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Respiratory sinus arrhythmia (RSA) is a form of cardiorespiratory coupling. It is observed

as changes in the heart rate in synchrony with the respiration. RSA has been

hypothesized to be due to a combination of linear and nonlinear effects. The quantification

of the latter, in turn, has been suggested as a biomarker to improve the assessment of

several conditions and diseases. In this study, a framework to quantify RSA using support

vector machines is presented. The methods are based on multivariate autoregressive

models, in which the present samples of the heart rate variability are predicted as

combinations of past samples of the respiration. The selection and tuning of a kernel

in these models allows to solve the regression problem taking into account only the

linear components, or both the linear and the nonlinear ones. The methods are tested

in simulated data as well as in a dataset of polysomnographic studies taken from 110

obstructive sleep apnea patients. In the simulation, the methods were able to capture

the nonlinear components when a weak cardiorespiratory coupling occurs. When the

coupling increases, the nonlinear part of the coupling is not detected and the interaction

is found to be of linear nature. The trends observed in the application in real data show

that, in the studied dataset, the proposed methods captured a more prominent linear

interaction than the nonlinear one.

Keywords: respiratory sinus arrhythmia, heart rate variability, support vector machines, nonlinear methods,

biomedical data processing, electrocardiogram, cardiorespiratory interactions

1. INTRODUCTION

In the context of network physiology, three independent forms of cardiorespiratory coupling
have been described, namely, cardiorespiratory phase synchronization, time delay stability, and
respiratory sinus arrhythmia (RSA). These have been demonstrated to be independent and to
have effects in different time scales. Furthermore, biomarkers to quantify these interactions have
been shown to be better to evaluate certain conditions and diseases compared to the analysis
of the cardiac and respiratory systems individually (Bartsch and Ivanov, 2014). RSA is the most
studied one and it is the main focus of this paper. It is observed as changes in heart rate (HR) in
synchrony with the respiratory cycle. During inhalation the HR accelerates and during exhalation
it decelerates. Despite the fact that RSA was already described in 1733 (Billman, 2011), the
mechanisms producing it and its function are not yet fully understood. However, RSA has been
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suggested as a biomarker for illnesses and conditions such
as diabetes (Mackay, 1983), aging (Hrushesky et al., 1984),
sleep apnea (Bonsignore et al., 1995), heart failure (Peltola
et al., 2008), anxiety disorders (Gorka et al., 2013), and stress
(Varon et al., 2018).

The non-invasive evaluation of the RSA can be done
using the tachogram (i.e., time intervals between consecutive
R-peaks) as a heart rate variability (HRV) representation
(Sörnmo and Laguna, 2005). The power spectral density (PSD)
estimation of the tachogram is used to derive indices of
HRV in the frequency domain (Berry et al., 2012). Here,
the level of activity of the sympathetic and parasympathetic
branches of the autonomic nervous (ANS) system can be
assessed by analyzing different frequency power bands. The
low frequency (LF: 0.04–0.15) band has been hypothesized to
contain information of both, sympathetic and parasympathetic
modulators. The high frequency (HF: 0.15–0.4Hz) band is
widely accepted to reflect the parasympathetic modulation and
the action of the respiration (Akselrod et al., 1981; Camm
et al., 1996). However, this interpretation of the HF might
result in misleading interpretations, in particular when the
respiratory rate appears outside the HF (Brown et al., 1993;
Schipke et al., 1999; O’Callaghan et al., 2015; Shader et al.,
2018). If the respiratory rate is higher than the upper limit of
the HF, such as during exercise, the parasympathetic activation
is underestimated. Furthermore, during activities in which a
slower breathing rate is observed, such as during relaxation, the
physiological interpretation of the power bands in the PSD of
the HRV according to the standard can be misleading because
the respiratory rate goes below the HF band. As a result, the
sympathetic activation is overestimated and the vagal component
is underestimated (Camm et al., 1996).

