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Abstract  In the treatment of homozygous and therapy-
resistant hypercholesterolemia, lipid apheresis enables 
not only low density lipoprotein (LDL) cholesterol to be 
lowered by approximately 60%, but also oxidative stress 
factors to be influenced and adhesion molecules reduced. 
This was investigated in a group of 12 patients using 
the heparin-induced extracorporeal LDL precipitation 
(H.E.L.P.) procedure.

A significant lowering of LDL cholesterol and fibrino-
gen leads to an improvement in rheology and endothelial 
function, detectable and measurable within approximately 
20 h by assessing minimum coronary resistance using posi-
tron emission tomography (PET) performed in 35 patients. 
This effect is detectable even after the first lipid apheresis 
session (H.E.L.P. procedure), documented in 12 patients.

Lipid apheresis appears to be the most effective proce-
dure in the treatment of elevated lipoprotein(a) [Lp(a)]. A 
chosen group of nine patients with selective elevated Lp(a) 
illustrated both the influence on endothelial dysfunction, in 
the shape of sharply increased minimum coronary resist-
ance, and the reduction through lipid apheresis, indicating 
that Lp(a) seems to exert a similar effect on the vascular 
wall and vascular function as LDL cholesterol.
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Lipid apheresis is a tried and tested therapeutic procedure 
for the treatment of familial homozygous and therapy-re-

sistant hypercholesterolemia in conjunction with coronary 
artery disease. Targeted lowering of LDL cholesterol below 
100 or 80 mg/dl as secondary prevention in high-risk pati-
ents [1] is not realizable in some patients despite the use of 
highly potent lipid-lowering drugs (statins). In such cases, 
alternative therapeutic procedures are required, especially 
in conjunction with advancing coronary artery disease.

Here lipid apheresis represents a therapeutic option. 
Over the past 25 years, various techniques [2] have become 
available and found their way into hospitals and clinical 
practices. The most widespread are LDL adsorption by dex-
tran sulfate (DAS) bound to cellulose and heparin-induced 
extracorporeal LDL precipitation (H.E.L.P.) [3, 4].

In addition to lowering LDL cholesterol, the dominant 
factor in the pathogenesis of atherosclerosis, additional 
factors such as oxidative stress, adhesion molecules, and 
fibrinogen, which maintain atherosclerosis, influence endot-
helium in its function as a perfusion-relevant organ and 
reduced vasodilatation capacity.

Oxidative stress and hypercholesterolemia

Severe hypercholesterolemia is associated with an increased 
concentration of lipid peroxidation products in the serum. 
An extension of the half-life of LDL particles in the circu-
latory system is the result, caused by missing and/or defec-
tive LDL receptors or by impaired LDL internalization. This 
leads to an increased susceptibility of the LDL particles to 
oxidation. The consequence is a formation of minimally 
modified LDL and oxidized LDL (OxLDL) [5].

Markers of oxidative lipid damage are OxLDL, isopro-
stanes, and malondialdehyde. Just the contact of leukocytes 
with artificial surfaces during extracorporeal circulation can 
trigger the release of chemokines and cytokines as well as 
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the discharge of free radicals (respiratory burst) [6], distur-
bing the balance of antioxidants and prooxidants.

Patients and methods

We investigated the influence of a single H.E.L.P. apheresis 
session on the plasma concentration of parameters of lipid 
peroxidation before (pre-) as well as after (post1) apheresis, 
as well as 1 week later, immediately prior to the next aphe-
resis treatment (post2) in 12 patients (aged 57 ± 10 years, 
six women) with heterozygous familial hypercholesterole-
mia and known CAD who were participating in the chro-
nic weekly H.E.L.P. apheresis program at our hospital. The 
plasma concentrations of OxLDL, copper/zinc superoxid-
dismutase (Cu/ZnSOD), and 8-isoprostane-PGF2a were 
determined using enzyme-linked immunosorbent assay 
(ELISA) measurements, of malondialdehyde (MDA) using 
high-performance liquid chromatography (HPLC), and the 
antioxidative serum capacity (ImAnOx) using photometry.

