
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
The XBabelPhish MAGE-ML and XML Translator
Don Maier*1, Farrell Wymore1, Gavin Sherlock2 and Catherine A Ball1

Address: 1Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA and 2Department of Genetics,
Stanford University School of Medicine, Stanford, CA 94305-5120, USA

Email: Don Maier* - dMaier@genome.stanford.edu; Farrell Wymore - wymore@genome.stanford.edu;
Gavin Sherlock - sherlock@genome.stanford.edu; Catherine A Ball - ball@genome.stanford.edu

* Corresponding author

Abstract
Background: MAGE-ML has been promoted as a standard format for describing microarray
experiments and the data they produce. Two characteristics of the MAGE-ML format compromise
its use as a universal standard: First, MAGE-ML files are exceptionally large – too large to be easily
read by most people, and often too large to be read by most software programs. Second, the
MAGE-ML standard permits many ways of representing the same information. As a result, different
producers of MAGE-ML create different documents describing the same experiment and its data.
Recognizing all the variants is an unwieldy software engineering task, resulting in software packages
that can read and process MAGE-ML from some, but not all producers. This Tower of MAGE-ML
Babel bars the unencumbered exchange of microarray experiment descriptions couched in MAGE-
ML.

Results: We have developed XBabelPhish – an XQuery-based technology for translating one
MAGE-ML variant into another. XBabelPhish's use is not restricted to translating MAGE-ML
documents. It can transform XML files independent of their DTD, XML schema, or semantic
content. Moreover, it is designed to work on very large (> 200 Mb.) files, which are common in the
world of MAGE-ML.

Conclusion: XBabelPhish provides a way to inter-translate MAGE-ML variants for improved
interchange of microarray experiment information. More generally, it can be used to transform
most XML files, including very large ones that exceed the capacity of most XML tools.

1 Background
Researchers using DNA microarrays in their studies are
widely encouraged, and sometimes compelled by journals
or funding agencies, to increase the usefulness of their
individual research efforts by making their experimental
information easily accessible to the community at large.
Conversely, many researchers would like to gain easy
access to microarray data from other experimenters' work.
The need to exchange and aggregate large-scale biomedi-

cal data motivates requirements for universal and easy-to-
use tools and file formats to do this. This, in turn, has
engendered efforts to describe microarray experiments in
a standard way.

The need for a standard format led to the development of
the Microarray Gene Expression Markup Language
(MAGE-ML) [1], a standardized Extensible Markup Lan-
guage (XML) format for describing microarray experi-

Published: 18 January 2008

BMC Bioinformatics 2008, 9:28 doi:10.1186/1471-2105-9-28

Received: 31 May 2007
Accepted: 18 January 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/28

© 2008 Maier et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/28
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18205924
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9:28 http://www.biomedcentral.com/1471-2105/9/28
ments and their result data. Unfortunately, some
characteristics of actual documents have limited MAGE-
ML's usefulness as a standard. Specifically:

 MAGE-ML documents can be so large that most native
XML viewing and transformation tools are unable to open
them. Also, even if MAGE-ML documents were typically of
a more modest size that allowed viewing and editing tools
to digest them, most working experimental biologists find
the XML format challenging to "parse" visually and are
unfamiliar with those XML tools that try to ameliorate this
problem with a reformatted display.

 The semantics of MAGE-ML are so complex that any
two MAGE-ML producers are likely to interpret a given
MAGE-ML document differently. Conversely, because
there are frequently different choices for representing the
same information, different producers are likely to pro-
duce different MAGE-ML representations of it. In our dis-
cussion, we use the term semantic variant to refer to one
particular semantic use or interpretation of MAGE-ML
that one particular producer generates.

The result of the large file sizes together with the need to
deal with many semantic variants is that microarray data
are represented in many, sometimes non-interchangeable
MAGE-ML documents, with no existing XML approach to
reconcile this "Tower of Babel".

Various approaches to transforming MAGE-ML semantic
variants are possible. For example, one might import
MAGE-ML into a relational (SQL) database, which can
handle the large size of the information set. Once in an
SQL database, SQL queries can be used to transform the
now-relationally represented MAGE-ML. Finally, the
results of this SQL transformation can be exported. Unfor-
tunately, this approach has at least two serious drawbacks.
First, the description of a microarray experiment in
MAGE-ML is complex, multilayered, hierarchical in some
parts, DAG (Directed Acyclic Graph)-like in others, and
generally interconnected in ways that do not admit a sim-
ple relational representation. As a result, it is practically
impossible to verify, or even have high confidence that an
algorithm for transforming XML into and out of relational
tables (including the transformation of XML data types
into and out of SQL data types) preserves the intended
semantics. Second, even if correct, the import and export
of XML into and out of an SQL database is costly and inef-
ficient.

We describe here a new approach to inter-translating dif-
ferent semantic variants of MAGE-ML that does not suffer
from these drawbacks.

XBabelPhish is a powerful, general-purpose, native XML
document translator. It accepts a MAGE-ML file (or
indeed any XML file) for translation and enters it into a
native XML database. It then executes XQuery [2] state-
ments supplied in a translation definition to transform
the loaded document into the desired XML format. If the
original file was MAGE-ML and the translation definition
defines a mapping from MAGE-ML to MAGE-ML, then the
result of the translation will be MAGE-ML. But depending
on the translation definition, the result could be an XML
file in any desired format. Finally, XBabelPhish unloads
the translated document from the XML database into the
native file system.

