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 Abstract: Background: The increasing availability of omics data collected from patients affected by 

severe pathologies, such as cancer, is fostering the development of data science methods for their 

analysis. 

Introduction: The combination of data integration and machine learning approaches can provide 

new powerful instruments to tackle the complexity of cancer development and deliver effective di-

agnostic and prognostic strategies. 

Methods: We explore the possibility of exploiting the topological properties of sample-specific met-

abolic networks as features in a supervised classification task. Such networks are obtained by pro-

jecting transcriptomic data from RNA-seq experiments on genome-wide metabolic models to define 

weighted networks modeling the overall metabolic activity of a given sample. 

Results: We show the classification results on a labeled breast cancer dataset from the TCGA data-

base, including 210 samples (cancer vs. normal). In particular, we investigate how the performance 

is affected by a threshold-based pruning of the networks by comparing Artificial Neural Networks, 

Support Vector Machines and Random Forests. Interestingly, the best classification performance is 

achieved within a small threshold range for all methods, suggesting that it might represent an effec-

tive choice to recover useful information while filtering out noise from data. Overall, the best accu-

racy is achieved with SVMs, which exhibit performances similar to those obtained when gene ex-

pression profiles are used as features. 

Conclusion: These findings demonstrate that the topological properties of sample-specific metabolic 

networks are effective in classifying cancer and normal samples, suggesting that useful information 

can be extracted from a relatively limited number of features.  
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1. INTRODUCTION 

The development of automated strategies for the classifi-
cation of cancer samples in distinct categories (e.g., sub-
types, risk groups, etc.) is one of the key challenges in cur-
rent biosciences [1]. On the one hand, this might lead to the 
discovery of efficient, personalized diagnostic, prognostic, 
and therapeutic strategies for cancer patients. On the other 
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hand, it could allow unraveling some of the still undeci-
phered mechanisms and processes underlying cancer devel-
opment, leading to a data-driven understanding of the dis-
ease. 

It is known that effective classification and clustering of 
cancer samples can be achieved by employing the infor-
mation on expression data [2-7], genomic alteration profiles 
[8, 9], interaction networks [10], and even signaling path-
ways [11, 12]. In this work, however, we specifically focus 
on the metabolic properties that may distinguish cancer from 
normal samples. In fact, metabolic deregulation is one of the 
key hallmarks of cancer [13-15], even if its underlying 
mechanisms are still partially unknown. In this respect, in 
recent years, an increasing number of computational strate-
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gies have been devised, in order to take advantage of the 
growing availability and reliability of -omics data to investi-
gate the alterations of metabolism in cancer [16-19]. Very 
often, such data have been employed in constraint-based 
models, such as Flux Balance Analysis (FBA), in which 
metabolic fluxes are simulated to compare different experi-
mental scenarios [20-24]. 

Moreover, more recently, approaches coupling con-
straint-based metabolic modeling with supervised machine 
learning algorithms have been proposed [25]. In our case, we 
explore for the first time the possibility of employing the 
topological properties of metabolic networks as input fea-
tures of classification algorithms. To this end, we rely on an 
approach firstly introduced in [26,27] in which transcriptom-
ic data, such as RNA-seq, are employed to determine the 
approximate activity value of the reactions included in a giv-
en metabolic network. 

More in detail, by introducing a relevance threshold on 
the metabolic activity level, we pruned the original metabolic 
network to define individual-specific networks in which only 
the significantly active reactions are preserved. The topolog-
ical properties of such individual-specific networks are then 
used as features to perform a supervised classification task 
via various algorithmic strategies and, in particular, Multi-
Layer Perceptrons (MLPs), Support Vector Machines 
(SVMs) and Random Forests (RFs). 

To investigate our hypothesis, this work presents the 
classification results in a simple scenario in which the sam-
ple categories are known a priori - cancer vs. normal - con-
cerning the TCGA-BRCA breast cancer dataset [28], which 
includes 210 total samples. 

