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Abstract
We determined the effect of sample size on performance of polygenic hazard score (PHS) models in prostate cancer. Age
and genotypes were obtained for 40,861 men from the PRACTICAL consortium. The dataset included 201,590 SNPs per
subject, and was split into training and testing sets. Established-SNP models considered 65 SNPs that had been previously
associated with prostate cancer. Discovery-SNP models used stepwise selection to identify new SNPs. The performance of
each PHS model was calculated for random sizes of the training set. The performance of a representative Established-SNP
model was estimated for random sizes of the testing set. Mean HR98/50 (hazard ratio of top 2% to average in test set) of the
Established-SNP model increased from 1.73 [95% CI: 1.69–1.77] to 2.41 [2.40–2.43] when the number of training samples
was increased from 1 thousand to 30 thousand. Corresponding HR98/50 of the Discovery-SNP model increased from 1.05
[0.93–1.18] to 2.19 [2.16–2.23]. HR98/50 of a representative Established-SNP model using testing set sample sizes of 0.6
thousand and 6 thousand observations were 1.78 [1.70–1.85] and 1.73 [1.71–1.76], respectively. We estimate that a study
population of 20 thousand men is required to develop Discovery-SNP PHS models while 10 thousand men should be
sufficient for Established-SNP models.

Introduction

Polygenic risk models have been studied extensively for
several diseases such as prostate cancer [1], breast cancer
[2], type 2 diabetes [3], dementia [4], and atherosclerosis
[5]. Polygenic scores in the context of survival models are
a more recent advancement in the field, but have been
garnering interest in the Alzheimer’s disease [6] and
prostate cancer [7]. The steady increase in genetic testing
[8, 9], both in public and clinical domains, suggests that
survival models could be applied to new diseases. The
largest obstacle to the development of these models is the
large number of study subjects, often in the tens of
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thousands [8], which are required for robust training and
testing.

Our aim was to quantify the effect of sample size on
the performance of a polygenic survival model. This was
explored through a specific disease condition that is
expected to be representative, namely prostate cancer.
We investigated two potential model development strate-
gies. For the ‘Established-SNP’ model, we selected single-
nucleotide polymorphisms (SNPs) that had previously been
shown to be associated with prostate cancer, and estimated
the coefficients for these SNPs in a Cox proportional
hazards framework. For the ‘Discovery-SNP’ model, we
implemented the SNP selection technique described by
Seibert et al. [7] to identify SNPs in our genotyping data for
inclusion in the Cox proportional hazards framework. The
Established (EST) SNP and Discovery (DIS) SNP represent
two strategies that researchers could employ to build a
polygenic survival model. In order to simulate samples of
different sizes, we randomly sampled our training and
testing sets. The results of this work will help inform the
design of future studies to develop polygenic survival
models for other diseases.

Materials and methods

Training and testing set

As previously described [7], we obtained genotype and
age data from 21 studies included in the Prostate Cancer
Association Group to Investigate Cancer Associated
Alterations in the Genome (PRACTICAL) consortium. We
analyzed data from 40,861 men consisting of 20,551 indi-
viduals with prostate cancer and 20,310 individuals without.
For analysis, the age for each man was recorded as either
their age at prostate cancer diagnosis (cases) or at interview
(controls). Genotype data were restricted to SNPs with
missing value rates <5%, resulting in 201,590 SNPs avail-
able for analysis. Missing calls were assigned the mean
value for that SNP [7]. The genotype data had been assayed
using a custom iCOGS chip (Illumina, San Diego, CA) the
details for which are elaborated elsewhere [10]. The sample
was split into training (34,444 men, consisting of 18,962
cases and 15,482 controls) and testing (6417 men consisting
of 1589 cases and 4828 controls) sets. The testing set was
selected using men who were enrolled in the Prostate testing
for cancer and Treatment (ProtecT [11]) trial. ProtecT
(ClinicalTrials.gov: NCT02044172) is a large, multicenter
trial within the United Kingdom, which aims to investigate
the effectiveness of treatments for localized prostate cancer.
The ProtecT study group was chosen for testing as it
represented a well-characterized group of individuals that

had been used for measuring testing performance for our
earlier work. The Data Availability Statement describing
how readers can gain access to the PRACTICAL dataset is
provided in the Supplementary information.