XBabelPhish runs on most major computing platforms,
including Windows, Linux, BSD UNIX, Mac OS/X and all
POSIX-compliant operating systems. It should run on the
64-bit versions of these platforms on which Berkeley DB
XML runs (see below), but this has not yet been tested.

XBabelPhish exceeds the capabilities of other native XML
translation mechanisms, such as XSLT [3] (Extensible
Stylesheet Language Transformations, a W3C standard
XML-based style sheet language), both in its expressive
power and in the size of documents that it can handle.
Compared to non-native approaches based on a relational
database, it is far simpler to install, manage, and run; and
it provides a far simpler and more reliable way to arrive at
correct translations. The reliability derives largely from the
complete absence of convoluted and impossible-to-verify
transformations of the XML into relational tables and
back again. Therefore, it is relatively easy to know what a
translation does. (See Figure 1 for an example translation
definition that is discussed in Section 3.2.)

The simplicity comes from XBabelPhish's ability to define
or change a translation with absolutely no programming
in the conventional sense. Defining a translation is essen-
tially a matter of writing one or two XQuery statements in
a small translation definition document. Changing a
translation is simply a matter of changing these XQuery
expressions. This also contributes to XBabelPhish's relia-
bility because XBabelPhish does not have to change when
the translation does.

The expressive power of XBabelPhish comes from its use
of XQuery to define translations. XQuery is a powerful
proper superset of XPath [4] (a simple, W3C standard lan-
guage for navigating the hierarchy of elements and
attributes in an XML document) to identify change loca-
tions. In contrast, XSLT uses only XPath. XQuery is a W3C
standard [5] language that so far lacks an update compo-
nent. However, XBabelPhish is able to modify XML docu-
ments by using Berkeley DB XML's [6] XQuery
implementation, which extends standard XQuery with a
Page 2 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:28 http://www.biomedcentral.com/1471-2105/9/28
rich set of modification operations. XBabelPhish's ability
to handle large documents comes from its use of Berkeley
DB XML as a native XML database. Berkeley DB XML is an
open-source product that may be used freely in freely
redistributable software such as XBabelPhish. XBabel-
Phish's platform requirements (above) are just those of
Berkeley DB XML.

2 Implementation
XBabelPhish is a standalone, pure Java 1.5 program that
uses the storage and XQuery services of Berkeley DB XML,
a native XML database (written in C++), which in turn, is
built on Berkeley DB (written in C).

XBabelPhish has a very simple modus operandus: It streams
a user-supplied source XML document into a Berkeley DB
XML "container". Once deposited in the XML database,
XBabelPhish transforms the source document according
to a user-supplied translation definition. Finally, it
streams the translated document out of its database con-

tainer and into a new XML document. This is the transla-
tion or required semantic variant of the original source
document. This simple arrangement is illustrated in Fig-
ure 2.

The translation definition is itself an XML document that
XBabelPhish streams into the XML database (see Figure 1
for an example presented in Section 3.2). It is typically
quite small, and conforms to a simple XML translation
schema defined by XBabelPhish. A translation definition
comprises a sequence of translation steps that XBabel-
Phish executes in a Berkeley DB XML context. Each trans-
lation step contains an XQuery statement whose result set
is a sequence of XML nodes in the source document. The
nodes in this sequence are the locations for possible
change. Each step also includes an operation verb that
specifies what kind of change to make at each identified
change location – for example, insert an element, add an
attribute, update an attribute's value, or delete the node.
Usually, a translation step also includes a second XQuery

trans_example.xmlFigure 1
trans_example.xml. A one-step translation that specifies 1) FeatureExtraction elements are to be changed (specified by the
changeLocationQuery), 2) the new content for the change to each selected FeatureExtraction (specified by the locationVal-
ueQuery) is the concatenation of the existing names for a Hybridization and a Compound related to that FeatureExtraction –
connected by the string literal " feature extraction ", 3) the change is to add an attribute to each of the FeatureExtraction ele-
ments (specified as the op addAttribute), and 4) the attribute name is "name" (specified as the newNodeName).

<Translation xmlns="http://smd.stanford.edu/">

 <!-- Add name attribute for each FeatureExtraction element in a MeasuredBioAssay. -->
 <!-- Compute the name by concatenating: -->
 <!-- 1) The name of the Hybridization for the PhysicalBioAssay to which the MeasuredBioAssay refers with a PhsysicalBioAssay_ref -->
 <!-- 2) The string " feature extraction ". -->
 <!-- 3) The name of the Compound for a LabeledExtract to which the above Hybridization refers with a LabeledExtract_ref -->

 <TranslationStep>

 <changeLocationQuery><![CDATA[doc("-target")//MeasuredBioAssay//FeatureExtraction]]></

changeLocationQuery>

 <locationValueQuery>

 <![CDATA[

 for $pba in doc("-value")/ancestor::BioAssay_assnlist/PhysicalBioAssay,

 $le in doc("-value")/ancestor::MAGE-ML//LabeledExtract,

 $c in doc("-value")/ancestor::MAGE-ML//Compound_assnlist/Compound

 where

 $pba/@identifier =

 doc("-value")/ancestor::MeasuredBioAssay//PhysicalBioAssay_ref/string(@identifier) and