We show that noteworthy classification performance can 
be achieved by using a few key topological properties of met-
abolic networks, i.e., average degree, average hierarchical 
degree, average geodesic path length and assortativity. Inter-
estingly, a similar pruning threshold (in the range 0.01 – 0.1) is 
identified as optimal for all tested machine learning strategies, 
suggesting that it could be an effective choice to extract useful 
information from the “relevant” activity of metabolic net-
works, while discarding possible artifacts due to noisy obser-
vations. Overall, the best classification performance is ob-
tained with SVMs and threshold 0.1, which exhibit 0.866 of 
(average) accuracy, 0.86 precision and 0.879 recall on the test 
set, after k-fold cross-validation and hyper-parameter estima-
tion. Furthermore, we show that the best performing SVM 
classifier (with the optimal threshold) delivers similar classifi-
cation performance with respect to an analogous classifier 
processing a reduced gene expression feature vector, as com-
puted by selecting the 5 principal components on the list of 
1673 metabolic genes from Recon2.2 [29]. 

These results prove that the projection of transcriptomic 
activity on metabolic networks provides useful information 
to efficiently classify cancer samples and might pave the way 
for the development of strategies for experimental hypothesis 
generation. 

2. MATERIALS AND METHODS 

2.1. Integration of RNA-seq and Metabolic Networks 

As proposed earlier [26, 27], it is possible to project tran-
scriptomic data onto human metabolic networks [30], to de-

rive an approximate activity value for each metabolic reac-
tion in any given sample. 

We first employ an input metabolic network 𝑀 such as 
the Human Metabolic Reaction (HMR) [31] or Recon [29, 
32]. 𝑀 is a bipartite-directed graph that includes two kinds of 
nodes: (i) metabolites (i.e., substrates or products), and (ii) 
metabolic reactions. The edges in 𝑀 connect either: (i) the 
substrates and the relative reaction, or (ii) a reaction and the 
relative products. The total number of nodes of 𝑀 is N, 
whereas the total number of edges is E. Reaction nodes are 
associated with Gene-Protein-Reaction (GPR) rules, i.e., 
logical formulas that describe the related catalyses via AND 
and OR logical operators. In particular, AND rules are em-
ployed when distinct genes encode different subunits of the 
same enzyme, whereas OR rules are used when distinct 
genes encode isoforms of the same enzyme. 

RNA-seq data are then used to provide an approximate 
activity value to each reaction in the input network. In par-
ticular, our method takes as input a n (genes) × m (samples) 
matrix T in which each element 𝑇𝑔,𝑠, 𝑔 = 1,… , 𝑛, 𝑠 =
1,… ,𝑚, includes the transcript level of gene g in sample s 
(the Reads per Kilobase per Million mapped reads – 
RPKM). 

For each reaction in the input network 𝑟 ∈ 𝐺 and for each 
sample 𝑠 = 1,… ,𝑚, we define a Reaction Activity Score 
(RAS), by distinguishing two cases. 

Reactions with GPR including an AND operator, 

𝑅𝐴𝑆𝑟,𝑠 = min(𝑇𝑔,𝑠: 𝑔 ∈ 𝒜𝓇), (1) 

where 𝒜𝑟 is the set of genes that encode the subunits of 
the enzyme catalyzing reaction r. 

Reactions with GPR including an OR operator, 

𝑅𝐴𝑆𝑟,𝑠 = ∑ 𝑇𝑔,𝑠𝑔∈𝒪𝓇
, (2) 

where 𝒪𝓇 is the set of genes that encode isoforms of the 
enzyme that catalyzes reaction r. 

In case of composite reactions, we respect the standard 
precedence of the two operators. The rationale underlying 
the definition of the RAS is that enzyme isoforms (OR) con-
tribute additively to the overall activity of a certain reaction, 
whereas enzyme subunits (AND) limit its activity. RASs are 
finally normalized to obtain values in the range [0, 1] (with 0 
meaning no activity and 1 meaning maximum activity ob-
served in the dataset). 

Even though this simplified approach neglects the heter-
ogeneity of reaction kinetic constants, protein binding affini-
ties and translation rates, it was proven effective in the inves-
tigation of cancer metabolic deregulation and in cancer sam-
ple stratification [26, 27]. 

2.2. Cancer Sample Classification via Metabolic Network 
Pruning 

We define the sample-specific metabolic network of a 
given sample s as the weighted adjacency matrix 𝑊𝑠, which 
contains 𝑁 × 𝑁 elements, such that each element 𝑤𝑖𝑗

𝑠  is equal 
to: (i) 𝑅𝐴𝑆𝑗,𝑠  if i is a substrate of reaction j, (ii) 𝑅𝐴𝑆𝑖,𝑠 if i is a 
reaction and j one of its products, (iii) 0 otherwise. 
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  (a)    (b) 

Fig. (1). Number of nodes ⟨NTl,s⟩ (averaged on all samples) (a) and number of edges ⟨ETl,s⟩ (averaged on all samples) (b) of the giant compo-

nent GTl,s of the sample-specific metabolic network (computed from the Recon2.2 network [29]), in addition to their standard deviation (error 

bar), defined by different threshold Tl values either on normal and cancer samples. (A higher resolution / colour version of this figure is avail-

able in the electronic copy of the article). 