To overcome this limitation, the unconstrained methodology
to assess the ANS, described in Varon et al. (2018), can be used.
With this method, the HRV is decomposed into a component
linearly correlated with respiration, and a residual one that
captures possibly nonlinear respiratory influences as well as
the action of HRV modulators different from respiration. Even
though this method has been shown to better quantify the
RSA as well as the sympathetic and parasympathetic activity
during different conditions, it is not able to separate the possible
nonlinear respiratory influences of the respiration in the HRV.

The analysis of these nonlinear components has been shown
to be important for some applications. For instance, the work
in Loula et al. (1994), presents an interpretation of the non
linear part of the RSA during anesthesia, finding differences
between measurements taken during baseline and propofol
administration. This work was then extended in Chen et al.
(2009), where the non linearities of the cardiorespiratory
coupling were analyzed for different propofol doses. The latter
paper found that the nonlinear part of the RSA remains constant
at different drug levels. Another example is the work presented
by Caicedo et al. (2014) which shows that a quantification
of the nonlinear respiratory influence in HRV using Kernel
principal component regression improved the performance of
the classification of apnea events compared to a pure linear
model. A last example is the work shown in Yeh et al. (2019)

where an important contribution of RSA in the fractal properties
of HRV is evidenced. This was then applied to improve the
assessment of patients with congestive heart failure. These
applications suggest that a framework to evaluate the linear and
nonlinear components of the RSA would be useful.

To answer to this need, the unconstrained estimator described
in Varon et al. (2015b) was extended in Varon et al. (2019),
where a method based on least-squares support vector machines
was proposed to extract the linear and nonlinear components
of the cardiorespiratory interactions from a dataset recorded
during autonomic blockade. Results suggested that the nonlinear
interactions are mediated by different control mechanisms. In
addition, the quantification of the linear part of the interaction
is shown to underestimate the RSA due to the suppression of the
nonlinear component.

In Varon et al. (2019), the coupling was described for a specific
dataset of autonomic blockade with a limited number of subjects.
The current paper complements this work presenting a method
to quantify RSA based on support vector machines (SVM). It
allows to analyze the linear and non linear contributions of
the respiratory influences in the HRV representations. These
methods are applied in simulated data in which the strength
of the linear and nonlinear components of the coupling are
controlled. Furthermore, the methods are used to analyze the
change of coupling during sleep stages in a dataset of sleep
apnea patients. The paper is organized as follows: section 2
describes the datasets and methods. Section 3 shows the results
and discusses them. Finally, section 4 presents the conclusions
and future directions.

2. MATERIALS AND METHODS

2.1. Simulation
A simulation model is used in this paper to evaluate the proposed
methodology for the estimation of signal interactions. The goal
is to understand the way in which the proposed parameters
quantify the interaction between two systems when linear and
nonlinear components are present. It uses the model given by the
following equations (Papana et al., 2013):

x1(n) = 1.2x1(n− 1)− 0.7x1(n− 2)+ 0.1N (σ ,µ) (1)

x2(n) = 0.5x2(n− 1)− C1x1(n− 1)− C2x
2
1(n− 1)

+ 0.1N (σ ,µ), (2)

with N a Gaussian noise with zero mean and unitary standard
deviation. Here, an interaction between x1 and x2 is simulated. It
consist of a linear and a nonlinear component. The strength of
the linear part is defined by the coefficient C1 and the strength of
the nonlinear part by the coefficient C2. Two scenarios are tested.
In the first one, the coefficient C2 is set to zero to consider only
linear interactions. In the second, the nonlinear effect is included
using C2 = 2−C1. This bounding to the value of C2 was imposed
to always have linear and nonlinear interactions, and being able
to control the weight of one component compared to the other.
For both scenarios, 20 realizations of signals are generated while
varying C1 in the interval [0 1.8], in steps of 0.2.
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FIGURE 1 | Steps followed to built the datasets. The parameter Px is a state-of the-art quantification of the RSA used in this paper as reference. It quantifies the

proportion of power in the HRV linearly correlated with the respiration.

TABLE 1 | Demographic information.

