical regions11 in a reasonable attempt
to prove the generality of this method. Finally, the first
study using MC-based CNN CBCT scatter correction
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F IGURE 1 Robotic C-arm positioned in
the treatment room at CNAO. On the couch, it
is possible to see a custom thermoplastic
fixation mask used during the treatments (left).
Schematic representation of the acquisition
geometry using the aforementioned C-arm
(right)

on real data was trained on synthetic CBCT scan inputs
with added MC-simulated scatter against unflawed
CBCT scans, with particular attention to the scanner
trajectory.27 Concerning the image domain shading cor-
rection, a work involved using DIR between planning CT
and CBCT as a preprocessing step followed by a slice-
based supervised training between them.17 Slice-based
training is also an emerging trend for the generation of
synthetic CT using generative adversarial networks.28,29

In order to address the existing image quality limita-
tions at CNAO,the present work adopted the deep learn-
ing approach to CBCT axial slice processing by using
the U-Net architecture, exploiting the corresponding CT
as a ground-truth during training.

The clinical data set was retrospectively available
at CNAO facility, and it is described in Section 2.2.
We enlarged data quantity through a transfer learning
approach by generating a synthetic CBCT data set from
a publicly available pelvic CT repository,30 completely
avoiding the use of DIR. It has been shown that pre-
training a network with synthetic data could be an effec-
tive initialization technique for many complex models,
providing better performance when the network is then
fine-tuned with real data.31,32 In synthesis, the aim of the
present work is to provide a U-Net–based image domain
shading correction for the recovery of CT-compatible
HU values from narrow-FOV CBCT scans. The main
novelty aspect of the present work can be found in the
neural network supervised training strategy, which was
developed according to the transfer learning paradigm,
following an innovative two-step approach described
in Section 2.5. This allowed splitting the learning of
the anatomical features from the learning of CBCT/CT
shading differences. The performances obtained by the
fine-tuned U-Net were then compared with a network
trained only with the retrospective clinical data set.

2 MATERIALS AND METHODS

2.1 Imaging instrumentation

In this work, we exploit images from a custom C-arm
solution provided to CNAO particle therapy center2 and
installed in one of its treatment rooms (Figure 1). It was
developed in collaboration with Politecnico di Milano,

and it is used for both X-ray and Full Fan CBCT acqui-
sitions inside the treatment room before the fraction
delivery. Planar imaging is exploited for rigid alignment
through a 2D to 3D registration framework using plan-
ning data (pCT). CBCT is instead acquired for evalu-
ating anatomopathological variations between the plan-
ning CT and the daily anatomy.The device was primarily
intended for rigid setup correction and is not fitted with a
moving flat-panel or an adjustable collimator. Therefore,
it cannot produce a sufficiently wide FOV for a complete
anatomical description of larger districts (i.e., pelvis and
thorax) via half fan modality. Missing information about
the periphery of a large anatomical district does hin-
der adaptive approaches based on such images. One
of the lateral rooms at CNAO is due to receive a similar
CBCT system, upgraded with half fan capabilities. Cur-
rently, the system already in place is used to evaluate the
targeted anatomical district qualitatively.Clinical practice
at CNAO reduces inter/intra fractional motion with ther-
moplastic fixation masks.33 However, particle therapy is
more susceptible to air cavities with respect to photon
radiotherapy. Here a clinical instrument such as the lim-
ited FOV CBCT is used to qualitatively evaluate air in the
bowels (when dealing with the pelvis). Indeed,the limited
FOV of CNAO reconstructed CBCT causes truncation,
especially in the case of large anatomical districts such
as the pelvis. Consequently, bright-band effects appear
on the border of the FOV along with the nonunique-
ness of the interior problem, as stated by Clackdoyle
et al.34 The issue of truncation artifact correction is
attenuated by image processing techniques,such as the
Ohnesorge filter,35 which produces an undue lowering
of the image grayscale intensity. As such, the need for
strategies to correct shading due to different compo-
nents of artifacts is required to improve the qualitative
clinical procedure.

2.2 Data sets

For the realization of this work, two data sets were used.
The first data set, denominated Dr , included 18 retro-
spective pairs of CT/CBCT pelvis acquisitions obtained
from six oncological patients (three male/three female).
Clinical target volume (CTV) segmentation was also
recovered for each patient. More information about the
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couples is presented in the supporting information (S1).
These data were acquired at the CNAO facility dur-
ing daily pelvic district treatments. The CT scans were
acquired with a Siemens Somatom Sensation Open
Bore scanner at 100 kV, while the CBCT scans were
acquired with a Varian A-277 X-ray tube and a Var-
ian PaxScan 4030D flat-panel detector at 100 kV and
25 mAs,featuring an FOV of 208 mm2 and processed by
a 30% truncation correction with Ohnesorge filter.35 To
reduce morphological variations between correspond-
ing CT and CBCT acquisitions, the shortest time inter-
val determined the pairing. In 13 cases, the pairs were
acquired on the same day, while four were acquired
one day apart. In a single case, the acquisitions were
made two days apart. The CT scans are temporally
close to the CBCT ones as they are reevaluation CT
scans. Given that CNAO employs a thermoplastic mask
for patient immobilization and motion reduction,33 resid-
ual deformation between the corresponding scan was
deemed negligible. A more in-depth analysis is pre-
sented in the supporting information (S2), especially
regarding DIR on low contrast CBCT scans. Following
preprocessing (highlighted in Section 2.3), the data set
contained 3368 CT/CBCT 2D axial slices pairs, aligned
and rigidly registered between the two modalities. The
second data set, termed pelvic reference data,30 was
obtained from the Cancer Imaging Archive1. In this data
set, 58 pelvic CT scans, acquired in prone and supine
positions, were available. Because of large organ defor-
mation, due to a support cushion placed under the
pelvic area, some scans were removed from the useful
set. For the remaining 46 patients (27 male/19 female),
8289 CT axial projections were available. The syn-
thetic CBCT images, whose generation was described
in Section 2.2.1, joined to the corresponding CT scans,
were denominated Ds. Both data sets were divided
into training, validation, and test sets with a ratio of
60∕20∕20%. The number of images in every subset was
2021/673/674 for Dr and 6632/828/829 for Ds.