 

 

Fig. (2). The giant components of the metabolic network of the cancer sample of patient TCGA BH A0DZ obtained by projecting RNA-seq 

data on Recon2.2 metabolic network [29], are shown. 4 distinct giant components are shown, obtained with the following relevance thresh-

olds: 10−4, 0.1,0.4,0.7. Networks were drawn via Cytoscape [37]. (A higher resolution / colour version of this figure is available in the elec-

tronic copy of the article). 

 
Since we are interested in exploiting the topological 

properties of the “giant component” of the sample-specific 
metabolic network (as proposed, e.g., in [33]), we employ a 
network pruning procedure to select the relevant metabolic 
reactions. This threshold criterion was employed earlier [34-
36]. In detail, a threshold parameter 𝑇𝑙 ∈ [0,1] is used to ob-
tain an unweighted and thresholded adjacency matrix 𝐴𝑇𝑙,𝑠, 
the elements of which are defined as follows: 

 𝐴𝑖𝑗
𝑇𝑙,𝑠 = {

1,  𝑖𝑓 𝑤𝑖𝑗
𝑠 ≥ 𝑇𝑙

 0,  𝑖𝑓 𝑤𝑖𝑗
𝑠 < 𝑇𝑙

 ∀𝑖, 𝑗 = 1,… ,𝑁.  (3) 

It must be noted that we have focused on the larger than 
option, because we can hypothesize that only significantly 
active reactions (above the threshold) are responsible for the 
phenotypic/functional properties of cells. By scanning differ-
ent values of the threshold, we can then evaluate the impact 
on the performance of classifiers that take as input certain 
topological measurements of the resulting giant component 
(see below), thus identifying an optimal threshold value. 

Clearly the threshold parameter determines the size of the 
giant component, i.e., the largest connected subgraph of the 
sample-specific metabolic network, which we define as 
𝐺𝑇𝑙,𝑠 and which includes 𝑁𝑇𝑙,𝑠 nodes and 𝐸𝑇𝑙,𝑠 edges. 

For instance, in Fig. (1), one can see how the number of 
nodes and edges of the giant component of the sample-
specific metabolic network (computed from the Recon2.2 
network [29, 32]) is generally affected by the choice of dis-
tinct thresholds, regarding both cancer and normal samples. 
In greater detail, on the left side of Fig. (1a), smaller thresh-
olds, such as 𝑇𝑙 ∈ {10−4, 10−3, 10−2, 10−1}, lead to a larger 
size of the giant component (on average), while on the right 
side, larger thresholds, such as 𝑇𝑙 ∈ {0.2, 0.3, … , 0.7}, lead to 
a radical network reduction, with a threshold 𝑇𝑙 = 0.7 retain-
ing 127 nodes on average, which represents approximately 
1.45% of the total number of nodes of the original metabolic 
network. As a representative example, the shrinking of the 
giant component for a specific sample is visually represented 
in Fig. (2). 
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We also note that this behavior occurs similarly on both 
cancer and normal samples, even if the size of the giant 
component of the former ones tends to be slightly smaller. 
One may speculate that cancer subpopulations engage in a 
relatively lower number of metabolic functions with respect 
to normal cells, given that their main objective is “selfish” 
proliferation. Further investigations are needed to validate 
this interesting hypothesis [37]. 

2.3. Algorithmic Methods for Classification 

In general, the choice of adequate network descriptors is 
crucial for pattern recognition purposes. Typically, the fea-
ture extraction is based on well-established network structur-
al measures (see details in Section 2.3.1). The concurrent use 
of well-known measures such as degree, mean degree, clus-
tering coefficient, mean hierarchical degree, centrality, and 
even spectral measurements, can identify global properties 
shared by a large majority of empirical and synthetic net-
works such as random, small-world, scale-free networks, and 
geographic networks models [38, 39]. 