 $le/string(@identifier) = $pba//Hybridization//LabeledExtract_ref/string(@identifier) and

 $c/string(@identifier) = $le//Labels_assnreflist/Compound_ref/string(@identifier)

 return concat($pba//Hybridization/string(@name), " feature extraction ", $c/string(@name))]]>

 </locationValueQuery>

 <XmlModify>

 <op>addAttribute</op>

 <newNodeName>name</newNodeName>

 </XmlModify>

 </TranslationStep>

</Translation>
Page 3 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:28 http://www.biomedcentral.com/1471-2105/9/28
statement that computes any new content (the element to
be inserted, the attribute to be added, the new value for an
update, etc.) for the change.

The second, content-computing XQuery in a translation
step may be a "context query" that executes in the context
of each change location defined by the first XQuery in the
step. In this way, the local XML "environment" around a
change location (for example, values of attributes in the
immediately containing element) may be used to define
the change at that location. Using this device, a single
translation step may compute differing, context-appropri-
ate new content for each of any number of change loca-
tions. This is a very compact and powerful idiom for
specifying how to transform an XML document.

A key attribute of an XBabelPhish translation definition is
that it is not tied to any particular XML document. It uses
symbolic document references that permit its use in trans-
lating a document without regard to name. This facilitates
the development of libraries of translations for any XML
document domain of interest. In the world of MAGE-ML,
work may be done to identify the important semantic var-
iants and develop translations between them. This
approach, which would result in n (n - 1) translations for

n semantic variants, may be refined into a 2n approach by
settling on one canonical variant Vc, and defining the two
translations Vc → Vn and Vn → Vc for each non-canonical
variant Vn.

XBabelPhish works well on very large documents up to
and beyond 250 Mb. For documents substantially less
than this size and requiring modest numbers of changes,
Berkeley DB XML's XQuery engine provides completely
adequate performance. For example, in one of our test
cases running on a Mac OS X G5 2 GHz processor, XBabel-
Phish takes around 8 minutes to execute a four-step trans-
lation on a 36.5 Mb. MAGE-ML document. For a very
large document, or one whose translation involves large
numbers of changes, the current version 2.3.10 of Berke-
ley DB XML has scaling problems that reduce XBabel-
Phish's translation performance unacceptably.
XBabelPhish solves this problem and still works quite
well by splitting such a source document into fragments,
translating each of the resulting fragments, then reassem-
bling the translated fragments into a single translation
result. XBabelPhish uses a streaming, StAX "pull" parser to
implement this function efficiently.

Splitting and merging increase translation time by a factor
that depends on the number of steps in the translation
and the number of fragments into which the source docu-
ment is split. For the four-step translation of the 36.5 Mb.
MAGE-ML document mentioned above, splitting the doc-
ument into 16 fragments increases the translation time
from 8 to 34 minutes. In another of our test cases running
on a Mac OS X G5 2 GHz processor, XBabelPhish takes
about 140 minutes to execute a two-step translation on a
232.9 Mb. MAGE-ML document by splitting the docu-
ment into 26 fragments. However, splitting and merging
is the only way to translate this larger document; direct
translation does not complete within 24 hours. We expect
Berkeley DB XML to overcome its scaling problems. This
will give XBabelPhish a big performance boost and virtu-
ally eliminate the need to split and merge documents.

The XBabelPhish distribution includes a javadoc that
completely documents how to install and run the transla-
tor. Installation is mostly a matter of installing Berkeley
DB XML. Documentation for constructing translation def-
initions is provided by comments in the translation
schema itself. An XBabelPhish command (-printschema)
prints this schema. The distribution also provides sample
translation definitions and source files drawn from the
world of MAGE-ML. These samples illustrate the power of
XBabelPhish and provide a guide-by-example for creating
translation definitions. For those less familiar with
XQuery, there are GUI tools for constructing and validat-
ing XQuery statements, such as the <oXygen/> XML editor
[7], whose academic license fee is nominal.

XBabelPhish performing a MAGE-ML document translationFigure 2
XBabelPhish performing a MAGE-ML document translation.
The inputs to XBabelPhish are an XML document (here, one
semantic variant of MAGE-ML) to translate, and a translation
definition – a typically brief XML description of a sequence of
translation steps. XBabelPhish loads both the source docu-
ment and the translation definition into a Berkeley DB XML
database where it performs the XQuery-based updates that
implement each of the steps in the translation definition.
When the translation is complete, XBabelPhish extracts the
translated document from the database to produce the out-
put (here, another semantic variant of MAGE-ML).
Page 4 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:28 http://www.biomedcentral.com/1471-2105/9/28
It is worth reiterating that absolutely nothing in XBabel-
Phish ties it to the syntax or semantics of MAGE-ML. It is
a completely general XML translator.

3 Results
3.1 Translation definitions
To have a good understanding of XBabelPhish's capabili-
ties, we need to look at translation definitions. As previ-
ously mentioned, an XBabelPhish translation definition
takes the form of an XML file that conforms to a transla-
tion.xsd built into XBabelPhish. Along with a file to be
translated, a translation definition is passed to XBabel-
Phish to tell it how to perform the translation.