2.2.1 Synthetic data generation

Synthetic CBCT scans were generated from the cor-
responding CT scans of data set Ds using the Open-
REGGUI open-source platform, written in Matlab and
based on the RTK API (the Reconstruction ToolKit36).
RTK expects intensity values to be in a 0 − 216 range,
with an open field signal (I0) being on the right-bound
and entirely blocked signal (Idark) on the interval’s left-
bound. Projections are then log-transformed to attenua-
tion. In order to obtain a correct projection data set from
a CT, the following formula was applied to its grayscale

1 https://www.cancerimagingarchive.net

F IGURE 2 Axial view of a Dr CBCT (left) and a Ds CBCT (right)

values:

CT𝜇 =
(CTHU + 1000)

216
. (1)

The generation of synthetic CBCT was done following
the same geometry of CNAO treatment room:source-to-
detector distance equal to 1672 mm,source-to-isocenter
distance equal to 1172 mm, and gantry sweep of 220
degrees. A set of 500 simulated cone beam projec-
tions was derived, using the RTK CUDA-based forward
projector36 with a panel size of 1024 × 768 pixels (spac-
ing 0.388 × 0.388 mm) for each considered CT. A sim-
ulation of scattering and beam hardening was then
applied to the projections using the methods provided in
OpenREGGUI.37 Finally, a CBCT axial scan was recon-
structed from the projection stack, using the same pro-
jective geometry defined before, resulting in a truncation
of around 30% of the patient body and attenuated with
the Ohnesorge filter.35 Imaging parameters were chosen
to match the ones of data set Dr , with output CBCT vol-
umes of dimensions 220 × 220 × 220 pixels and spac-
ing of 1 × 1 × 1 mm. The scatter, beam hardening, and
Gaussian noise factors were found empirically and set
to 0.001, 1.005, and 0.001, respectively. Conversely to
real CBCT, the generated synthetic CBCT resulted per-
fectly aligned to the corresponding CT,avoiding anatom-
ical deformations and air pockets differences (Figure 2).

2.3 Preprocessing

Preprocessing steps were performed before feeding
data to the neural network. First, rigid registration was
applied, using the ITK API (the Insight ToolKit38), only
to Dr , as Ds was intrinsically already aligned. A masking
procedure was then applied to the CT scans of both Dr
and Ds data sets to extract the FOV equal to the cor-
responding CBCT. Every CT volume was resampled to
have isotropic voxels of 1 × 1 × 1 mm matching CBCT
voxel dimensions.The HU range of the grayscale values
was first clipped to [−1000, 3100] and then rescaled to
[0, 1] with a linear mapping. Finally, as a technical con-
venience in the U-Net processing, the axial slices were

https://www.cancerimagingarchive.net
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F IGURE 3 Schematic of the symmetric contracting and expanding paths of the U-Net. Every U-Net processing block (light purple) is
composed of two convolutional (light orange), Relu (orange), and batch normalization (yellow) layers, with a dropout (light yellow) layer in the
middle. Every block in the contracting path is followed by a max-pooling (red) layer, while every block in the expanding path is followed by a
transpose convolution (blue) one. The arrows that link two processing blocks at the same level of both paths indicate a concatenation operator.
The last convolution is followed by a Sigmoid (white) layer. The red boxes indicate the blocks that can be retrained during each transfer learning
experiment

zero-padded to 256 × 256 pixels from the original size
of 220 × 220 pixels.

2.4 Deep convolutional neural network
model

The basic U-Net architecture is mainly used for image
segmentation,39 solving a pixel-by-pixel classification
problem. In the present work, it was adapted to solve an
image-to-image translation problem to address the task
of cupping removal and HU recovery from the original
CBCT. In agreement with the U-Net architecture, the pro-
posed neural network was mainly composed of a con-
tracting and an expanding path (Figure 3).

In the contracting path, each processing layer (block)
was constituted by two 2D convolutions, with kernel
dimension 3 × 3, no stride, and rectified linear unit
(ReLU) activation function. A batch normalization layer

followed every convolution. Between two convolutions
of the same block, a dropout layer randomly “switched
off ” the updating for 10% of the weights to prevent over-
fitting.Each block in the contracting path was connected
to the next with a max pooling layer, giving as input for
the next block a tensor with twice the feature maps and
halving its size.The purpose of this contracting path was
to capture the context of the input image.The expanding
path had the same structure as the contracting path but
with a transpose convolution layer instead of max pool-
ing, giving an up-sampling effect to the network. Thus,
each block in the expanding path outputs a tensor with
half the feature maps and twice its size. Every block in
this path was also connected to its corresponding block
in the other paths with a connection layer. The purpose
of the expanding path was to enable precise localiza-
tion combined with contextual information from the con-
tracting path. A single feature map 2D convolution was
applied in the last layer, resulting in a single image with
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F IGURE 4 Training pattern for the noFT (upper panel) and FTx
(lower panel) models. The noFT model is trained in a single step
using only data from Dr . The FTx model is trained in two steps. In the
first one, a model is trained using only Ds (Synth model), then only x
(1, 2, or 3) processing blocks were retrained with Dr data

the same dimension as the input. The last layer used a
sigmoid activation function to provide values in the [0, 1]
range for every pixel.

2.5 Training of the models

Training a U-Net requires an abundant quantity of data.
In the interest of reducing potential overfitting,40 data
augmentation was performed at runtime during the
network training. A series of random operations were
applied to the existing data (the input CBCT and its cor-
responding CT ground-truth) so that the network was
never fed twice with the same image during training. At
first,random cropping of the image was performed,feed-
ing the network with a 128 × 128 subpatch of the orig-
inal image. These subpatches were also subjected to
random rotations of multiples of 90 degrees and hori-
zontal flips. Moreover, input (CBCT) and label (CT) must
represent the same anatomical condition.Otherwise, the
network will be forced to compensate for residual defor-
mation. The common practice17 requires the use of a
DIR algorithm to match CT to CBCT daily anatomy as a
preprocessing step. This step was avoided on the basis
of Dr characteristics (as described in Section 2.2). The
synthetic Ds CBCT can be perfectly superimposed on
the reference CT from which they were generated, com-
pletely avoiding DIR in data preparation (Section 2.2.1).

The models analyzed in this work were trained fol-
lowing two different training patterns (cf. Figure 4). The
first, named the noFT model, was trained in a single
step using only data from Dr . The second, named the

FTx model, was trained using both Ds and Dr data
sets, following a two-step approach similar to that of
Gherardini et al.41 At first, end-to-end training was
performed using the synthetic data from Ds on a newly
created model (the Synth model). In the second step,
some deeper processing blocks (one, two, or three)
were fine-tuned using Dr , leaving the rest of the model
weights fixed. Each retrained block was considered
symmetrically in the contracting and expanding paths
(cf. Figure 3). Depending on the number of retrained
processing blocks, the model takes the name FT1, FT2,
FT3. Synthetic data are suitable for augmenting the
data set overall dimension and learning the anatomical-
related features in the image. Transfer learning embeds
these features in the network,giving a good initialization
of the network weights. Therefore, subsequent tuning
on real data is supposed to be less sensitive to residual
deformation between input and ground-truth labels.