2.3.1. Features Based on Network Structural Measures 

Networks measurements falling in various categories 
(e.g., connectivity-related, distance-related, spectral, degree 
correlation measures) can be effectively used to characterize 
the topological properties of real-world networks [38, 40]. In 
our case, we are interested in determining whether certain 
topological measurements of the giant component of the 
sample-specific metabolic network obtained from RNA-seq 
data projection, and after opportune threshold-based pruning, 
can be effectively employed as features to classify cancer 
samples. In particular, we selected the following measures. 

Average Degree: Among the connectivity-related meas-
urements, we here consider the degree (or connectivity) 𝑘𝑖

𝑇𝑙,𝑠 
of node i of the giant component of sample s, given threshold 
𝑇𝑙, as the number of neighbors of a node 𝑖𝑇𝑙,𝑠 defined by:  

𝑘𝑖
𝑇𝑙,𝑠 = ∑ 𝐴𝑖𝑗

𝑇𝑙,𝑠
𝑁𝑇𝑙,𝑠

𝑗=1
. 

Accordingly, the average degree of the giant component 
is defined by Eq. (4), as follows: 

⟨𝑘𝑇𝑙,𝑠⟩ =
1

𝑁𝑇𝑙,𝑠
∑ 𝑘𝑖

𝑇𝑙,𝑠
𝑁𝑇𝑙,𝑠

𝑖=1
.  (4) 

Average Hierarchical Degree: The hierarchical degree 

ki
Tl,s

h

of node i can also be measured considering the connec-

tivity of the neighboring nodes constrained to a hierarchical 

level h. As an example, in social networks, the hierarchical 

degree of level 2 of given node i, ki
2, is the sum of the de-

grees of the neighbors of its neighbors. Therefore, the mean 

hierarchical degree of the giant component of a sample-

specific metabolic network is given by Eq. (5), as follows: 

⟨𝑘𝑇𝑙,𝑠
ℎ
⟩ =

1

𝑁𝑇𝑙,𝑠
∑ 𝑘𝑖

𝑇𝑙,𝑠
ℎ𝑁𝑇𝑙,𝑠

𝑖=1
 . (5) 

Average Geodesic Path Length: A path is defined as the 

sequence of nodes visited to go from node i to j. The distance 

between them is the number of edges within the path, and 𝑑𝑖𝑗  

is defined as the geodesic path, i.e., the smallest path length. 

When there is no path between i and j, 𝑑𝑖𝑗 = 0. The average 

geodesic path length of the giant component of the sample-

specific metabolic network is given by: 

 

 ⟨𝑙𝑇𝑙,𝑠⟩ =
1

𝑁𝑇𝑙,𝑠(𝑁𝑇𝑙,𝑠−1)
∑ 𝑑𝑖𝑗𝑖≠𝑗

,  (6) 

where i and j are two nodes of the giant component and 
1

𝑁𝑇𝑙,𝑠(𝑁𝑇𝑙,𝑠−1)
 corresponds to a normalization factor, consider-

ing a fully connected network [40]. 

Assortativity: The assortativity 𝛤𝑇𝑙,𝑠 [41], i.e., the Pear-
son correlation coefficient of degree among all pairs of 
linked nodes i and j of the giant component, quantifies the 
tendency of the nodes of a given degree k to connect to 
nodes with a similar degree and, in our case, it is defined as 
follows: 

 𝛤𝑇𝑙,𝑠 =
(

1

𝑁𝑇𝑙,𝑠
)∑ (𝑘𝑖

𝑇𝑙,𝑠𝑘𝑗

𝑇𝑙,𝑠𝐴𝑖𝑗

𝑇𝑙,𝑠)
𝑗>𝑖

−[(1/𝑁𝑇𝑙,𝑠)∑ (1/2)(𝑘𝑖

𝑇𝑙,𝑠+𝑘𝑗

𝑇𝑙,𝑠)𝐴𝑖𝑗

𝑇𝑙,𝑠

𝑗>𝑖
]

2

(
1

𝑁𝑇𝑙,𝑠
)∑ (1/2)(𝑘𝑖

𝑇𝑙,𝑠
2
+𝑘𝑗

𝑇𝑙,𝑠
2
)𝐴𝑖𝑗

𝑇𝑙,𝑠

𝑗>𝑖

−[(1/𝑁𝑇𝑙,𝑠)∑ (1/2)(𝑘𝑖

𝑇𝑙,𝑠+𝑘𝑗

𝑇𝑙,𝑠)𝐴𝑖𝑗

𝑇𝑙,𝑠

𝑗>𝑖
]

2 ,  (7) 

𝛤𝑇𝑙,𝑠 is a value within the range [−1, 1]. Values closer to 
1 indicate a positive correlation (nodes with high degree tend 
to connect to nodes with high degree), while values closer to 
−1, indicate a negative correlation (nodes with a high degree 
tend to connect to nodes with low degree), whereas values 
close to 0 indicates the absence of linear dependence. 