N Age BMI AHI Sex

Years Kg/m2 Events/h

110 47.3 ± 10.6 29.3 ± 4.6 37.8 ± 23.8 M: 82

(38–55) (25.9–32.8) (21.4–53.25) W: 28

The age, BMI, and AHI are given as the mean values ± the standard deviation.

Below are the ranges given as (25th percentile–75th percentile).

2.2. Real Data
The procedure to preprocess the data and extract the segments
used to calculate and evaluate the RSA estimates is illustrated
in Figure 1.

2.2.1. Reference RSA Estimation
A state-of-the-art RSA estimate is used as gold standard to
built a dataset of HRV and respiratory segments with known
linear coupling level. It is based on orthogonal subspace
projections (Varon et al., 2018) and, to compute it, two vectors
xxx and yyy containing the samples of the respiration and HRV
respectively, are defined. These are used to decompose yyy into

one component linearly correlated to xxx and a second one with
residual information. To this end, a time-delay embedding of xxx
is constructed to generate a subspaceQQQ. Afterwards,QQQ is used to
calculate a projection matrix PPP, given by,

PPP = QQQ(QQQTQQQ)−1QQQT . (3)

With this, the component in the HRV linearly correlated with the
respiration is derived as,

yyyr = PPPyyy. (4)

yyyr allows to calculate the percentage of variance relative of the
linear respiratory influences on the HRV with respect to the total
HRV variance as,

Px =
yyyr

Tyyyr

yyyTyyy
. (5)

2.2.2. Data and Preprocessing
The datasets analyzed in this paper were derived from 110
Polysomnography recordings of OSA patients with different
severities of OSA and associated comorbidities. The recording
of this dataset and its inclusion in this study was approved
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FIGURE 2 | Examples of some of the respiratory segments used in this study. (Left) A case of an epoch free of apnea. (Right) An epoch during an apneic event.

by the ethical committee of the university hospital UZ Leuven
(S53746, S60319). More details about the recordings are given
in Deviaene et al. (2020). Sleep specialists provided annotations
of apneas and sleep stages. The OSA severity was assessed
with the Apnea Hypopnea Index (AHI), i.e., average number
of apneic events per hour of sleep. The apneas were annotated
according to the AASM 2012 scoring rules (Berry et al., 2012).
The demographics are shown in Table 1. The ECG and thoracic
respiratory inductive plethysmograph signals were acquired with
a sampling frequency of 500Hz. The R-peaks in the ECG were
detected using the approach described in Varon et al. (2015b).
Afterwards, these were used to calculate the RR interval time
series, which were then interpolated to a sampling frequency
of 2Hz, and used as the HRV representation. The respiratory
signals were downsampled to 2 Hz after applying an antialiazing
filter. Both, HRV and respiration, were then filtered to preserve
only frequency components between 0.03 and 1Hz with a 4th
order butterworth filter. This filter was applied in forward
and backward directions to avoid phase distortion. Next, the
respiratory and HRV signals were segmented into 5-min epochs.
In addition, the power spectral density (PSD) estimation of
the respirations on each segment was derived using the Welch
algorithm with a hamming window of 40 and 20 s overlap.

2.2.3. Derivation of the Datasets
With the aforementioned segments, three datasets are
constructed. For the first one, the cardiorespiratory coupling is
estimated using Px. The epochs are then grouped by their Px

level in 9 bins of 0.1, ranging from 0 to 0.9. Next, 50 randomly
selected epochs per bin are visually chosen ensuring that they
do not contain artifacts, irregular beats nor apneas. In addition,
respiratory signals with an irregular pattern are discarded
by visual inspection of the PSD. The second dataset is made
following the same steps, but only segments containing apneas
are included. Figure 2 illustrates examples of typical respiratory
segments included in the datasets with their PSD estimation.

TABLE 2 | Distribution of the segments per dataset.