Results

Immediately prior to the H.E.L.P. treatment, the following 
mean values were measured in the patients: total cholesterol 
255 ± 52 mg/dl, LDL cholesterol 164 ± 44 mg/dl, HDL cho-
lesterol 60 ± 11 mg/dl, and triglyceride 135 ± 70 mg/dl.

The single H.E.L.P. treatment reduced the total cho-
lesterol by 53%, the LDL cholesterol by 54%, and the 
OxLDL by 47%. The serum concentrations of MDA, the 
stable degradation product of lipid peroxidation, were sig-
nificantly lowered, as was the antioxidative serum capacity 
(ImAnOx). In contrast, the plasma concentration of cellular 
Cu/ZnSOD underwent no change as a result of the H.E.L.P. 
apheresis (Table 1).

Conclusion

Following the H.E.L.P. treatment, in most patients an 
increase in 8-isoprostane-PGF2a concentration in the serum 
could be observed. It is possible that the 8-isoprostane-
PGF2a predominantly originate from the cell membranes 
of activated platelets. The other direct parameters of the 

lipid peroxidation OxLDL and MDA were, however, signi-
ficantly reduced as a result of H.E.L.P. apheresis.

The prooxidative processes are quantitatively inferior to 
antioxidative effects right in the foreground, so that in the 
H.E.L.P. apheresis the sum of antioxidative effects is far 
greater.

Additional effects of lipid apheresis: adhesion molecules

The adhesion of circulating leukocytes to the endothelial 
cells and the following transendothelial migration represent 
a decisive step in the initiation of atherosclerosis [7]. During 
this process, adhesion molecules such as ICAM-1, VCAM-
1, and P-selectin assume a key role. Patients with hyperli-
pidemia display a higher plasma concentration of adhesion 
molecules. It was possible to show that through the inhibi-
tion of ICAM-1 and P-selectin the vascular inflammation 
process could be almost completely suppressed.

Patients and methods

In 12 patients with advanced CAD and insufficiently con-
trolled (through drugs/diet) hypercholesterolemia, we 
investigated the effect of single-session LDL apheresis on 
the adhesion molecules ICAM-1, VCAM-1, and P-selectin, 
as well as changes in the intervals between treatments. The 
plasma concentrations of sVCAM-1, sICAM-1, and P-se-
lectin were each determined by ELISA measurement before 
(pre) and after (post1) the LDL apheresis, as well as imme-
diately prior to the next LDL apheresis (post2). In addition, 
the plasma concentrations of the adhesion molecules were 
determined directly in front of and behind the precipitation 
filter.

Results

In each case, the reduction in the plasma concentration 
of the adhesion molecules behind the precipitation filter 
was 70% for P-selectin, 62% for sVCAM-1, and 56% for 
sICAM-1. In terms of percentage, the reduction in the serum 
concentrations of the adhesion moleculwas 26.0 ± 13.2% for 

Table 1  Mean values measured in the patients immediately prior to the H.E.L.P. treatment

Pre Post1 Pre vs. post1 Post2 Pre vs. post2
OxLDL (mU/l) 11.4 ± 6 6.25 ± 3 p < 0.01 10 ± 3 n.s.
MDA (µmol/l) 1.27 ± 0.3 0.9 ± 0.14 p < 0.01 1.25 ± 02 n.s.
ImAnOx (µmol/l) 317 ± 35 287 ± 46 p = 0.03 312 ± 29 n.s.
Cu/ZnSOD (ng/ml) 75 ± 36 71 ± 27 n.s. 64 ± 20 n.s.
8-Isoprostane-PGF2a (pg/ml) 28 ± 11.3 39.7 ± 24 p < 0.05 30.4 ± 12 n.s.
OxLDL oxidized LDL; MDA malondialdehyde; ImAnOx antioxidative serum capacity; n.s. not significant
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P-selectin, 29.1 ± 9.0% for sVCAM-1, and 15.5 ± 8.4% for 
sICAM-1 and was proportional to the molecular weight. 
Within 1 week the effect was no longer visible.