In the following, we will show how to compose a feature 
vector by considering a set of topological measurements [35, 
36, 38]. In this respect, the giant component of a sample-
specific metabolic network 𝐺𝑇𝑙,𝑠can be characterized by a 
tuple containing: (i) the average degree ⟨𝑘𝑇𝑙,𝑠⟩ (Eq. 4), (ii) 
the average hierarchical degree of level 2 ⟨𝑘𝑇𝑙,𝑠⟩ (Eq. 5), (iii) 
the average hierarchical degree of level 3 ⟨𝑘𝑇𝑙,𝑠

3
⟩ (Eq. 5), 

(iv) the average geodesic path length ⟨𝑙𝑇𝑙,𝑠⟩ (Eq. 6) and (v) 
the assortativity 𝛤𝑇𝑙,𝑠  (Eq. 7). The vector is given by: 

�⃗� (𝑇𝑙 , 𝑠) = [⟨𝑘𝑇𝑙,𝑠⟩, ⟨𝑘𝑇𝑙,𝑠
2
⟩, ⟨𝑘𝑇𝑙,𝑠

3
⟩, ⟨𝑙T𝑙,𝑠⟩, 𝛤𝑇𝑙,𝑠]   (8) 

We notice that other measures such as the clustering co-
efficient might be employed as features. However, since in 
our case the input network is bipartite, there are no triangle 
neighborhoods and, accordingly, the clustering coefficient 
would always be 0. Since our framework is designed to be 
general, one can expect this feature to be relevant in different 
experimental scenarios, with distinct datasets and alternative 
representations of reaction graphs [42-44]. 

2.4. Classification Setup 

Given any relevance threshold 𝑇𝑙, the feature vectors are 
extracted for the resulting giant component of each sample s, 
and the classification step can be performed. The main goal 
of this analysis is to evaluate the classification performance 
of various classifiers ℳ, i.e., MLPs, SVMs and RFs on the 
feature vector �⃗� (𝑇𝑙 , 𝑠). Furthermore, we tested the same 
classifiers on a reduced feature vector, including the 5 first 
principal components of the expression profiles of the 1673 
metabolic genes present in the Recon2.2 model [29], in order 
to provide a comparison on the same number of features em-
ployed in our approach. 
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Table 1.  Hyperparameters grid search for the tested classifiers, i.e., MLPs, SVMs and RFs, executed via the scikit-learn Python 

library. Parameter names are the sklearn arguments of the related functions (default was used for the other parameters). 

Methods Functions Parameters Grid Search Values 

MLP neuralnetwork.MLPClassifier 

solver 

hidden_layer_sizes 

batch_size 

learning_rate_init 

learning_rate 

max_iter 

[adam, lbfgs] 

[(50,),(100,),(50,50)] 

[16, 32, 64] 

[0.1, 0.01, 0.001] 

[constant, adaptative] 

10000 

RF ensemble.RandomForestClassifier 

max_depth 

max_features 

min_samples_leaf 

min_samples_split 

n_estimator 

[10, 20, 40, None] 

[auto, sqrt] 

[1, 2, 3] 

[2, 3, 5] 

[100, 200, 500, 1000] 

SVM svm.SVC 

C 

gamma 

tol 

kernel 

[2-5, 2-4,..., 212] 

[$2^{-15}$ 2-14,..., 24] 

[10-3, 10-4] 

[rbf, sigmoid, linear] 

 

 

Fig. (3). Kolmogorov-Smirnov statistic (KS-test, [48]) between normal and cancer samples for each threshold and network topological meas-

ure: average degree ⟨kTl,s⟩, assortativity ΓTl,s average hierarchical degree of level 2 ⟨kTl,s
2
⟩ and 3 ⟨kTl,s

3
⟩ and average geodesic path length 

⟨lTl,s⟩. The higher the K-S test is, the more the distribution of the network measure is different between normal and cancer samples. The high-

est values are obtained with ⟨kTl,s⟩, ⟨kTl,s
2
⟩, and ⟨kTl,s

3
⟩ and thresholds equal to 10−2 and 0.1. (A higher resolution / colour version of this 

figure is available in the electronic copy of the article). 