Dataset Group # Segments # Subjects AHI Age

Dataset 1 0.0–0.1 50 27 33 ± 16 53 ± 10

0.1–0.2 50 32 29 ± 13 51 ± 10

0.2–0.3 50 36 33 ± 16 46 ± 11

0.3–0.4 50 33 34 ± 17 48 ± 12

0.4–0.5 50 33 37 ± 19 45 ± 11

0.5–0.6 50 30 37 ± 19 45 ± 11

0.6–0.7 50 30 39 ± 19 43 ± 10

0.7–0.8 50 18 38 ± 18 40 ± 10

0.8–0.9 17 7 41 ± 18 39 ± 9

Dataset 2 0.0–0.1 50 27 38 ± 16 53 ± 10

0.1–0.2 50 38 39 ± 19 51 ± 11

0.2–0.3 50 39 43 ± 22 48 ± 12

0.3–0.4 50 38 42 ± 21 47 ± 11

0.4–0.5 50 38 45 ± 22 45 ± 10

0.5–0.6 50 31 55 ± 22 44 ± 10

0.6–0.7 50 30 49 ± 21 45 ± 12

0.7–0.8 19 12 49 ± 28 44 ± 12

0.8–0.9 3 3 42 ± 20 51 ± 10

Dataset 3 Wake 50 33 30 ± 14 50 ± 9

REM 50 32 28 ± 13 45 ± 11

NREM 1 34 24 33 ± 16 53 ± 9

NREM 2 50 33 29 ± 12 46 ± 12

NREM 3 50 37 33 ± 15 44 ± 11

In the third dataset, 50 randomly selected clean segments per
sleep stage are chosen using the annotations given by the sleep
specialists. For some groups, there are <50 segments meeting
the conditions to be included. The distribution of the epochs is
summarized in Table 2.
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2.3. Quantification of the Cardiorespiratory
Coupling
In this paper, the hypothesis that the linear and nonlinear
components of the RSA are the result of different mechanisms
is tested. To this end, a method based on multivariate
autoregressive models built with support vector machines (SVM)
is used. The goal is to predict the present samples of the HRV
using the past information in the respiration. The change of
the proportion of variance captured by the prediction resulting
from modifying the kernel of the model might reflect the type of
relationship between the cardiac and respiratory systems1.

2.3.1. SVM for Function Estimation
To build the SVM regression model, the samples in the HRV
are estimated using the past respiratory information. Given are
xxx−n ∈ IRL, a vector of L past samples of the respiration, and yn
the corresponding present sample of the HRV signal, with L the
model order. The definition of L will be described in section 2.3.2.

Given a training set {xxx−n , yn}
N
n=1, the following regression

problem in the primal space can be formulated using the SVM
framework as,

min
www,b,ξ ,ξ∗

JP(www, ξ , ξ
∗) = 1

2www
Twww+ c

1

2

N∑

n=1

(ξn + ξ∗n )

such that yn −wwwTϕ(xxx−n )− b ≤ ǫ + ξn, n = 1, ...,N

wwwTϕ(xxx−n )+ b− yn ≤ ǫ + ξ∗n , n = 1, ...,N
ξn, ξ∗n ≥ 0, n = 1, ...,N,

(6)
wherewww is a vector of weights, ϕ(.) : IRL → IRLh is a function that
maps xxx−n into a higher dimensional feature space of dimension
Lh, ξk as well as ξ∗

k
are slack variables, b is a bias term, c is

a regularization term determining the tolerance to regression
errors, and ǫ is the required accuracy for the solution of the
problem. In order to solve these equations, the Lagrangian
and the conditions for optimality are applied to formulate the
following dual problem,

min
α,α∗

JD(α,α
∗) = −

1

2

N∑

n,m=1

(αn − α∗
n)(αm − α∗

m)K(xxx
−
n ,xxx

−
m)

−ǫ

N∑

n=1

(αn + α∗
n)+

N∑

n=1

yn(αn − α∗
n)

such that

N∑

n=1

(αn − α∗
n) = 0

α,α∗
n ∈ [0, c],

(7)

where K(xxx−n ,xxx
−
m) = ϕ(xxxn)

Tϕ(xxxm), is the kernel function and the
α’s correspond to the Lagrange multipliers, with α > 0 for the
support vectors, and α = 0 otherwise. These can be interpreted
as weights applied to the samples used to train the model. Finally,

1The implementation of the algorithms in Matlab R© can be downloaded from:

https://gitlab.esat.kuleuven.be/Biomed/RSA_NonLinear

the solution to (6) becomes,

yn(xxx
−) =

N∑

n=1

(αn − α∗
n)K(xxx

−,xxx−n )+ b. (8)

It is hypothesized that the estimation of yn using xxx−n is better if
the coupling between the two signals is stronger.