Conclusion

The significant reduction in ICAM-1, VCAM-1, and P-se-
lectin can most probably be attributed to a filter effect. The 
additional impact of the lipid apheresis, in particular of the 
H.E.L.P. procedure [8], on the reduction in adhesion mole-
cules can possibly impact the progression of atherosclerosis 
by influencing the leukocyte adhesion tendency.

Rheology and vasodilatation

In patients with coronary artery disease, an improvement in 
endothelial function and endothelium-dependent coronary 
vasodilatation capacity can be achieved through intensive 
lowering of cholesterol levels [9, 10]. This can be explained 
by the interactions of LDL cholesterol (LDL) and nitrogen 
monoxide (NO), which synthesizes in the endothelial cell 
and is released from there [11]. In an oxidized state, high 
LDL concentrations reduce the bioavailability of NO and 
alter the myocardial vascular tone by inhibiting the endothe-
lium-dependent vasodilatation conveyed by receptors and 
flow. Reducing fibrinogen, an independent cardiovascular 
risk factor, leads to an improvement in plasma viscosity and 
a reduction in the aggregation tendency of the erythrocytes 
[12]. Despite a share of just 4% in the total protein, due to its 
molecular size (341,000 Da) and length (700 nm), fibrino-
gen is responsible for 20–25% of the plasma viscosity [13]. 
It is unclear how fast the LDL-associated limitation of coro-
nary vasodilatation capacity can be normalized or decisi-
vely improved in conjunction with endothelial dysfunction.

Patients and methods

Forty-seven patients (12 women, 35 men, aged 50 ± 9 years) 
with hypercholesterolemia and angiographically docu-
mented coronary artery disease were examined. Thirty-
five patients (11 women, 24 men, aged 50 ± 8 years) were 
participating in the chronic lipid apheresis program with 
regular treatments taking place once a week (Group A). The  
mean preceding period of treatment was 53.1 months (5–98 
months). Twelve patients (1 woman, 11 men, aged 47 ± 9 

years) were undergoing lipid apheresis for the first time 
(Group B). The lipid apheresis was performed using the 
H.E.L.P. procedure.

Quantification of myocardial perfusion was performed 
using positron emission tomography (PET) [9, 16]. The tra-
cer substance used was 13N-ammonia from our own cyclo-
tron production (Cyclone 18/9).

In order to evaluate coronary vasodilatation capacity, 
the following parameters were determined: myocardial 
blood flow at rest (MBFbasal), maximum myocardial blood 
flow under dipyridamole (MBFD), and minimum coronary 
resistance as a reciprocal measure of coronary conductance 
calculated from the quotients of mean arterial pressure and 
MBFD.

In accordance with the study protocol passed by the ethics 
commission, the first laboratory diagnosis was performed 
on the day of treatment prior to the PET examination (PRE). 
Immediately after that, lipid apheresis was performed. At 
the end of the treatment the effectivity was documented by 
a second laboratory diagnosis (POST 1). The next day the 
patients in both groups underwent a second PET exami-
nation as well as laboratory diagnosis, after an interval of 
18–20 h (POST 2).

Results

Through the lipid apheresis, a significant lowering of total 
cholesterol, LDL cholesterol, and fibrinogen could be achie-
ved in Group A and B (see Table 2). Immediately before the 
follow-up PET examination in Group A, the reduction in 
total cholesterol was 41.3%, and in both LDL cholesterol 
and fibrinogen 45.8%.

Immediately before the follow-up PET examination in 
Group B, the reduction in total cholesterol was 43.2%, in 
LDL cholesterol 54.6%, and in fibrinogen 51.8%.

The changes in viscosity in Group A (baseline: 
1.28 ± 0.10 mPa s; at the time of the follow-up PET exami-
nation 1.18 ± 0.08 mPa s, corresponding to a reduction by 
7.8%) were significant (p < 0.01).

In Group B, the baseline viscosity was 1.29 ± 0.08 mPa s. 
At the time of the follow-up PET examination it was 
1,19 ± 0.07 mPa  s, corresponding to a reduction by 7.6%. 
This was also significant (p < 0.0075).