 
In order to prevent over-optimistic results, we performed 

for each classifier a nested cross-validation as proposed ear-
lier [45] and detailed as follows. 

The original dataset, including cancer and normal sam-
ples, is split into 5 folds, ensuring the balance between clas-
ses. 5-fold outer cross-validation is executed by using: (i) 
one fold as the test set to assess the model performance and 
(ii) 4 folds in an inner 5-fold cross-validation procedure to 
select the optimal hyperparameters h of the model ℳ(ℎ) via 
grid search (Table 1). The whole procedure is repeated 3 
times to ensure robustness to the results. The performance of 
all classifiers is assessed on average accuracy, precision and 
recall with respect to ground-truth labels. 

All the experiments described above were performed us-
ing the scikit-learn Python library [46].  

2.5. Network Datasets 

We tested our approach on the breast cancer dataset 
TCGA-BRCA published earlier [28]. We downloaded the 
dataset via the cBioPortal [47]. This dataset includes the ex-
pression profile (RNA Seq V2 RSEM) of biopsies taken 
from 817 patients. We selected the 105 patients for which the 
expression profiles of both cancer and normal tissues are 
provided, for a total of 210 samples used in our analysis. 

RNA-seq data were projected on the Recon2.2 metabolic 
network [29, 32] to obtain a dataset in which a Reaction Ac-
tivity Score is assigned to each metabolic reaction in each 
sample (see above). The RASs were then normalized by di-
viding each reaction score by the maximum value of all 
samples. Finally, normalized RAS profiles are used to weigh 
the metabolic network as described above. 
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Fig. (4). Projection of cancer and normal samples on the space of topological measure pairs and (on the diagonal) the distribution for each 

measure and every sample category, for a selected threshold Tl = 0.1. (A higher resolution / colour version of this figure is available in the 

electronic copy of the article). 

 

 

  SVM  MLP  RF 

Fig. (5). From left to right: average accuracy (A), average precision on cancer samples (B) and average recall on cancer samples (C) with 

SVMs, MLPs and RFs. The average is computed on the test sets via a repeated nested cross-validation, for three different seeds, whereas the 

error bars represent the standard deviation (see Section 2.4 for additional details). The best thresholds are Tl = 10−2 and Tl = 0.1. (A higher 

resolution / colour version of this figure is available in the electronic copy of the article). 
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Fig. (6). Decision boundary of the SVM classifier with optimal hyperparameters and threshold Tl = 0.1 on the full dataset. The axes corre-

spond to the first two principal components of the full feature vector ϕ⃗⃗ (Tl, s). (A higher resolution / colour version of this figure is available 

in the electronic copy of the article). 

 
3. RESULTS 

3.1. RAS Threshold Analysis 

A small 𝑇𝑙  will result in larger giant components while, in 
contrast, higher values of 𝑇𝑙  will result in smaller giant com-
ponents. To choose the best classifier, we evaluated the per-
formance obtained by the following distinct threshold values: 

 𝑇𝑙 ∈ {10−4, 10−3, 10−2, 0.1, 0.2, 0.3, … , 0.7}.  (9) 

Thus, each feature vector �⃗� (𝑇𝑙 , 𝑠), contains the five topo-
logical measures defined above as descriptors (see Section 
2.3.1). 

To test the discrimination power of the feature vectors 
�⃗� (𝑇𝑙 , 𝑠), in Fig. (3), we computed the Kolmogorov-Smirnov 
statistic [48] between normal and cancer samples for each 
threshold and topological measure. The KS statistic 𝐷 (KS-
test) is the distance between the cumulative probability dis-
tributions; hence the higher is the value, the more the net-
work measures are different between normal and cancer 
samples. 

As a result, in our dataset, degree statistics, i.e., ⟨𝑘𝑇𝑙,𝑠⟩, 
⟨𝑘𝑇𝑙,𝑠

2
⟩ and ⟨𝑘𝑇𝑙,𝑠

3
⟩, achieve the highest D (KS-test), in par-

ticular for thresholds equal to 10−2 and 0.1. In Fig. (4), we 
plotted the distributions of all pairs of features in �⃗� (𝑇𝑙 , 𝑠), 
for 𝑇𝑙 = 0.1. In accordance with the results of Fig. (3), the 
degree statistics distributions and, in particular, ⟨𝑘𝑇𝑙,𝑠

2
⟩ and 

⟨𝑘𝑇𝑙,𝑠
3
⟩, have the sharpest difference among normal and can-

cer samples. 