The selection of the kernel function, determines if the
regression problem is solved considering only the linearities or
both, the linearities and nonlinearities. For this, two kernels are
used. The first one is the linear kernel, defined as,

K(xxx−,xxx−n ) = xxx−T
n xxx−. (9)

The second one is the radial basis function (RBF) kernel,
defined as,

K(xxx−,xxx−n ) = e(−||xxx−−xxx−n ||
2
2/σ

2), with σ 2 the kernel bandwidth..
(10)

As a result of the application of the RBF kernel, the regression
problem is solved taking into account the linear as well as the
nonlinear relationship between the signals.
It is important to mention that, to build the regression models, it
is necessary to tune some parameters. The kernel bandwidth, σ 2,
was tunned using the value that maximized the Shannon entropy
of the kernel matrix (Varon et al., 2015a). The regularization
term, c of Equation (6), was given by the interquartile range of
the HRV divided by 1.349. This calculation is a robust measure
of scale, that quantifies the standard deviation of the response
variables. The accuracy parameter, ǫ of Equation (6), was set
to c/10. This selection of the parameters is a rule of thumb
used in previous works (Ruta et al., 2019), and resulted in
more consistent results over different executions than other
tuning approaches.

After training the regression model, this is used to make two
predictions, namely yl and yk, using a different Kernel each time.
With these, two parameters are calculated:

P
l
x =

yT
l
yl

yTy
and P

k
x =

yT
k
yk

yTy
. (11)

The hypothesis here is that P l
x quantifies the percentage of

variance in the HRV linearly explained by the respiration and Pk
x

captures the portion of the variance in theHRV explained by both
the linear and possibly nonlinear interaction with the respiration.

2.3.2. Model Order Selection
The selection of the parameter L is important because it defines
the number of past samples in the respiration considered to be
relevant to predict the HRV. For this reason, L determines the
dynamics that can be captured by the regressionmodel. Methods
exist to select this parameter. Two of them are the Akaike’s
information criterion and the minimum description length.
These two approaches have been found to produce inconsistent
results in previous studies of the authors. More research on the
best alternative to tune this value is needed and is out of the
scope of the current work. For these reasons, a more empirical
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approach initially proposed in Morales et al. (2020), was used.
To select L, a frequency (Fr) representative of the respiratory
dynamics is found. To this end, the frequency band in the PSD of
the respiration containing the 90% of the total power is identified.
Afterwards, the local maxima inside this band are found. If the
number of local maxima is lower than 3, Fr is defined as the
frequency with maximum power. In case of more than 3 maxima
candidates, Fr is defined as the one with the lowest frequency.
However, if Fr < 0.1 Hz, it is fixed to 0.1 Hz. The order L
is calculated as the number of samples required to capture two
periods of Fr (Morales et al., 2020).

2.4. Statistical Tests
2.4.1. Analysis of Surrogates
To evaluate if the nonlinear quantifications with Pk

x are
significant, analysis of surrogates for multivariate data are
used (Theiler et al., 1992; Schreiber and Schmitz, 2000).
With this approach, pairs of surrogate segments of the HRV
representations and respiratory signals are generated. The phases
in the signals are randomized to eliminated the possible
nonlinear interactions between them. This is done in such a
way that the individual distributions are matched. In addition,
the autocorrelation function of each signal, as well as the cross-
correlation between the pairs are maintained.