The discussion in the following subsections may be better
understood by referring to Figure 1 for the example dis-
cussed in Section 3.2.

3.1.1 Symbolic names
Translation definitions contain XQuery statements that
refer to the document being translated. Typically, there
will be many documents with many different names that
must be translated in the same way from one semantic
variant to another. So that one translation definition can
be used for each of these documents, XBabelPhish recog-
nizes symbolic document names in XQuery statements:

 doc("-source"): the unaltered source document being
translated.

 doc("-target"): the (possibly) altered document after
zero, one, or more translation steps have been executed.

 doc("-value"): an XML value in the result set of a previ-
ously executed changeLocationQuery (see below) in the
same translation step. An XQuery that uses this construct
is a "context query".

3.1.2 Target locations
As mentioned in Section 2, each step in a translation con-
tains an XQuery statement whose result set is a sequence
of (typically element or attribute) nodes that define where
that step's changes are to be applied. These are the
"change locations" or "targets" for that translation step.
The XQuery that defines these targets is either a changeLo-
cationQuery, or a targetWithValueQuery, as explained in
Section 3.1.3.

3.1.3 Defining new content
Each operation primitive except delete defines new con-
tent to apply at each target location. There are three ways
to define this new content, listed below. In a translation
step that uses either of the first two ways of defining new

content, the step's first query is a changeLocationQuery
whose role is confined to defining change locations. The
third way of defining new content is with a targetWith-
ValueQuery that defines the change locations and the new
content in one result set:

1) newContentQuery: After a changeLocationQuery that
identifies the target locations, a newContentQuery is exe-
cuted exactly once in the step; it defines a single, unchang-
ing value that is applied at each target location.

2) locationValueQuery: Also used after a changeLoca-
tionQuery, a locationValueQuery is a "context query"
(see above). It is executed once for each change location to
define location-dependent new content.

3) targetWithValueQuery: This is the one and only
XQuery in the step. It defines both the change locations
and their new content. New content elements in the result
set alternate with change location nodes, with the new
content for a change location immediately following it. A
targetWithValueQuery typically uses a FLWOR expres-
sion [8]. (A FLWOR expression – For-Let-Where-Order by-
Return – is the most common and powerful XQuery con-
struct, similar to SQL's SELECT-FROM-WHERE). In XBa-
belPhish, it would have the form:

for $x, at $y in doc("-target")//... return (f($x), g($y))

where f() and g() represent some XQuery function. doc("-
target") is a symbolic reference to the document being
translated – in the transformed state produced by the exe-
cution of all preceding translation steps.

See Figure 1 for an example (discussed in Section 3.2) of
a translation definition used in a translation.

3.1.4 Translation operations
XBabelPhish provides a rich set of operation (op) primi-
tives for adding, deleting, updating, and renaming XML
nodes in a document. These primitives focus on the ele-
ment, attribute, and text nodes that are the ones most
commonly requiring transformation.

The primitive operations are presented in Table 1.

3.2 An example
XBabelPhish has been vetted with use cases in the MAGE-
ML document domain drawn from: the Stanford Microar-
ray Database [9], the Computational Biology and Infor-
matics Laboratory (CBIL) at the University of
Pennsylvania [10], and European Bioinformatics Institute
(EBI) Microarray Informatics Group, which runs the
ArrayExpress microarray database [11]. Using its split/
merge capability, it has translated fairly large (~250 Mb.)
Page 5 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:28 http://www.biomedcentral.com/1471-2105/9/28
documents in translations that apply tens of thousands of
changes. For other documents, it has demonstrated the
effective use of complex FLWOR expressions in XQuery.
Following is a modest example.

3.2.1 Translation definition
Figure 1 presents an illustrative one-step translation defi-
nition. The comment at the top of the definition explains
the transformation that this step implements. This trans-
lation definition should be examined together with the
source XML document, presented in Figure 3.

The single step in this translation defines:

1) The set of locations where changes may be made with
a changeLocationQuery – in this case, a simple XPath
expression that selects all FeatureExtraction elements
within MeasuredBioAssay elements.

2) The new content – the value of a new name attribute for
each of the FeatureExtraction elements selected by the
changeLocationQuery – with a locationValueQuery. In
this case, the locationValueQuery is a FLWOR expression
with three bound variables that constructs the value of a
new name attribute by concatenating the values of two

other, existing attributes (a Hybridization name and a Com-
pound name) connected by a string literal. XBabelPhish
executes this XQuery once in the context of each selected
FeatureExtraction element. As a result, the value of the new
name for each FeatureExtraction is "customized" for that
particular element.

3) The operation (op) that uses the new content – in this
case, addAttribute.

4) The name of the new attribute (newNodeName) – in
this case, "name".

3.2.2 Source and target
Figure 3 is a snipped, but valid XML (and valid MAGE-
ML) source document. Only areas relevant to the transla-
tion are shown.