The present study used only de-identified data from the
PRACTICAL consortium. All studies contributing data
have the relevant Institutional Review Board approval in
each country in accordance with the Declaration of Helsinki
[12]. The details of each study set, including the consent
and accrual process are previously published [12].

Established-SNP model

A list of 65 SNPs [13] was chosen to represent those on the
iCOGS array that had been published as associated with
prostate cancer. The coefficients of the SNPs within the
EST-SNP model were then estimated using the “coxphfit”
function in MATLAB (Mathworks, Natwick, MA). It
should be noted that the 65 SNPs used were discovered, in
large part, using the data presently defined as the test set.
The effect allele for all 65 SNPs was defined as “A” to
simplify analysis.

Discovery-SNP model

For every SNP, a trend test was used to check for asso-
ciations between SNP count and the binary classification of
individuals with or without prostate cancer. The SNP
selection pool was then reduced to those whose trend test p
value was less 1 × 10−6. In order of increasing p value, each
SNP was tested in a multiple logistic regression model for
association with the binary classification of men as with or
without prostate cancer, after adjusting for age, six principal
components based upon genetic ancestry, and previously
selected SNPs. If the p value of the coefficient of the tested
SNP was <1 × 10−6, it was selected for the final Cox pro-
portional hazard model estimation. The coefficients of
the selected SNP pool within the DIS-SNP model were
estimated as previously described [7].

Polygenic hazard score (PHS)

The PHS for each of the EST-SNP and DIS-SNP models
was calculated as the linear product of the coefficients of the
SNPs used in the model and the corresponding patient
genotype counts [6, 7].

PHS performance metrics

Several performance metrics for PHS models were inves-
tigated, and are described in Table 1. In each case, the PHS
for each test subject was calculated as the dot product of
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SNP coefficients, either EST or DIS, and SNP counts. A
Cox proportional hazards model was then fit using PHS as
the sole predictor of age in the test set. The z-score and beta
of this Cox proportional hazards model relate to how well
PHS was associated with age within the test set. The hazard
ratios were calculated as the exponential of the differences
in predicted log-relative hazards of different groups within
the test set. The groups were defined using centile cut-points
for those controls within the training set whose age was
<70 years. This list of performance metrics expands on
those (z-score and HR98/50) that were used in our earlier
work [7]. In addition, sample-weight performance metrics
were estimated using a weighted Cox proportional hazard
model [7, 14, 15] with PHS as the sole predictor of age in
the test set. The weighting factor for the cases and controls
were estimated using published prevalence data from the
ProtecT randomized phase 3 trial [11].

Random sampling of training set

Random sampling of the training set was performed with
replacement while ensuring equal proportions of men with
and without prostate cancer. The training set was randomly
sampled to include 1, 5, 10, 15, 20, 25, and 30 thousand
total observations. Performance of the EST- and DIS-SNP
models using random samples of the training data was
measured in the entire test set.

A sub-analysis investigating the effect of the percentage
of cases in the training set was conducted using the
EST-SNP model with 5000 and 25,000 random samples of
the training set. The results are presented in Supplementary
Fig. 5.

Random sampling of the testing set

Random sampling of the testing set was performed with
replacement while ensuring equal proportion of men with
and without prostate cancer. The testing set was randomly
sampled to include 0.5, 1, 2, 3, 4, 5, and 6 thousand total
observations. Performance in the randomly sampled test-
ing sets was performed using a representative EST-SNP

model. The representative model was chosen as that whose
parameters were estimated using a training sample size of
30 thousand total observations, and whose performance
metrics were the shortest Euclidean distance to the average
performance across all EST-SNP models using a training
sample size of 30 thousand.