2.5.1 Loss function and performance
metrics

Mean absolute error (MAE) has been set as a loss
function, and the training was optimized with ADAM
(adaptive moment estimation).42 ADAM has the advan-
tage of being designed to compute individual adap-
tive learning rates for different parameters starting from
estimates of first and second moments of the gradi-
ents. ADAM optimizer was set with the following param-
eters: learning rate 0.001, exponential decay rate for
the first moment estimates 𝛽1 = 0.9, and exponen-
tial decay rate for the second-moment estimates 𝛽2 =

0.999, while the learning rate was 0.001. To evaluate
the network performance, two widely used metrics were
chosen, namely, the peak signal-to-noise ratio (PSNR)
and the structural similarity index measure (SSIM).
PSNR value approaches infinity as the mean squared
error between improved CBCT and ground-truth CT
approaches zero. Therefore, a higher PSNR value cor-
responds to higher image quality and vice versa.43 SSIM
is considered to be more correlated with the quality per-
ception of the human visual system.The higher its value
is, the better is the perception of similarity for human
eyes.44

2.5.2 Hyperparameter tuning experiments

In order to find the optimal U-Net architecture accord-
ing to PSNR and SSIM, some experiments were con-
ducted using exclusively Dr data. These experiments
aimed to find the best combination for the number of
processing blocks (four or five) and the number of fea-
ture maps at the first level (16, 32, or 64), systemati-
cally varying these parameters. A deeper network with
many feature maps can virtually learn more from the
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input data itself,but it also requires computational power
accordingly.The correct trade-off between these param-
eters has to be found. All considered architectures were
trained using data set Dr and performance results were
computed in terms of median and interquartile ranges
(IQRs). The statistical difference between the candidate
models was evaluated with Kruskal–Wallis nonparamet-
ric test for median differences (p< 0.01) and post hoc
comparison. If two or more models did not present sig-
nificant differences, the choice fell on the lighter archi-
tecture in terms of computational cost.

2.5.3 Transfer learning experiments

Once the best architecture was chosen according
to hyperparameter tuning experiments, some transfer
learning experiments were conducted to find the opti-
mal number of processing blocks to be retrained (one,
two, or three) to increase PSNR and SSIM. For exam-
ple, considering the architecture 16-32-64-128-128-64-
32-16 (four processing blocks and sixteen feature maps
in the first block), the fine-tuning of only one block meant
that the retraining allowed the refinement of the weights
in the 128-128 level. Conversely, the fine-tuning of two
blocks meant that the retraining allowed the refinement
of the weights in the 64-128-128-64 processing blocks.
Even in this case, the appropriate number of blocks was
chosen by evaluating the statistical differences between
experimental results and the computational cost.

2.5.4 Network implementation

The network model, loss function, metrics, and training
routine were built using the Keras45 and TensorFlow46

frameworks in Python. The training was carried out
in a Google Colaboratory Cuda-enabled environment,
equipped with a 4-core CPU, 25 GB RAM, and NVIDIA®

Tesla® P100 GPU support 16 GB RAM.The training rou-
tine was set to save the best weights values when the
validation set SSIM score is maximized.

2.6 Cross-validation analysis

In order to make the network output comparable to the
original volumes, the amplitude [0, 1] of the network out-
put was scaled back to HU units [−1000, 3100]. To rein-
force the interpretation of the results, a leave-one-out
cross-validation (LOO-CV) experiment was performed.
The Synth model was fine-tuned with 18 subsets of data
set Dr , each one excluding a single stack of slices, cor-
responding to unique CBCT/CT pair Px. A comparison
between baseline performance (Base), noFT, and FTx
models was presented to show the validity of the trans-
fer learning approach. Two analyses were conducted to

F IGURE 5 Example of air pockets, visible as a red blob. Since
these regions mismatch between the two images, corresponding
voxels are not considered for HU difference computation

assess: (1) the improvement for PSNR and SSIM (2) the
reliability of HU recovery.

2.6.1 Performance metrics

Given the small size of Dr compared to Ds, the NoFT
model risks overfitting training data. In order to validate
the coherency of the performance in terms of PSNR and
SSIM with respect to the parameters defined in the pre-
vious experiments, LOO-CV was used to compare the
noFT and FT2 model with the baseline (Base) perfor-
mances. The term Base was used to name the perfor-
mance computed on the data set Dr as is after rigid
alignment and resampling, without any neural network
elaboration. The expected result is that the FTx-type
models are more consistent than noFT ones. To verify
this assumption, the PSNR and SSIM metrics were com-
puted again on each fold.

2.6.2 HU analysis and shading evaluation

As far as HU recovery is concerned, the difference in
terms of HU between the CBCT network output versus
the corresponding CT images was computed. In order to
increase the consistency of the comparison, mismatch-
ing air pockets were automatically removed according
to predefined HU thresholds1 (Figure 5). Additionally, an
analysis based on region of interest (ROI) was proposed
to evaluate the network improvement for different tis-
sues;8 × 8 × 8 cubes were segmented in spongy bones,
fat,muscle,and bladder (Figure 6).According to the rep-
resented tissue, the HU values contained in each cube
were averaged and compared between CT and CBCT.
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F IGURE 6 Example of cubic ROIs (8 × 8 × 8 mm) extracted
from a patient. Selected regions are bladder (blue), spongy bones
(green), muscle (red), and fat (yellow)

In addition, the contrast-to-noise ratio (CNR) was cal-
culated to evaluate the improvement in terms of con-
trast enhancement. In particular, the CNR was measured
for each imaging modality by comparing the CTV with
the bladder, muscle, and fat ROIs, respectively. Then, the
same ROIs were compared with the air region within
each scan. Particular attention was given to the rela-
tion between truncation severity due to variable patients
pelvic size and HU nonconformity.A detailed description
of the analysis can be found in the supporting informa-
tion (S4).

3 RESULTS

3.1 Neural network assessment

3.1.1 Hyperparameter tuning experiments

In order to find the best network architecture in terms of
PSNR and SSIM, some hyperparameter tuning experi-
ments were conducted (cf.Table 1).In terms of PSNR,all
the four-block architecture provided results significantly
better than the five-block ones (p < 0.0001). Consider-
ing four as the number of processing blocks, no sta-
tistical difference among 16 and 32 feature maps was
found (p = 0.46), as well as between 16 and 64 feature
maps (p = 0.74). Therefore, 16 was chosen as it sig-
nificantly reduces the number of trainable parameters,
being the best trade-off between performance and net-
work complexity. The SSIM analysis further confirmed
this choice.The selected U-Net configuration was 16-32-
64-128-128-64-32-16, corresponding to 919 177 train-
able parameters.