In this paper, 24 surrogates are generated for each pair of
segments. Pk

x is computed in the original signals as well as in
their surrogates. Then, the upper limit of the confidence interval
for the mean value of the quantification in the surrogates is
defined as the 95th quantile. If the parameter with the original
signals is outside this upper limit, the quantification with Pk

x

in the segments is considered significantly different to the
quantifications in the surrogates. Then, it is assumed that the time
series interact in a linear and nonlinear way.

2.4.2. Differences Between the Linear and Nonlinear

Quantifications
First, differences between Px and P l

x are evaluated using the
Friedman test for repeated measures. The same test is used
to evaluate Pk

x with respect to its linear counterparts. Second,
to evaluate the existence of linear and possible nonlinear
interactions in different sleep stages (in dataset 3), the Kruskall-
wallis test is applied. In both cases, multiple comparisons with
Bonferroni correction are done. A p < 0.05 was considered
significant. The p-values are marked in the figures as follows: a
p < 0.05 is shown with a asterisk (∗), a p < 0.01 is marked
with two asterisks (∗∗) and a p < 0.001 is illustrated with three
asterisks (∗ ∗ ∗).

3. RESULTS AND DISCUSSION

3.1. Simulation
The top plot in Figure 3 illustrates the results in the first scenario,
in which only a linear part of the interaction is considered. It was
expected to see values of Pk

x always higher or equal than P l
x. The

figure shows that this is true only when the coupling is weak.
However, when the coupling gets stronger, the quantification
with Pk

x becomes significantly lower. The analysis of surrogates

confirmed that the nonlinear interactions quantified by Pk
x are

not significant in most of the cases.
In the second scenario, the interaction between the systems

is composed of a linear and a nonlinear part. The bottom plot of
Figure 3 shows the results. It is seen thatPk

x is significantly higher
than P l

x up to C1 = 0.8. Afterwards, when the linear component
gets stronger, the linear kernel produces a significantly higher
quantification. Despite that the quantification withPk

x was higher
in a wider interval in this case, it is also seen that this parameter
varies less with an increased linear interaction. It is well-known
that the RBF kernel can act as an universal approximator. In other
words, it can approximate a linear as well as a non linear type of
interaction. However, the results suggest that indeed it is able to
capture the more general behavior while avoiding to over fit the
data. This can be seen when C1 > 1.4, when the model captures
more the linear behavior.

3.2. Real Data
Dataset 1 includes only the clean segments without apneas
and irregular heart beats. It was used to study the occurrence
of nonlinear interactions when regular respiratory patterns
occur. Figure 4 shows the results. As expected, an increasing
trend is observed in all the parameters when the quantification
of the linear coupling calculated with Px increases. Despite
the significantly larger quantification obtained with Pk

x when
compared to the one with P l

x, the surrogates suggested that
the interactions were purely linear. Another observation is that
significant differences between Px and P l

x were not found.
This means that both parameters quantify the linear part of
the cardiorespiratory interactions in a similar way. The results
suggest that the linear component of the RSA is more prominent
in this dataset.

Dataset 2 was used in order to assess if respiratory signals with
broader bandwidths result in a higher nonlinear component in
the RSA. Figure 5 shows the results. As shown in Varon et al.
(2019), in this case Px, P

k
x , and P l

x are preferred to quantify
the RSA than the standard HF band to avoid the effect of the
broadband respiratory frequency components. As shown in the
figure, significant differences between Px and P l

x were not found.
However, it is also seen here that both parameters might quantify
the cardiorespiratory coupling differently in this case, since the
quantification with Px has less variance than the one with P l

x. On
the other hand,Pk

x was significantly higher thanP l
x in most of the

coupling levels. Despite this, the nonlinear quantification was, in
general, not significant according to the analysis of surrogates.
This result suggests that Pk

x might be over fitting the data.
The last evaluation aimed to analyze the change of the

linear and nonlinear components of the cardiorespiratory
quantifications during sleep stages. The results are in agreement
with the findings presented in Bartsch et al. (2012). Figure 6
displays the results. The work presented in Penzel et al. (2016)
shows that the regulation of the autonomic nervous system
is different during each sleep stage. It is shown that the HR
decreases during sleep, reaching a minimum during deep sleep,
suggesting an increased parasympathetic activity. During REM
sleep, mental activities are more active and thus a higher level
of sympathetic activation is expected, resulting in a higher mean
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FIGURE 3 | Results obtained in simulation 1. C1 models the strength of the linear part of the coupling. C2 models the nonlinear part. The figure on top shows the

results in scenario 1, when C2 = 0. The bottom plot is the scenario when C2 = 2− C1. In both cases, C1 is varied in the interval [0 1.8], in steps of 0.2.