Figure 4 is XBabelPhish's translation of the source docu-
ment (Figure 3) according to the translation definition
(Figure 1). A comparison of the translated document (Fig-
ure 4) with the original (Figure 3) shows that it differs by
its addition of a name attribute to each of two FeatureEx-
traction elements. As specified by the translation, each of
the new FeatureExtraction names is composed from the

Table 1: XBabelPhish primitive operations

Operation Definition Target Location New Content New Content Type Result

addElementFirst add an element as the first child of a targeted parent
element

<x> <a/> element to add <x><a/></x>

addElementLast add an element as the last child of a targeted parent <x> <d/> element to add <x> <a/> <d/> </x>
insertElementAfter insert an element after a targeted sibling element <a> element to add <x> <a/> <d/> </x>
insertElementBefore insert an element before a targeted sibling element <d> <c/> element to add <x>

<a/> <c/> <d/>
</x>

addAttribute add an attribute to a targeted element <x> name name of attribute to add <x>
name="xFamily"
<a/> <c/> <d/>
</x>

"xFamily" attribute value
addTextStart add text to the start of an element <x> "start" text to add <x>

start name="xFamily"
<a/> <c/> <d/>
</x>

addTextEnd add text to the end of an element <x> "end" text to add <x>
start name="xFamily"
<a/> <c/> <d/> end
</x>

delete delete a target node of any type <d> node to delete <x>
start name="xFamily"
<a/> <c/>
end
</x>

rename rename a target element or attribute node <a>/@name title new name <x>
start title="xFamily"
<a/> <c/> end
</x>

update update the value of a target element or attribute
node

<a>/@title "abcGroup" new (attribute) value <x>
start title="abcGroup"
<a/> <c/> end
</x>

The Operation in the first row is applied to the simple, abstract XML snippet:
<x> </x>
The Operation in each succeeding row applies to the Result of the row immediately preceding it.
Page 6 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:28 http://www.biomedcentral.com/1471-2105/9/28
names of elements specifically related to that particular
FeatureExtraction.

3.2.3 Run output
Figure 5 is the run output of XBabelPhish performing the
example translation. By default, XBabelPhish gives a mod-

mage-ml_example.xmlFigure 3
mage-ml_example.xml. Snippet of a MAGE-ML document before XBabelPhish executes the translation trans_example.xml in
Figure 1. This valid MAGE-ML contains two FeatureExtraction elements (under the MeasuredBioAssay elements) that have an
identifier attribute but no name attribute. The translation adds a name attribute to each of them.
Page 7 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:28 http://www.biomedcentral.com/1471-2105/9/28
est running commentary on its progress. The -verbose
option used in Figure 5, provides more details.

4 Discussion
4.1 Assumptions
Like any other technology solution, the XBabelPhish's
design was based on several assumptions concerning the
characteristics of a document domain's semantic variants,
and the possibility of knowing their differences:

Limited differences: There are a manageably small
number of differences between the rule sets used by the
constructors for distinct semantic variants – typically
fewer than 20.

Limited number of semantic variants: There are a man-
ageably small number of semantic variants. This is impor-
tant because this determines the number of translations
that a document domain needs – either n (n - 1) pairwise

new_example.xmlFigure 4
new_example.xml. The result of executing the translation defined by trans_example.xml (Figure 1) on mage-ml_example.xml
(Figure 3). The value of a new name attribute for each of the two FeatureExtraction elements has been computed from their
related Hybridization and Compound elements according to the translation definition.
Page 8 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:28 http://www.biomedcentral.com/1471-2105/9/28

Page 9 of 12
(page number not for citation purposes)

XBabelPhish run outputFigure 5
XBabelPhish run output. The running commentary that XBabelPhish gives of its progress executing the translation of Figure 1
on the file snipped into Figure 3. The -verbose option has been used to provide more detail.

genegnome:/Applications/XBabelPhish/dist dmaier$ java -Xms32m -Xmx256m -jar XBabelPhish.jar -translation translations/

trans_example.xml -source mage-ml/mage-ml_example.xml -target new_example.xml -verbose

(2007/01/25 16:01:15) *** -db directory not supplied; using /Applications/XBabelPhish/dist

(2007/01/25 16:01:16) *** Translation definition file /Applications/XBabelPhish/dist/translations/trans_example.xml validated against

translation schema translation.xsd

(2007/01/25 16:01:16) *** INFO: Loading XML file /Applications/XBabelPhish/dist/translations/trans_example.xml into dbxml

container translation.dbxml...

(2007/01/25 16:01:16) *** INFO: Running count of bytes transferred:

(2007/01/25 16:01:16) 1607

(2007/01/25 16:01:16) *** File /Applications/XBabelPhish/dist/translations/trans_example.xml added to container translation.dbxml

as document trans_example.xml

(2007/01/25 16:01:16) *** File /Applications/XBabelPhish/dist/mage-ml/mage-ml_example.xml *not* added to source.dbxml because

not needed for translation

(2007/01/25 16:01:16) *** INFO: Loading XML file /Applications/XBabelPhish/dist/mage-ml/mage-ml_example.xml into dbxml

container target.dbxml...

(2007/01/25 16:01:16) *** INFO: Running count of bytes transferred:

(2007/01/25 16:01:16) 3760

(2007/01/25 16:01:16) *** File /Applications/XBabelPhish/dist/mage-ml/mage-ml_example.xml added to container target.dbxml as

document mage-ml_example.xml

(2007/01/25 16:01:17) *** 1 translation step found in translation file

(2007/01/25 16:01:17) *** INFO: Executing translation step 1 (addAttribute) for mage-ml_example.xml...