Results

Established- vs. Discovery-SNP model performance

Histogram comparisons of performance metrics of EST-
and DIS-SNP models are illustrated in Fig. 1. The per-
formance metrics are shown for 50 random samplings
of the training set using a sample size of 30 thousand total
observations. Qualitatively, there appears to be more
variability in performance metrics associated with the DIS
process.

Coefficients of Established-SNP model

The mean coefficients for the 65 SNPs used in the EST-SNP
model are plotted in Supplementary Fig. 1.

Effect of training set sample size on performance

Box plots of the performance metrics of the EST-SNP and
DIS-SNP models for random samples of the training set are
shown in Figs. 2 and 3, respectively. The mean values of
HR98/50, HR20/50, HR98/20, HR80/20, z-score, and beta using a
random training sample of 1 thousand total observations in
the EST-SNP model were 1.73 [95% CI: 1.69–1.76], 0.71
[0.71–0.73], 2.42 [2.35–2.50], 1.96 [1.92–2.01], 9.92
[9.57–10.28], and 0.45 [0.43–0.47], respectively. The cor-
responding values using a random training sample of 30
thousand total observations were 2.41 [95% CI: 2.40–2.43],
0.60 [0.60–0.60], 4.04 [4.02–4.07], 2.86 [2.84–2.87], 15.1
[15.04–15.16], and 1.18 [1.17–1.18], respectively.

The mean values of HR98/50, HR20/50, HR98/20, HR80/20,
z-score, and beta using a random training sample of 1

Table 1 Performance metrics
used in the evaluation of
polygenic hazard scores.

Performance metric Description

HR98/50 Hazard ratio of the top 2% to the average (30–70%) in the test set

HR20/50 Hazard ratio of the bottom 20% to the average (30–70%) in the test set

HR98/20 Hazard ratio of the top 2% to the bottom 20% in the test set

HR80/20 Hazard ratio of the top 20% to the bottom 20% in the test set

z-score z-score of Cox proportional hazards model using PHS as a sole predictor of age in the
test set

beta Coefficient of PHS in a Cox proportional hazards model using PHS as a sole
predictor of age in the test set

The effect of sample size on polygenic hazard models for prostate cancer 1469



thousand total observations in the DIS-SNP model were
1.05 [0.93–1.18], 0.98 [0.89–1.07], 1.07 [0.91–1.24], 1.08
[0.91–1.24], 1.06 [−1.20 to 3.31], and 0.17 [−0.23 to 0.65],
respectively. The corresponding performance values using
a training sample size of 30 thousand observations were
2.20 [2.16–2.23], 1.60 [1.59–1.62], 3.47 [3.39–3.56], 2.53
[2.49–2.58], 13.19 [12.96–13.41], and 0.87 [0.85–0.89],
respectively.

Box plots of the sample-weight corrected performance
metrics for the EST-SNP and DIS-SNP model are shown
in Supplementary Figs. 2 and 3, respectively. The trends
observed in the sample-weight corrected performance
metrics are identical to those observed in the raw,
uncorrected metrics.

Effect of testing set sample size on performance

Box plots of the performance metrics of the representative
EST-SNP model for random samples of the testing set
are shown in Fig. 4. Box plots of the corresponding sample-
weight corrected performance metrics are presented in
Supplementary Fig. 4. The mean values of HR98/50, HR20/50,
HR98/20, HR80/20, z-score, and beta using a random testing
sample of 0.5 thousand total observations in the repre-
sentative EST-SNP model were 1.78 [1.71–1.85], 0.73
[0.71–0.74], 2.50 [2.33–2.66], 1.99 [1.89–2.09], 3.82
[3.57–4.08], and 0.76 [0.70–0.82], respectively. The cor-
responding values using a testing sample of 6 thousand
observations were: 1.73 [1.72–1.76], 0.73 [0.72–0.73], 2.39