TABLE 1 PSNR and SSIM performances (median and
interquartile range) of the hyperparameter tuning experiments,
depending on the number of processing blocks and the number of
convolutional filters in the first block. Each value is computed
evaluating the data set Dr test set. The final choice for these
parameters for both noFT and FTx models is in bold

Blocks #
First block
filter # PSNR (dB) SSIM (A.U.)

4 16 31.943 (3.261) 0.926 (0.030)

4 32 32.156 (2.913) 0.918 (0.025)

4 64 32.314 (2.661) 0.925 (0.028)

5 16 31.704 (2.674) 0.928 (0.029)

5 32 31.608 (2.503) 0.918 (0.023)

5 64 30.367 (2.274) 0.926 (0.027)

TABLE 2 PSNR, SSIM, and MAE performances (median and
interquartile range) of the transfer learning experiments, depending
on the number of processing blocks to be retrained. Each value is
computed evaluating the data set Dr test set. The final choice for the
FTx model (FT2) is in bold

FT blocks # PSNR (dB) SSIM (A.U.) MAE (HU)

0 (Synth) 26.707 (1.440) 0.907 (0.018) 128.184 (28.011)

1 29.007 (2.151) 0.918 (0.024) 84.989 (23.187)

2 30.799 (2.167) 0.921 (0.023) 63.067 (15.179)

3 29.904 (2.268) 0.917 (0.025) 73.187 (19.726)

3.1.2 Transfer learning experiments

Considering the transfer learning experiments results
(cfr.Table 2), retraining the two deepest blocks proved to
be the best value for increasing network performance.
This was confirmed by the statistical analysis of the
FT1, FT2, and FT3, considering PSNR, SSIM, and MAE.
For PSNR,FT2 architecture provided results significantly
better than the other two FT1 (p < 0.0001) and FT3 (p<
0.0001) architectures. Considering SSIM, no statistical
difference among FT1 and FT3 (p = 0.78) was found,
while the FT2 results to be significantly different from
FT1 (p= 0.007) and FT3 (p= 0.0007). In addition, the
three distributions were compared with the distribution
obtained from the Synth model. In general, each FTx
model had significantly better performance compared to
the Synth model, both in terms of PSNR (p < 0.0001),
SSIM (p < 0.0001), and MAE (p < 0.0001). As such,
Synth was not considered for further evaluations.

3.2 Cross-validation analysis

3.2.1 Performance metrics

The LOO-CV experiments confirmed that the proposed
neural network processing improved the quantification
metrics with respect to baseline (Figure 7). On most of
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F IGURE 7 Quantitative analysis of PSNR and SSIM values between every CBCT (Base, noFT, FT2), computed for each fold of the
leave-one-out cross-validation

F IGURE 8 Mean absolute error history for noFT (left) and FT2
(right) models during training. Bold lines represent the mean values
computed between each trained network in LOO-CV experiments,
while the shaded region represents their standard deviation

the patients, the FT2 model performed better than the
Base and noFT in terms of PSNR and SSIM. In partic-
ular, the median PSNR for Base, noFT, and FT2 were on
average, over the 18-fold, 26.77, 31.83, and 32.32 dB,
respectively. Considering PSNR, FT2 model results to
be significantly better than Base (p< 0.0001) and noFT
(p < 0.0001). The median SSIM for Base, noFT and FT2
were on average 0.902, 0.915, and 0.916. Even in this
case, FT2 model results to be significantly better than
Base (p < 0.0001) and noFT (p = 0.0005). Furthermore,
by aggregating the training histories of the 18 LOO-CV
experiments for both models and comparing the MAE for
the training and validation sets, the FT2 model proved to
be faster in terms of convergence speed (cf. Figure 8).
This is due to the FT2 network weights initialization pro-
vided by the pretraining with synthetic data.

3.2.2 HU analysis and shading evaluation

The ROI evaluation produced, on average, HU improve-
ments of 177.59 for bladder, 192.2 for bone, 215.87
for muscle and 123.43 for fat using the noFT method.
By contrast, the FT2 method yielded an average
HU improvement of 191.95 for bladder, 257.04 for
bone, 206.88 for muscle and 169.73 for fat. For the
whole images (Figure 9), the FT2 method obtained
a median improvement of 111.96, while the noFT
yielded 100.52. For each ROI, the comparison between
noFT and FT2 HU difference distribution reported a
significative difference (p < 0.0001). All values were
computed across the 18-fold and are summarized in
Table 3.

The cupping artifact, due to scattering, clearly per-
ceived as a darker central region in CBCTBase, was
reduced in both CBCTnoFT and CBCTFT2

(Figure 10).
Additional examples with a better resolution can be
seen in the supporting information (S3), also showing
ring artifacts in all CBCT scans caused by suboptimal
flat-panel calibration, to a different degree of severity.
The analysis of one intensity profile (the central row
depicted with a line in Figure 10) confirmed that the net-
work processing flattened the slight concavity present in
CBCTBase. The intensity profile of CBCTnoFT appeared
closer to the CT one than the corresponding profile
obtained from CBCTFT2

. At the same time, CBCTnoFT
profiles appear smoother than the CT one and its axial
view is blurred. This evidence supports the quantitative
results for HU in ROIs and overall image, with FT2
performing better than noFT. It follows that the FT2
and the noFT method both shift the range of values
of CBCT closer to that of CT. The FT2 model favored
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F IGURE 9 Quantitative analysis of the absolute HU difference between every CBCT (Base, noFT, FT2) and the corresponding ground-truth
CT, computed for each fold of the leave-one-out cross-validation. Both models reduce the difference in the HU ranges, with better performance
for the FT2 model.

TABLE 3 Absolute HU difference between every CBCT (Base, noFT, FT2) and the corresponding ground-truth CT, for each ROI (mean and
standard deviation) and overall volumes (median and interquartile range). Values are obtained averaging between each fold of the
leave-one-out cross-validation

Model Bladder Bone Muscle Fat All

Base 213.06 ±47.19 340.79±66.06 249.36±20.53 199.27 ±39.46 161.37 (162.54)

noFT 35.47±25.27 148.59±74.25 33.49±28.78 75.84 ±28.02 60.85 (80.70)

FT2 23.11±20.87 83.75±55.41 42.48 ±28.83 29.54±19.40 49.41 (66.70)

anatomical consistency, correcting cupping, and rescal-
ing the intensity values. Conversely, the noFT model
aggressively fits the CBCT to the reference CT, intro-
ducing blurring.