(2007/01/25 16:01:17) *** INFO: Computing change locations with query:

 doc("target.dbxml/mage-ml_example.xml")//MeasuredBioAssay//FeatureExtraction

(2007/01/25 16:01:17) *** INFO: Computing and applying location-relative new content for change locations with query:

 for $pba in ./ancestor::BioAssay_assnlist/PhysicalBioAssay,

 $le in ./ancestor::MAGE-ML//LabeledExtract,

 $c in ./ancestor::MAGE-ML//Compound_assnlist/Compound

 where $pba/@identifier = ./ancestor::MeasuredBioAssay//PhysicalBioAssay_ref/string(@identifier) and

 $le/string(@identifier) = $pba//Hybridization//LabeledExtract_ref/string(@identifier) and

 $c/string(@identifier) = $le//Labels_assnreflist/Compound_ref/string(@identifier)

 return concat($pba//Hybridization/string(@name), " feature extraction ", $c/string(@name))

(2007/01/25 16:01:17) *** INFO: Running count of changes applied:

(2007/01/25 16:01:17) 2

(2007/01/25 16:01:17) *** INFO: Translation step 1 (addAttribute) for mage-ml_example.xml: 2 changes at 2 of 2 change locations

(2007/01/25 16:01:17) *** Translation executed successfully

(2007/01/25 16:01:17) *** Translation result for mage-ml_example.xml written to target file /Applications/XBabelPhish/dist/

new_example.xml

(2007/01/25 16:01:17) *** Translation complete ***

genegnome:/Applications/XBabelPhish/dist dmaier$

BMC Bioinformatics 2008, 9:28 http://www.biomedcentral.com/1471-2105/9/28
translations or 2n canonical translations for n semantic
variants.

Difference discovery: It is possible and practical for
domain experts to discover differences in the rules that
two different producers (see Section 1) use – where rules
in the corresponding producers map the same piece of
domain (e.g. microarray) information into different XML
(e.g. MAGE-ML) elements, attributes or text.

It is possible, and in fact may be common to discover dif-
ferences between two sets of construction rules without
necessarily being able to characterize either set of rules
independently.

Using difference information: It is possible and practi-
cal for domain experts to clearly characterize the differ-
ences between a translation pair of semantic variants in
terms of their XML schema [12] or DTD [13], and to con-
vey these differences to computer experts. (Note that a
DTD is easily converted to a schema using a tool such as
trang [14].) The ability to characterize these differences
hinges on how simple or complex the differences are, and
how simply they can be couched in terms of XBabel-
Phish's primitive operations. The ability to convey the dif-
ferences would likely (though not necessarily) be present
when these experts were one and the same person.

4.2 Experience
Experience with XBabelPhish in the MAGE-ML document
domain is still limited. However, domain experts have so
far shown a good ability to understand how various
semantic variants differ from their preferred variant. To
date, no domain expert has also tried to assume the role
of translation definer.

The process of conveying domain knowledge of semantic
differences to someone able to formulate the XQuery
statements in an XBabelPhish translation definition has
been slower and more interactive than anticipated. But, as
can be seen from the example, this has been done for non-
trivial translations. Since this example and other more
complex ones have been drawn from real MAGE-ML
translation use cases, this is good evidence that XBabel-
Phish can address the real translation needs for MAGE-ML
documents.

4.3 Other approaches
XBabelPhish uses a native XML database for storing XML
documents in conjunction with XQuery, with update
extensions, for transforming stored documents. This is not
the only approach for inter-translating XML semantic var-

iants. A number of alternative approaches were consid-
ered, and put aside for various reasons. Approaches vary
in their use of different storage vehicles and transforma-
tion languages, or in their use of different XQuery engines.
The following survey is a small sample:

4.3.1 XSLT
The tool most obviously comparable to XBabelPhish is
XSLT [3] – a W3C language for transforming XML docu-
ments. Unlike XBabelPhish, XSLT is not intended to be a
general-purpose tool. Rather, it is designed for the kinds
of transformations most commonly needed for XSL [15]
style sheets. In line with this limited goal, XSLT relies on
XPath [4], which is a small proper subset of the more pow-
erful XQuery language that XBabelPhish uses. Just as tell-
ing, existing XSLT implementations cannot handle
documents anywhere near the size commonly encoun-
tered in XBabelPhish's initial document domain of
MAGE-ML.

4.3.2 LDAP directories
One approach is to store MAGE-ML documents in LDAP
directories, translate them within this storage vehicle, and
then extract them. There are open source LDAP imple-
mentations, such as OpenLDAP [16], and tools that wrap
LDAP structures in XML, such as LDAPXML [17]. But a
general translation algorithm for XML -> LDAP is prob-
lematic. Additionally, the verbs for LDAP transformations
are far more primitive that those available through an
approach using XQuery-based update.