0

5

10

2.1 2.2 2.3 2.4 2.5

HR98/50

co
un

t

DIS

EST

0

5

10

15

0.600 0.625 0.650 0.675

HR20/50

co
un

t

0

5

10

15

3.2 3.6 4.0

HR98/20

co
un

t

0

5

10

15

2.2 2.4 2.6 2.8 3.0

HR80/20

co
un

t

0

5

10

15

20

12 13 14 15

z score

co
un

t

0

5

10

15

0.8 0.9 1.0 1.1 1.2

beta

co
un

t

Fig. 1 Comparison of
performance metrics between
Established (EST) and
Discovery (DIS) SNP models
using 50 random samples of
the training set using a sample
size of 30 thousand. There is
more variability with the
Discovery process. Established
SNPs, though, were discovered
using the data in the training set;
this circularity is not accounted
for in the present study, which
focuses on sample size effects.

1470 R. A. Karunamuni et al.



[2.34–2.44], 1.93 [1.90–1.96], 13.07 [12.80–13.32], and
0.74 [0.72–0.76], respectively.

Discussion

We identified several trends in the effect of training and
testing sample size on the performance of PHS models in
prostate cancer using SNP genetic variants. When using
SNPs that had already been associated with prostate cancer
risk, our analysis suggests that very little improvement in
performance can be achieved once the training sets become
larger than 10–15 thousand observations. When attempting
to discover SNPs, a similar plateau in performance was
observed from training sets larger than 20–25 thousand
observations. Apart from z-scores, the performance metrics
of the chosen Cox proportional hazards model did not vary
with testing sample size. However, we did observe that the
distribution of performance metrics narrows until a testing

sample size of 3 to 4 thousand observations, after which the
distribution remains relatively stable.

Our results may be used to inform researchers on the
approximate number of subjects needed to develop PHS
models using SNP counts. A dataset of 20 thousand obser-
vations may be the minimum needed to accurately estimate
the PHS coefficients of SNPs that have been previously dis-
covered in the setting of a logistic model. Such a dataset
would allow for the accurate estimation of SNP coefficients as
well as the testing of model performance in an independent
holdout set. Based on our results, this number would have to
be increased to roughly 30 thousand observations if the
researchers intend on discovering the SNPs from scratch
using the approach described here.

The PHS model developed by Desikan et al. [6] to
estimate age-associated risk of Alzheimer’s disease used a
training set with roughly 55,000 individuals. A similarly
structured model developed by Seibert et al. [7] to guide
screening for aggressive prostate cancer was developed with
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Fig. 2 Performance metrics of
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roughly 31,000 men. Studies such as these require large
investments in time, money, and resources in order to
acquire the genetic data needed for the analysis. The results
of our analysis help elucidate that the minimum sample size
needed to translate this technology to other diseases and
processes may be lower than what has been used so far in
previous studies. This seems to be particularly true if the
researchers use SNPs that have already been discovered and
validated as associated with the process of interest.

The results of this study must be considered in the context
of its limitations. The list of EST-SNPs was previously selected
from a larger dataset that included the sample patients used in
the test set in the present study. As such, there is leakage of
information from the test set to the development of the EST-
SNP model. Therefore, the performance metrics of the EST-
SNP model should not be directly compared with those of the
DIS-SNP model, as the values of the former may be inflated.

In addition, we have chosen to focus on only two of
countless possible model development schemes. The role

of sample size in other development strategies—such as
regularized Cox proportional models, parametric survival
functions, or random survival forests—is yet to be
explored. Finally, the analysis is limited to prostate cancer
and to the SNPs available on the iCOGS array. Future
studies to investigate the influence of additional SNPs,
such as those on HapMap 3 or 1000 Genomes, on the
performance of PHS models are underway at our
institution.

In conclusion, we have studied the effect of sample size
on the performance of PHS models to study the association
between SNPs and the age at diagnosis of prostate cancer.
We have determined that models require roughly 20 to 30
thousand samples before their performance would not be
improved greatly by expansion of the training set. Using
SNPs that have already been established in the literature
may help reduce the number of training samples required to
reach this performance plateau by almost 10 thousand
samples.
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