The minimum coronary resistance (MCR) dropped in 
Group A from 0.56 ± 0.20 to 0.44 ± 0.17 mmHg min 100 g/ml 
(p < 0.0001). In Group B, the minimum coronary resistance 

Table 2  Lowering of total cholesterol, LDL cholesterol, and fibrinogen through lipid apheresis in Group A and B

Group Cholesterol (mg/dl) LDL cholesterol (mg/dl) Fibrinogen (mg/dl)
PRE POST 1 POST 2 PRE POST 1 POST 2 PRE POST 1 POST 2

A 251 ± 58 120 ± 22 145 ± 28 175 ± 50 60 ± 21 77 ± 25 287 ± 75 102 ± 29 150 ± 52
B 256 ± 48 126 ± 27 145 ± 30 187 ± 45 75 ± 27 85 ± 30 348 ± 65 126 ± 38 168 ± 45
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dropped from 0.61 ± 0.23 to 0.53 ± 0.19 mmHg min 100 g/
ml (p < 0.01)

Conclusion

The significant lowering of LDL cholesterol leads to a sig-
nificant lowering of minimum coronary resistance, the most 
sensitive parameter for evaluating vasodilatation capacity. It 
should be emphasized that these effects are detectable wit-
hin 18–20 h and are most probably attributable to a conside-
rable improvement in NO bioavailability [14].

A change in stenosis morphology is not to be expected 
within this short examination period.

With regard to Group B, the fact that a significant impro-
vement in coronary vasodilatation capacity could be achie-
ved after just one H.E.L.P. apheresis session is of particular 
clinical significance [15].

Lipoprotein(a)

Lipoprotein(a) [Lp(a)] is a fat-protein molecular complex 
and consists of a low density lipoprotein (LDL) particle 
which is bound to a glycoprotein similar to plasminogen, 
apolipoprotein(a) [16]. The structural affinity of Lp(a) to 
LDL and plasminogen indicates, in pathophysiological 
terms, that in the atherosclerosis process it has a proathero-
genous effect like LDL. In addition, it reinforces its effects 
and promotes thrombotic events due to a structure homolo-
gous to plasminogen.

Since the early 1960s, Lp(a) has been discussed as a 
significant and independent risk factor for cardiovascular 
diseases [17].

It could be proven that rising Lp(a) plasma levels are lin-
ked to an increase in the risk of infarction, while extreme 
increases in Lp(a) above 85 mg/dl increase the risk of myo-
cardial infarction three to fourfold [18].

Patients and methods

In accordance with the above-mentioned protocol, nine pati-
ents (aged 53 ± 10 years, one woman) with a normal LDL 
cholesterol concentration (95 ± 13 mg/dl) and a high Lp(a) 
concentration (147 ± 67  mg/dl) underwent lipid apheresis 
(H.E.L.P.) together with a PET examination.

Results

LDL cholesterol dropped from 95 to 34 or 39 mg/dl prior 
to the second PET examination (reduction: 60.2/55.5%), 
fibrinogen from 318 to 124 or 164  mg/dl (reduction: 
61.1/48.5%), viscosity from 1.24 to 1.06 or 1.11 mPa s. The 

Lp(a) concentration dropped from 147 to 50 or 60 mg/dl 
(reduction: 66/59.2%).

As a result, MCR could be reduced from 0.52 to 
0.42 mmHg min 100 g/ml (p < 0.0001).

Conclusion

In conjunction with severely increased Lp(a) concentration 
and normal LDL concentration, a high MCR is particu-
larly conspicuous. A significant improvement in perfusion 
was achieved through the sharp decrease brought about 
by H.E.L.P. apheresis. In all probability, Lp(a) in a high 
concentration influences coronary perfusion and leads to 
impaired endothelial function in the same way as high-LDL 
concentrations.

Summary

Lipid apheresis, in particular the H.E.L.P. procedure, not 
only leads to a significant reduction in LDL cholesterol and 
Lp(a); impact on further parameters such as oxidative stress 
factors and adhesion molecules, favorably influences both 
the pathogenesis and the progression of atherosclerosis. The 
key statement here, however, is that the functionality of the 
coronary system, detectable by perfusion or vasodilatation 
capacity, improves. This ultimately explains clinical impro-
vement in patients undergoing this treatment without any 
essential change to coronary morphology.
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