The results of the tissue contrast analyses are sum-
marized in Table 4. In all cases, the FT2 model obtained
results closest to the CT ones, considered the ground-
truth. These results confirmed the superior ability of this

F IGURE 10 Comparison between a single CBCT Base and corresponding CT axial slice with the CBCT elaborated by noFT and FT2
models. The rightmost part of the figure compares the intensity profiles of the central line of the images, highlighted by the central line in the
four representations. Images are displayed with Window = 400, Level = 20
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TABLE 4 CNR values for every imaging modalities (CT, CBCTBase, CBCTnoFT , CBCTFT2
). Values are computed between clinical target

volume against every soft tissue ROI (bladder, muscle, fat). Every ROI is also evaluated against air values present in the scan. Each value is
represented as median (IQR)

ROI
Foreground Background CT CBCTBase CBCTnoFT CBCTFT2

CTV Bladder 0.86 (1.00) −5.24 (2.28) −1.73 (2.35) −1.19 (3.31)

Muscle −1.75 (1.76) −5.12 (2.01) −5.68 (6.27) −1.66 (2.31)

Fat 4.68 (1.13) 1.11 (2.31) 2.19 (3.19) 2.49 (2.08)

Bladder Air 42.06 (15.23) 7.79 (2.93) 8.66 (3.25) 19.47 (14.05)

Muscle 43.59 (15.76) 7.69 (2.51) 8.86 (2.63) 19.28 (13.49)

Fat 37.57 (13.29) 6.82 (3.29) 8.23 (3.02) 18.69 (12.80)

CTV 42.48 (18.26) 7.08 (2.90) 8.70 (2.96) 19.42 (13.45)

F IGURE 11 Pelvis width versus MAE for every type of CBCT
(Base, noFT, FT2). MAE is calculated with respect to the CT
ground-truth

model in improving soft tissue visibility with respect to
CBCTBase or CBCTnoFT . In particular, the comparison
between CTV and soft tissues reported an improve-
ment of about 24% for the noFT model and 67% for the
FT2 one, with respect to the CBCTBase CNR values of
CBCTBase.Concerning the comparison between soft tis-
sues and air, the average gain was about 4% and 35%
for noFT and FT2, respectively.

Results regarding the relationship between MAE and
pelvis width for considered cases are reported in Fig-
ure 11.

4 DISCUSSION

In this work, we propose a U-Net–based approach to
address limitations intrinsic to the narrow-FOV CNAO
CBCT, and to provide CBCT HU recovery, subsequently.
In particular, the framework proposed focused on shad-
ing correction and soft tissue contrast enhancement.
First, the network improved the image intensity distri-
bution, quantified by PSNR and SSIM, in the range of

about 5 dB (noFT), 6 dB (FT2), and 2% (both), respec-
tively.These highlight global contrast and signal-to-noise
ratio improvement. The relative improvement of CNR
for the CTV versus various soft tissues was on aver-
age 24% (noFT) and 67% (FT2). Coherently, the aver-
age CNR improvement for soft tissue with respect to the
air in the CBCT scans was 4% (noFT) and 35% (FT2).
Second, the network was able to provide HU grayscale
values comparable to the ground-truth CT, reducing
the nonlinear cupping artifact and scaling the intensity
values. In addition, MAE results for noFT and espe-
cially for FT2 models improved both in median (62.29%
and 69.38%, respectively) and narrower IQR (50.35%
and 58.96%, respectively) terms. The latter indicates a
compensation and generalization capability of the two
approaches with respect to different pelvis widths and,
therefore, truncation,as shown by Figure 11.Finally,both
networks performed the required task. Performances
were similar, but the HU comparison for ROI and the
overall image showed a performance edge of the FT2
model. Consequently, preconditioning the network with
synthetic data proved to be an effective method for
the problems addressed in this work. The two-step
training allowed to split the learning of the anatom-
ical features from the learning of CBCT/CT shading
differences.

Existing literature using U-Net architecture aims at
correcting CBCT with sufficient FOV17–19,25,26 and gen-
erally does not encompass truncation artifacts, except
for one work exploiting MC simulations on synthetic
data.11 Our work evaluates a similar deep learning archi-
tecture tailored to CNAO needs. The aforementioned
works validate their approach by means of dosimetric
accuracy.The proposed methods are tested on the over-
all geometrical improvement in the image HU. In order
to further evaluate possible clinical applications, a dosi-
metric study will be eventually paired to the HU anal-
ysis hereby presented. However, achieving dose calcu-
lation on narrow-FOV CBCT scans is currently out of
the scope of this work. Comparing the HU difference
between CT and CBCT with existing methods lever-
aging CT information, while most of these works do
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not address truncated data, we can assess the pro-
posed network performance.For instance,using an MC-
based methodology, Thing et al. reported HU correc-
tion of about 31% for five lung cancer patient images.7

Another method based on histogram matching on ten
prostate cancer patient images provided HU correction
of about 20%.47 Phantom studies have reached up to
a 95% overall accuracy in the HU recovery on the Cat-
phan 60048 alone,but no data were provided for patients.
In comparison, our FT2 and noFT models respectively
obtained around 69.38% and 62.29% average improve-
ment on the whole image in the pelvic region. Address-
ing the HU correction on different tissues, the improve-
ment for FT2 (noFT) can be described as 75% (56%) in
the spongy bone (femoral head), 89% (83%) in bladder,
85% (62%) for fat, and 83% (86%) for muscle. In par-
ticular, Kida et al.17 investigated a U-Net approach simi-
lar to noFT with wide untruncated FOV, where authors
reported improvements of 95% and 94% on the last
two tissues. In another work, the authors obtained an
improvement of about 90% in terms of HU accuracy.
This value was computed with respect to correspond-
ing MC-corrected CBCT scans used as the ground-truth
reference.25 All data in this study had wide FOV,avoiding
truncation. Finally, another work using MC simulations
to train a CNN on synthetic CBCT scans has obtained
great adherence with the MC ground-truth with as low
as 1.4% and 1.8% discrepancies independently of simu-
lated truncation.11 This work seems particularly promis-
ing on synthetic data, but to compare it properly to our
work we would need to reimplement the same architec-
ture, training, and accurate MC simulation for our data
set. This is out of the scope for the current article but
could be the basis of another work in the future. Specif-
ically, we believe that transfer learning could provide
benefits to literature CNN methods as well. Concerning
the contrast-to-noise improvement, one work proposed
a solution based on a deep convolutional autoencoder
that gained an improvement of about 42% in terms of
CNR, computed evaluating muscle and fat regions from
retrospective CBCT scans.27 Overall, on real data, the
obtained results in the present work are in line with
existing methods not accounting for truncation. More-
over, the exclusive use of data set Dr has some lim-
itations. First, this data set has a relatively small size
for a deep learning approach, with the risk of overfitting
on this set of patients without generalization capability.
Second, although the acquisition of CT/CBCT pairs is
close in time, the pelvic district involves differences that
are not always negligible between the two scans, like air
bubbles in the bowel. These problems lead to a subop-
timal selection of CT/CBCT pairs and can have a non-
negligible impact on the model performance even when
residual deformation itself is as negligible as in our data
set. In order to overcome these issues, we performed a
two-step training on FT2 following the transfer learning
approach, which increments the overall data set dimen-

sionality while also integrating exact anatomical infor-
mation:

1. Using synthetically generated CBCT as input,
generated from a publicly available CT data set,
the network was trained based on perfect anatomical
correspondences with ground-truth CT. This step
provided a suitable initialization of the image-to-
image translation process and allowed mainly to
learn the image filters and geometric features, which
identify the anatomical district of interest;

2. Using the real CBCT images provided by CNAO,
which were only rigidly registered to the correspond-
ing CT scans, the network was partially retrained
according to the transfer learning paradigm. In this
phase, the training focused on the weights of the
inner layers, potentially devoted to learning more
complex characteristics related to the intrinsic qual-
ity of the image acquired with the specific technology
available at the CNAO.

The action of the models (noFT and FT2) can be quali-
tatively noted by observing the effects they have on the
output images (cf. Figure 10). The noFT model aggres-
sively fits the CBCT to the reference CT. In particular,
it applies a transformation similar to an averaging fil-
ter. Instead, the FT2 model outputs sharper images. The
comparison of HU differences on individual ROIs shows
coherent results. FT2 model, with respect to the noFT
model, achieves a greater improvement of 6% on the
bladder, 19% on bone, 23% on fat, and in general 7%
on the whole image, while underperforming only by 3%
on muscle. Synthesizing, transfer learning proved to be
effective for our application. However, it is important to
identify the appropriate number of layers to retrain. If
this number is too high (or too low), the network per-
formance will be negatively affected. Tuning this value,
we assess the correct balance between generic features
like shapes, better learned from synthetic data, and arti-
facts better learned by real-world clinical data. In this
study, we found that the optimal number of layers for
retraining is two. Due to the slice-based training, arti-
facts are suppressed globally and without disentangling
them.

Though the results above reported were promising on
clinical data, they are still preliminary. The scope of this
work is, by all means, a feasibility study. We provided a
shading correction method for a limited FOV CBCT scan
data set containing few patients. In order to extend the
aim of this work, the data set must be enlarged and a
dosimetric analysis has to be associated. Another lim-
ited aspect of our work is the network ability to gener-
alize. Our data sets were tied to the pelvis, therefore we
cannot assess the impact on other large districts (e.g.,
lungs). In particular, variation in the patient width is cor-
related to resulting HU inaccuracies in the input data.
However, this impact is attenuated by our network, as
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briefly described by supporting information (S4). Admit-
tedly, CBCT scans fed to the FT2 network are cor-
rected for shades but not for ring artifacts. These panel-
calibration–induced ripples are already present in the
original CBCT volumes, somehow hidden by the more
prominent cupping artifact. We believe the noFT model
partially compensates for it through its low pass filter-
ing. Since those artifacts are caused by suboptimal flat-
panel calibration, this should not penalize the FT2 model
with respect to the noFT approach. In particular, spe-
cializing the FT2 model to correct this hardware issue
may hinder the generalization of the method. Or rather,
we suggest that this condition would be easily solved by
properly calibrating the panel rather than retrospectively
correcting for the subsequent artifacts. The main unad-
dressed limitation resides in the missing information due
to the narrow FOV of these CBCT scans. The proposed
methodology does not try to provide this information
alone,but further studies must address this issue.Finally,
while results were promising on CNAO data set Dr , they
are based on the assumption that the residual deforma-
tion between input and label is negligible (as discussed
in the supporting information [S2]). We hypothesize that
the transfer learning approach would be more robust
to residual deformation, but this aspect needs further
investigation.

The system implemented by Fattori et al.2 at CNAO
facility was originally intended for accurate X-ray setup
verification. The CBCT provided by the system is cur-
rently used for qualitative evaluations and dictates the
request for a so-called reevaluation CT.9,10 Improving
the images acquired through this instrument has two
consecutive advantages.First,a CBCT without shadows
and with improved visibility reduces the risk for setup
errors by clinicians. Therefore, CBCT scans could be
used in lieu of the traditional 2D to 3D X-ray setup verifi-
cation. Second, better contrast between CTV and other
soft tissues is indicative of more direct visual discrimina-
tion. The CNR improvement of those tissues versus air,
paired with enhanced HU adherence to CT,supports the
use of CBCT scans for air cavities identification in the
pelvis. Consequently, the offline clinical procedure will
be more efficient and less prone to overestimation and
underestimation of air abundance in the bowels. Out-
side CNAO clinical practice, the use of a public data set
for FT2 improves the repeatability of our study. More-
over, the minimum required numerosity for the clinical
data set used for training is arguably lower than simi-
lar deep learning approaches we found in the literature.
Another element that may appeal to the potential clinical
application is the lack of additional equipment require-
ments,as this would not change the already established
clinical routine or require additional costs. Moreover, the
proposed method has negligible execution runtime com-
pared to image reconstruction, avoiding a bottleneck for
clinical practice. By reducing artifacts hindering the HU
calibration curve, we obtained a coherent density rep-

resentation. A volumetric image with these character-
istics could establish a base for online adaptive radia-
tion therapy techniques at CNAO. Additionally, we argue
that a VirtualCT-oriented DIR on such corrected data
would converge more easily and faster. In conclusion,
we foresee studies that leverage this method to study
both the corrected CBCT and aforementioned VirtualCT
approach with FOV extension49 for a dose evaluation on
daily anatomy.

5 CONCLUSION

Correcting cupping and shading in pelvis CBCT using
a U-Net proved flexible enough to adapt to a data set
flawed by truncation artifacts. Moreover, our push to
reduce prior knowledge in the network training was suc-
cessful thanks to transfer learning. We demonstrated
that recovering CT-compatible data from narrow-FOV
CBCT scans with shading artifacts is possible and
can be achieved as a quick postprocessing step. Fur-
ther investigation on clinical usage for the corrected
images will ensue with expert evaluation on a larger
patient cohort.