4.3.3 (Temporary) relational database storage
Another approach is to "shred" MAGE-ML documents
into a set of relational database tables, transform the tab-
ularized representation inside the SQL database, and then
extract this transformed representation as the translated
XML document. There are many variants of this approach,
all with major problems. One approach is to use a gener-
alized XML shredding tool that:

1) Generates a relationally efficient SQL schema that pre-
serves both the structural and constraining properties of
an XML schema.

2) "Shreds" an XML document that is an instance of the
XML schema into a database defined with the generated
relational schema.

3) Transforms the shredded document via SQL statements
that are automatically generated from XQuery statements
based on the XML schema.

4) "Unshreds" the document back into XML.
Page 10 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:28 http://www.biomedcentral.com/1471-2105/9/28
This is a very difficult problem. To date, there has been no
successful implementation of this approach. The most
promising effort at the time of our initial investigation
was ShreX [18], whose documentation seems to promise
much of items 1) – 4). Unfortunately, the only known
extant implementation does not fulfill this promise.

4.3.4 Other XQuery engines
Berkeley DB XML is not the only open source XML data-
base/XQuery engine. eXist [19] is another. Unfortunately,
when eXist was evaluated, its indexing scheme limited its
ability to handle XML nodes with a branching factor
greater than the capacity for a 16-bit integer. Large MAGE-
ML documents far exceed this limit, and therefore eXist's
ability to accommodate them. This limitation was in the
process of being fixed (and the fix is already available in a
development version of the product). However, some of
eXist's supporting tools, for example its Java console-
based browser, were also severely limited in capacity.

Yet another XQuery engine is Galax [20]. Unlike Berkeley
DB XML and eXist, Galax is not coupled with a database.
But it includes an implementation of XQuery! [21] for
updating XML documents. Its technology probably makes
it more capable than most XQuery engines in running
queries on extremely large documents. Despite this, sim-
ple tests (loading and running simple XPath queries)
showed that eXist's performance for larger MAGE-ML doc-
uments is marginal. It should be noted, too, that Galax's
installation is extremely cumbersome.

5 Conclusion
XBabelPhish is a very powerful and efficient tool for inter-
translating semantic variants of MAGE-ML, thereby
improving the interchange of microarray experiment
information. Initial use cases show a promising potential
in this document domain. In addition, XBabelPhish is
completely independent of MAGE-ML semantics, or
indeed the semantics of any document domain. It is per-
haps unique in this independence, in its expressive power,
and in its ability to translate very large documents.

Availability and requirements
Project name: XBabelPhish XML Translator

Project home page: XBabelPhish distribution archive:
ftp://smd-ftp.stanford.edu/smd/transfers/
XBabelPhish_dist.zip

Operating system(s): All platforms that Berkeley DB XL
supports, including Windows, Linux, BSD UNIX, Mac OS/
X and all POSIX-compliant operating systems; not tested
on the 64-bit versions of these platforms

Programming language: Java (XBabelPhish), C, and C++
(Berkeley DB XML)

Other requirements: J2SE 1.5 or newer (implying a need
for Mac OS/X 10.4 or newer for Mac users) Berkeley DB
XML Version 2.3.8 or newer (2.3.10 recommended as of
this writing) Web browser or html viewer for viewing the
javadoc

Open Source Licenses: XBabelPhish: MIT http://
www.opensource.org/licenses/mit-license.php

StAX: Apache License 2.0 http://www.apache.org/
licenses/LICENSE-2.0.html

Berkeley DB XML: Oracle/Apache 1.1 http://www.ora
cle.com/technology/software/products/berkeley-dht
docs/xmloslicense.html

Berkeley DB: Oracle/University of California/Harvard for
Berkeley http://www.oracle.com/technology/software/
products/berkeley-db/htdocs/bdboslicense.html

Xerces: Apache License 2.0 http://www.oracle.com/tech
nology/software/products/berkeley-db/htdocs/xerces
linse.html

Pathan: DecisionSoft/BSD http://www.oracle.com/tech
nology/software/products/berkeley-db/htdocs/pathan
linse.html

Any restrictions to use by non-academics: Commercial
license for Berkeley DB XML needed (available from Ora-
cle).

Authors' contributions
CAB and GS provided information about the needs of the
MAGE-ML-using community. DM determined the specific
requirements for XBabelPhish, designed it, implemented
it, tested it, wrote all the documentation, and when neces-
sary, helped debug problems in Berkeley DB XML. FW
provided some initial use cases and technical consulta-
tion. CAB and FW consulted on general approaches to
some thorny problems encountered along the way. DM
wrote the manuscript, and CAB and GS edited the manu-
script and provided comments and suggestions. All
authors have read the manuscript and approve of its con-
tent.

Acknowledgements
Thank you to Junmin Liu of CBIL/UPenn and Helen Parkinson of EBI/
ArrayExpress for their patience in providing excellent use cases. These
cases stretched XBabelPhish to become more general and powerful than it
would have otherwise been. Funding was provided by grant P41 HG003619
from the NHGRI and NIBIB to CAB.
Page 11 of 12
(page number not for citation purposes)

ftp://smd-ftp.stanford.edu/smd/transfers/XBabelPhish_dist.zip
ftp://smd-ftp.stanford.edu/smd/transfers/XBabelPhish_dist.zip
http://www.opensource.org/licenses/mit-license.php
http://www.opensource.org/licenses/mit-license.php
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/xmloslicense.html
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/xmloslicense.html
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/xmloslicense.html
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/bdboslicense.html
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/bdboslicense.html
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/xerceslicense.html
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/xerceslicense.html
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/xerceslicense.html
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/pathanlicense.html
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/pathanlicense.html
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/pathanlicense.html

BMC Bioinformatics 2008, 9:28 http://www.biomedcentral.com/1471-2105/9/28
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

References
1. Spellman Paul T, et al.: Design and implementation of microar-

ray gene expression markup language (MAGE-ML). Genome
Biol 2002, 3(9research0046.1-research0046.9 [http://www.pubmed
central.nih.gov/articlerender.fcgi?artid=126871].