FIGURE 4 | Results using the dataset of clean segments, free of apneas, and with regular respirations.

HR. In addition, the RSA is found significantly less active in REM
sleep than in Non-REM sleep.

This works confirms some aspects of these observations (see
Figure 6). First, it is seen that RSA is significantly stronger
during NREM compared to REM sleep. An interesting trend
observed in the figure is a significantly stronger coupling during
wake than in REM. This might have been due to the spectrum
of the respiratory signals. In order to see the distribution of
the respiratory patterns among the sleep stages, the frequency
characteristic of the respiratory segments on each case were
analyzed. Figure 7 shows the results. No significant differences
were found. While the respiratory frequency has been shown
to be an important confounder in cardiorespiratory analysis,
this figure suggests that the characteristics of the respiratory

patterns in the selected segments are similar and should not
have a confounding effect. A second relevant observation is
that the difference between the quantifications using P l

x and
Pk
x is smaller during deeper sleep stages. This result might

suggest that the nonlinear influence of the respiration is more
noticeable during lighter sleep stages in this dataset. However,
it is important to highlight that the nonlinear quantification of
the RSA with Pk

x was not significantly different to its surrogates
in most of the cases. Despite of this, as observed in the
figure, the quantification with Pk

x is significantly different to
the part quantified by P l

x in all cases except NREM1. Finally,
the significant differences between sleep stages are the same
with all the parameters, with a significantly lower coupling only
during REM.
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FIGURE 5 | Results using the dataset of segments with apneas.

FIGURE 6 | Results in the dataset of segments during different sleep stages. Significant differences between the parameters are marked with *. Significant differences

between sleep stages are marked with ⋆.

FIGURE 7 | Fr for the selection of the model order in the third dataset as described in section 2.3.2.

The paper in Loula et al. (1994) suggested differences in
the nonlinear part of the cardiorespiratory coupling during the
application of anesthesia to healthy subjects. On the other hand,
the paper in Chen et al. (2009) indicates that the nonlinear part of
the cardiorespiratory coupling did not change significantly with
different doses of propofol. Taking these works into account, the
current paper tested the hypothesis that in the used dataset, the

nonlinear part of the RSA might change according to the sleep
stage. The results suggest that a nonlinear coupling component is
not present in the interactions or that it might be too small to be
captured using the proposed approach.

It is important to mention that this work has some limitations.
First, the segments are extracted from OSA patients. The same
study in healthy subjects might show different results. Second,
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the selection of the σk was found to be consistent. However,
the tuning of the regularization term in the SVM problem
is challenging. This is an open problem, not only for this
application, and more research is required to investigate a more
standard methodology to select this parameter.

4. CONCLUSIONS

In this work, a method to quantify the respiratory sinus
arrhythmia based on regression models built with support vector
machines, is presented. It allows to quantify the dominant form of
coupling. The methods are a framework that will allow to analyze
the nature of the regulatory mechanisms of the cardiorespiratory
interactions in different conditions and diseases. The proposed
approach was tested in simulated data. Taking into account the
results obtained from the simulation, real data extracted from
obstructive sleep apnea patients was analyzed. The results suggest
that the nonlinear components of the RSA are not prominent
during sleep stages and that the linear components are dominant
in the analyzed datasets. The work in this paper is an application
in which the evaluation of a physiological network provides
insights of the functioning of the interactions between systems
and demonstrates the added value of this framework. As a future
work, the indexes described in this paper will be compared to
other approaches such as linear and nonlinear calculations of
transfer entropy.
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