ACKNOWLEDGMENT
This work was supported by CNAO Foundation (Pavia,
Italy) in the project framework titled “Image Guidance-
Lateral Room” (reference number BAA9CONV01,
12/03/2019). Informed consent was obtained from all
individual participants included in the study. The study
was conducted according to the guidelines of the Dec-
laration of Helsinki, and approved by the Institutional
Ethics Committee of Policlinico San Matteo (Pavia,
protocol number 20210037155, 14/04/2021).

CONFL ICT OF INTEREST
The authors have no relevant conflicts of interest to dis-
close.

DATA AVAILABIL ITY STATEMENT
The data that support the findings of this study are avail-
able on request from the corresponding author.The data
are not publicly available due to privacy or ethical restric-
tions.

ORCI D
Matteo Rossi
https://orcid.org/0000-0003-2519-0720

REFERENCES
1. Niu T, Al-Basheer A, Zhu L. Quantitative cone-beam CT imag-

ing in radiation therapy using planning CT as a prior: first patient
studies. Med phys. 2012;39:1991–2000.

2. Fattori G, Riboldi M, Pella A, et al.. Image guided particle therapy
in CNAO room 2: implementation and clinical validation. Physica
Medica. 2015;31:9–15.

https://orcid.org/0000-0003-2519-0720
https://orcid.org/0000-0003-2519-0720


UNET-BASED CBCT SHADING CORRECTION 7125

3. Veiga C, Janssens G, Teng CL, et al.. First clinical investigation of
cone beam computed tomography and deformable registration
for adaptive proton therapy for lung cancer. Int J Radiat Oncol
Biol Phys. 2016;95:549–559.

4. Hua C,Yao W,Kidani T,et al..A robotic C-arm cone beam CT sys-
tem for image-guided proton therapy: design and performance.
Brit J Radiol. 2017;90:20170266.

5. Landry G, Hua CH. Current state and future applications of
radiological image guidance for particle therapy. Med Phys.
2018;45:e1086–e1095.

6. Kurz C, Kamp F, Park YK, et al. Investigating deformable image
registration and scatter correction for CBCT-based dose calcula-
tion in adaptive IMPT. Med Phys. 2016;43:5635–5646.

7. Thing RS, Bernchou U, Mainegra-Hing E, Hansen O, Brink C.
Hounsfield unit recovery in clinical cone beam CT images of the
thorax acquired for image guided radiation therapy. Phys Med
Biol. 2016;61:5781.

8. Joseph PM, Spital RD. The effects of scatter in x-ray computed
tomography. Med Phys. 1982;9:464–472.

9. Lim-Reinders S, Keller BM, Al-Ward S, Sahgal A, Kim A.
Online adaptive radiation therapy. Int J Radiat Oncol Biol Phys.
2017;99:994–1003.

10. Albertini F, Matter M, Nenoff L, Zhang Y, Lomax A. Online daily
adaptive proton therapy. Brit J Radiol. 2020;93:20190594.

11. Maier J, Eulig E, Vöth T, et al. Real-time scatter estimation
for medical CT using the deep scatter estimation: method and
robustness analysis with respect to different anatomies,dose lev-
els, tube voltages, and data truncation. Med phys. 2019;46:238–
249.

12. Waltrich N, Sawall S, Maier J, et al. Effect of detruncation on the
accuracy of Monte Carlo-based scatter estimation in truncated
CBCT. Med Phys. 2018;45:3574–3590.

13. Peroni M, Ciardo D, Spadea MF, et al. Automatic segmentation
and online virtualCT in Head-and-Neck adaptive radiation ther-
apy. Int J Radiat Oncol* Biol* Phys. 2012;84:e427–e433.

14. Veiga C,Alshaikhi J,Amos R,et al.Cone-beam computed tomog-
raphy and deformable registration-based “dose of the day” cal-
culations for adaptive proton therapy. Int J Part Ther. 2015;2:404–
414.

15. Landry G, Nijhuis R, Dedes G, et al. Investigating CT to CBCT
image registration for head and neck proton therapy as a tool for
daily dose recalculation. Med Phys. 2015;42:1354–1366.

16. Kurz C, Dedes G, Resch A, et al. Comparing cone-beam CT
intensity correction methods for dose recalculation in adaptive
intensity-modulated photon and proton therapy for head and neck
cancer. Acta Oncologica. 2015;54:1651–1657.

17. Kida, S, Nakamoto, T, Nakano, M, et al. Cone beam computed
tomography image quality improvement using a deep convo-
lutional neural network. Cureus. (2018). https://doi.org/10.7759/
cureus.2548

18. Hansen DC, Landry G, Kamp F, et al. ScatterNet: a convolutional
neural network for cone-beam CT intensity correction.Med Phys.
2018;45:4916–4926.

19. Landry G, Hansen D, Kamp F, et al. Comparing Unet train-
ing with three different datasets to correct CBCT images for
prostate radiotherapy dose calculations. Phys Med Biol. 2019;64:
035011.

20. Paganelli C, Meschini G, Molinelli S, Riboldi M, Baroni G. Patient-
specific validation of deformable image registration in radiation
therapy: overview and caveats. Med Phys. 2018;45:e908–e922.

21. Rührnschopf EP, Klingenbeck K. A general framework and
review of scatter correction methods in x-ray cone-beam com-
puterized tomography. Part 1: scatter compensation approaches.
Med Phys. 2011;38:4296–4311.

22. Rührnschopf EP, Klingenbeck K. A general framework and
review of scatter correction methods in cone beam CT. Part 2:
scatter estimation approaches. Med Phys. 2011;38:5186–5199.

23. Mainegra-Hing E, Kawrakow I. Variance reduction techniques for
fast Monte Carlo CBCT scatter correction calculations.Phys Med
Biol. 2010;55:4495–4507.

24. Zöllner C, Rit S, Kurz C, et al. Decomposing a prior-CT-
based cone-beam CT projection correction algorithm into scat-
ter and beam hardening components. Phys Imag Radiat Oncol.
2017;3:49–52.

25. Jiang Y, Yang C, Yang P, et al. Scatter correction of cone-beam
CT using a deep residual convolution neural network (DRCNN).
Phys Med Biol. 2019;64:145003.

26. Maier, J, Sawall, S, Knaup, M, Kachelrieß M. Deep scatter estima-
tion (DSE): accurate real-time scatter estimation for X-Ray CT
using a deep convolutional neural network. J Nondestruct Eval.
2018;37(3):57

27. Vander HB, Uray M, Fonseca GP, et al. A Monte Carlo based
scatter removal method for non-isocentric cone-beam CT acqui-
sitions using a deep convolutional autoencoder. Phys Med Biol.
2020;65:145002.