2. Essential XQuery – The XML Query Language [http://
www.yukonxml.com/articles/xquery/]

3. XSL Transformations (XSLT) Version 1.0: W3C Recom-
mendation 16 November 1999 [http://www.w3.org/TR/xslt]

4. XML Path Language (XPath) Version 1.0: W3C Recommen-
dation 16 November 1999 [http://www.w3.org/TR/xpath]

5. XQuery 1.0: An XML Query Language: W3C Recommenda-
tion 23 January 2007 [http://www.w3.org/TR/xquery/]

6. Oracle Berkeley DB XML – High Performance, Embeddable
XML Database Engine [http://www.oracle.com/database/berke
ley-db/xml/index.html]

7. <oXygen/> xml editor [http://www.oxygenxml.com/]
8. Kay Michael, Blooming FLWOR – An Introduction to the

XQuery FLWOR Expression [http://www.stylusstudio.com/
xquery_flwor.html]

9. Demeter Janos, et al.: The Stanford Microarray Database:
implementation of new analysis tools and open source
release of software. Nucleic Acids Res 2007:D766-D770 [http://
www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1781111].

10. Computational Biology and Informatics Laboratory (CBIL)
at the University of Pennsylvania [http://www.cbil.upenn.edu/]

11. Parkinson H, et al.: ArrayExpress – a public database of micro-
array experiments and gene expression profiles. Nucleic Acids
Res 2007:D747-D750 [http://www.pubmedcentral.nih.gov/articler
ender.fcgi?tool=EBI&pubmedid=17132828].

12. XML Schema Part 0: Primer Second Edition: W3C Recom-
mendation 28 October 2004 [http://www.w3.org/TR/xmls
chema-0/]

13. Document Type Definition: W3C Recommendation [http://
www.w3.org/TR/html4/sgml/dtd.html]

14. Clark, James, Trang – Multi-format schema converter based
on RELAX NG [http://www.thaiopensource.com/relaxng/
trang.html]

15. Extensible Stylesheet Language (XSL) Version 1.1: W3C
Recommendation 05 December 2006 [http://www.w3.org/TR/
xsl/]

16. OpenLDAP [http://www.openldap.org/]
17. LDAPXML: An LDAP to XML Converter [http://member

webs.com/nielsen/code/ldapxml/]
18. ShreX: A Comprehensive Solution to the XML-to-Relational

Mapping Problem [http://shrex.sourceforge.net/]
19. eXist Open Source Native XML Database [http://exist.source

forge.net/index.html]
20. Galax – The XQuery implementation for discriminating

hackers [http://www.galaxquery.org/]
21. Galax XQuery! – More XQuery! for your XQuery Buck

[http://xquerybang.cs.washington.edu/]
Page 12 of 12
(page number not for citation purposes)

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=126871
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=126871
http://www.yukonxml.com/articles/xquery/
http://www.yukonxml.com/articles/xquery/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xquery/
http://www.oracle.com/database/berkeley-db/xml/index.html
http://www.oracle.com/database/berkeley-db/xml/index.html
http://www.oxygenxml.com/
http://www.stylusstudio.com/xquery_flwor.html
http://www.stylusstudio.com/xquery_flwor.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17182626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17182626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17182626
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1781111
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1781111
http://www.cbil.upenn.edu/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17132828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17132828
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=EBI&pubmedid=17132828
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=EBI&pubmedid=17132828
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/html4/sgml/dtd.html
http://www.w3.org/TR/html4/sgml/dtd.html
http://www.thaiopensource.com/relaxng/trang.html
http://www.thaiopensource.com/relaxng/trang.html
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/xsl/
http://www.openldap.org/
http://memberwebs.com/nielsen/code/ldapxml/
http://memberwebs.com/nielsen/code/ldapxml/
http://shrex.sourceforge.net/
http://exist.sourceforge.net/index.html
http://exist.sourceforge.net/index.html
http://www.galaxquery.org/
http://xquerybang.cs.washington.edu/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	1 Background
	2 Implementation
	3 Results
	3.1 Translation definitions
	3.1.1 Symbolic names
	3.1.2 Target locations
	3.1.3 Defining new content
	3.1.4 Translation operations

	3.2 An example
	3.2.1 Translation definition
	3.2.2 Source and target
	3.2.3 Run output

	4 Discussion
	4.1 Assumptions
	4.2 Experience
	4.3 Other approaches
	4.3.1 XSLT
	4.3.2 LDAP directories
	4.3.3 (Temporary) relational database storage
	4.3.4 Other XQuery engines

	5 Conclusion
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