3.2. Classification Performance 

The classification performance was assessed for all clas-
sifiers (i.e., MLPs, SVMs and RFs) on the feature vector 
�⃗� (𝑇𝑙 , 𝑠), with regard to all relevance thresholds, via the nest-
ed cross-validation procedure described above (see Section 
2.4). In addition, we employed as benchmark three analo-
gous classifiers (i.e., MLPs, SVMs and RFs), which were 

provided as input with a feature vector including the 5 first 
principal components (PCs) of the expression profiles of the 
1673 metabolic genes. 

In Fig. (5), we report the average accuracy, precision and 
recall for all tested classifiers, with respect to all relevance 
thresholds, as well as the benchmark classifiers on gene ex-
pression PCs, by employing the ground-truth cancer sample 
labels (the error bars represent the standard deviation). 

Interestingly, the best performance is achieved for all 
classifiers with thresholds in the small range 𝑇𝑙 = 10−2 and 
𝑇𝑙 = 0.1, and points at the existence of an effective pruning 
strategy to maintain the “relevant” active metabolic path-
ways that discriminate cancer from normal samples, while 
limiting the confounding effects possibly due to noisy obser-
vations and biological variability. 

More in detail, the best performing classifier is provided 
by SVMs, which reach an average accuracy of 0.86 and 0.87, 
a precision of 0.87 and 0.86 and a recall of 0.86 and 0.88, for 
𝑇𝑙 = 10−2 and 𝑇𝑙 = 0.1, respectively. 

Interestingly, such performance is extremely similar to 
that obtained with SVMs on the vector of gene expression 
PCs (average accuracy = 0.88, precision = 0.88 and recall = 
0.89) and slightly superior to that of MLPs and RFs on the 
same vector. This result suggests that the information ex-
tracted from the few selected topological measures on the 
giant component of the sample-specific metabolic network is 
effective in discriminating cancer from normal samples, sim-
ilarly to benchmark approaches processing gene expression 
data (5).  

Finally, in Fig. (6), the decision boundary of the best per-
forming SVM classifier, i.e., obtained with 𝑇𝑙 = 0.1 and 
optimal hyperparameters is displayed on the first two PCs of 
the feature vector �⃗� (𝑇𝑙 , 𝑠), from which one can see that the 
method is able to correctly classify also the outliers of both 
categories. 
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CONCLUSION 

In this work, we have introduced a new computational 
framework for the classification of cancer samples, which 
combines the integration of transcriptomic data and metabol-
ic networks with state-of-the-art machine learning approach-
es. This task is of practical relevance in many biomedical 
contexts and might pave the way for the development of au-
tomated strategies for experimental hypothesis generation. In 
particular, the introduction of our framework contributes to 
the emerging field of approaches combining sample-specific 
metabolic modeling with machine learning to classify cancer 
samples and/or to predict drug response, as recently re-
viewed [49, 50]. 

More in detail, we here proved that the information on 
the metabolic activity of single samples, derived via integra-
tion of highly accessible RNA-seq data, can be effectively 
used to classify healthy and pathological states, a result that 
appears to be robust when the original networks are signifi-
cantly pruned via a relevance threshold. All in all, this result 
would suggest that the useful information to determine pos-
sibly aberrant states in a given sample can be derived from 
the high-level (topological) properties of a relatively limited 
number of active processes. The identification and character-
ization of such processes deserve further investigation. 

Regarding our machine learning approach, we here relied 
on classical topological measures, such as degree, hierar-
chical degrees, average geodesic path length and assortativi-
ty, to encode the structural information of the metabolic net-
work. Additional experiments may employ recent graph rep-
resentation learning techniques [51, 52], including graph 
kernels [53] and convolutional neural networks on graphs 
[54], to automatically extract a low-dimensional feature vec-
tor of the input network. 

We finally remark that extensions of the framework are cur-
rently ongoing to test its applicability to more complex scenari-
os, involving, for instance, multiclass and multi-label classifica-
tion with respect to cancer subtypes and risk categories. 
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