28. Liang X, Chen L, Nguyen D, t al. Generating synthesized com-
puted tomography (CT) from cone-beam computed tomography
(CBCT) using CycleGAN for adaptive radiation therapy.Phys Med
Biol. 2019;64:125002.

29. Maspero M, Houweling AC, Savenije MHF, et al. A single neural
network for cone-beam computed tomography-based radiother-
apy of head-and-neck, lung and breast cancer. Phys Imag Radiat
Oncol. 2020;14:24–31.

30. Yorke,AA,McDonald,GC,Solis,D & Guerrero,T Pelvic Reference
Data. The Cancer Imaging Archive. 2019 https://doi.org/10.7937/
TCIA.2019.woskq5oo

31. Mahmood F, Chen R, Sudarsky S, Yu D, Durr NJ. Deep learning
with cinematic rendering: fine-tuning deep neural networks using
photorealistic medical images. Phys Med Biol. 2018;63:185012.

32. Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J,
Greenspan H. GAN-based synthetic medical image augmenta-
tion for increased CNN performance in liver lesion classification.
Neurocomputing. 2018;321:321–331.

33. Desplanques M, Tagaste B, Fontana G, et al. A comparative
study between the imaging system and the optical tracking
system in proton therapy at CNAO. J Radiat Res. 2013;54:
i129–i135.

34. Clackdoyle R, Defrise M. Tomographic reconstruction in the 21st
century. IEEE Signal Process Mag. 2010;27:60–80.

35. Ohnesorge B, Flohr T, Schwarz K, Heiken JP, Bae KT. Effi-
cient correction for CT image artifacts caused by objects
extending outside the scan field of view. Med Phys. 2000;27:
39–46.

36. Rit S, Oliva MV, Brousmiche S, Labarbe R, Sarrut D, Sharp GC.
The Reconstruction Toolkit (RTK), an open-source cone-beam
CT reconstruction toolkit based on the Insight Toolkit (ITK). J
Phys: Conf Ser. 2014;489:012079.

37. Park YK, Sharp GC, Phillips J, Winey BA. Proton dose calculation
on scatter-corrected CBCT image: feasibility study for adaptive
proton therapy. Med Phys. 2015;42:4449–4459.

38. McCormick,M,Liu,X,Jomier,J,Marion,C, Ibanez,L. ITK:enabling
reproducible research and open science. Front Neuroinformat.
2014;8. https://doi.org/10.3389/fninf.2014.00013

39. Ronneberger, O, Fischer, P, Brox, T. U-net: convolutional net-
works for biomedical image segmentation. In Int Conf Med
Image Comput Comput-Assist Interv. pp. 234–241, Springer,
2015.

40. Shorten, C, Khoshgoftaar, TM. A survey on image data augmen-
tation for deep learning. J Big Data. 2019;6:60. https://doi.org/10.
1186/s40537-019-0197-0

41. Gherardini M, Mazomenos E, Menciassi A, Stoyanov D. Catheter
segmentation in X-ray fluoroscopy using synthetic data and trans-
fer learning with light U-nets.Comput Methods Programs Biomed.
2020;192:105420.

https://doi.org/10.7759/cureus.2548
https://doi.org/10.7759/cureus.2548
https://doi.org/10.7937/TCIA.2019.woskq5oo
https://doi.org/10.7937/TCIA.2019.woskq5oo
https://doi.org/10.3389/fninf.2014.00013
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0


7126 UNET-BASED CBCT SHADING CORRECTION

42. Kingma, DP, Ba, J. Adam: a method for stochastic optimization.
arXiv preprint 2014;arXiv:1412.6980.

43. Hore, A, Ziou, D. Image quality metrics: PSNR vs. SSIM. In 2010
20th Int Conf Pattern Recognit. IEEE. 2010.

44. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality
assessment: from error visibility to structural similarity. IEEE Trans
Image Process. 2004;13:600–612.

45. Chollet, F, et al. Keras. https://keras.io. 2015.
46. Abadi, M, et al. TensorFlow: large-scale machine learning on

heterogeneous systems. Software available from tensorflow.org.
2015.

47. Kidar HS,Azizi H.Enhancement of Hounsfield Unit distribution in
cone-beam CT images for adaptive radiation therapy: evaluation
of a hybrid correction approach. Physica Medica. 2020;69:269–
274.

48. Niu T, Sun M, Star-Lack J, Gao H, Fan Q, Zhu L. Shading correc-
tion for on-board cone-beam CT in radiation therapy using plan-
ning MDCT images. Med Phys. 2010;37:5395–5406.

49. Ziegler M, Nakamura M, Hirashima H, et al. Accumulation of the
delivered treatment dose in volumetric modulated arc therapy
with breath-hold for pancreatic cancer patients based on daily

cone beam computed tomography images with limited field-of -
view. Med Phys. 2019;46:2969–2977.

SUPPORTI NG I NFORMATI ON
Additional supporting information may be found in the
online version of the article at the publisher’s website.

How to cite this article: Rossi M, Belotti G,
Paganelli C, Pella A, Barcellini A, Cerveri P,
Baroni G. Image-based shading correction for
narrow-FOV truncated pelvic CBCT with deep
convolutional neural networks and transfer
learning. Med. Phys. 2021;48:7112–7126.
https://doi.org/10.1002/mp.15282

https://keras.io
https://doi.org/10.1002/mp.15282

	Image-based shading correction for narrow-FOV truncated pelvic CBCT with deep convolutional neural networks and transfer learning
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Imaging instrumentation
	2.2 | Data sets
	2.2.1 | Synthetic data generation

	2.3 | Preprocessing
	2.4 | Deep convolutional neural network model
	2.5 | Training of the models
	2.5.1 | Loss function and performance metrics
	2.5.2 | Hyperparameter tuning experiments
	2.5.3 | Transfer learning experiments
	2.5.4 | Network implementation

	2.6 | Cross-validation analysis
	2.6.1 | Performance metrics
	2.6.2 | HU analysis and shading evaluation


	3 | RESULTS
	3.1 | Neural network assessment
	3.1.1 | Hyperparameter tuning experiments
	3.1.2 | Transfer learning experiments

	3.2 | Cross-validation analysis
	3.2.1 | Performance metrics
	3.2.2 | HU analysis and shading evaluation


	4 | DISCUSSION
	5 | CONCLUSION
	ACKNOWLEDGMENT
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


