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Robust bendable thermoelectric generators
enabled by elasticity strengthening

Wenjun Ding1, Xinyi Shen1, Min Jin2, Yixin Hu1, Zhiwei Chen 1, Erchao Meng3,
Jun Luo 1 , Wen Li 1 & Yanzhong Pei 1

Using body heat for instance, thermoelectric generators have promising
applications for driving wearable electronics continuously but remain a chal-
lenge in terms of recoverable flexibility, as known highly-performing ther-
moelectrics are usually inorganics showing rigidity. It is conceptualized in this
work a large elastic strain ensuring both a largely-curved recoverable bending
and a full recoverability in thermoelectric performance after enormous
bendings. This leads the current work to focus on a microstructure engi-
neering approach for strengthening the elasticity of Ag2Se, in which dense
dislocations and refined grain induced by a multi-pass hot-rolling technique
enable a significant enhancement in elasticity. The resultant hot-rolled elastic
thin thermoelectric generators realize a record bendability, for at least
1,000,000 times at a tiny bending radius of 3mmwith an extraordinary power
density. Such a bendability is applicable to the most curved surfaces of a
human body, suggesting a promising strategy for powerful wearable ther-
moelectrics of all inorganics.

With the rapid development of portable electronics, a powerful, flex-
ible, and durative power supply is urgently demanded. A direct gen-
eration of electricity using body or environmental heat by
thermoelectricity provides a sustainable solution to this demand, in
addition to the technical merits of safety, silence, reliability, and
operation under all weather conditions1,2.

A high power output is the primary criteria for practical thermo-
electric generators, which is determined by the thermoelectric power
factor (PF = S2/ρ) with S and ρ being the Seebeck coefficient and
resistivity, respectively. Many successful strategies offered guidelines
for advancing thermoelectrics power factor3–9. These strategies, how-
ever, generally built upon the periodicity of atomic arrangements,
which are usually limited in inorganic components that are typically
rigid. This leaves the key challenge for wearable demands to make
powerful thermoelectrics flexible since known inherently flexible
organic and their composites are much inferior in performance10–13.
Reported works on flexible thermoelectrics exhibit limited flexibility,
with no safe bending times >1000 so far14–18.

Many studies19–22 on making thermoelectrics flexible were moti-
vated by plasticity/ductility, which indeed ensured a large flexibility of
no breakage. However, this may unsecure the recoverability of ther-
moelectric performance, since any irreversible atomic reconstructions
due to plastic deformations lead to unrecoverable electronic and
thermal transport properties.

Mechanically, elastic bendability offers a solution for fully reco-
verable flexible thermoelectrics, because it not only ensures safely
permitted strains free of plasticity and breakages but also enables the
reservation of initial functionalities after bendings. The maximum
elastic strain (εE

max) is then the key material property measuring both
recoverable bendability and recoverable thermoelectric performance,
an enhancement of which is fundamentally needed for advancing
flexible inorganic thermoelectric generators.

Intrinsic εE
max of a material is proportional to the Poisson’s ratio

(v) via εE
max∝1/(1-v)23, since a large v enables a large corresponding

transverse stress to help energy consumption under a longitudinal
stress. This suggests a guidance for the selection of thermoelectric
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materials having a large v for flexible applications. Extrinsic factors
further enabling a εE

max-enhancement can be often realized by
refining grains and creating dislocations24, indicating the commonly
used strategy in metals25–27 and ceramics28,29 of plastic processing as
an effective pathway for advancing flexible inorganic
thermoelectrics.

Results and discussion
These motive the current work to focus on Ag2Se foils for robust
flexible thermoelectric applications, not only intrinsically due to its
largest v among inorganic thermoelectrics (Fig. S1 and Table S1), but
also because of its plasticity allowing plastic processing for extrinsic
dislocation creation and grain refinement. Surely, the highest ther-
moelectric power factor secured in Ag2Se

30 among silver
chalcogenides31,32 guarantees its highest power output. Existing works
on flexible Ag2Se-based thermoelectric generators largely comes from
the involvement of flexible organic components as either
substrates2,14,15,18 or additions19,33.

A multi-pass hot rolling technique is utilized in this work, leading
to an impressive density of dislocations reaching 1014m−2 with a Bur-
ger’s vector along the [001] direction as well as refinement of the
grains from hundreds of micrometers down to just twenty micro-
meters, as evidenced by the electron backscatter diffraction (EBSD)
observations34,35 (Figs. 1, S2). Both of them significantly enhance the
elasticity of the obtained Ag2Se foils. Eventually, the multi-pass hot-
rolled device of 36μm thick, a typical thickness for flexible thermo-
electric generators14–17,36, survives at least 1,000,000-time elastic
bending at a tiny bending radius of ~3mm, without observable
degradations in the high power output reserved from bulks. Both the
output power density and the bendability are significantly superior to
that of reported flexible thermoelectric devices of polycrystals,
allowing a full applicability of a human body.

Hot rolling is a well-established and cost-effective plastic proces-
sing technique, which allows a feasible approach to deform and thin
inorganic thermoelectrics at appropriate temperatures. Ag2Se under-
goes an orthorhombic to cubic structural transition at 407 K upon
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Fig. 1 | Fabrication, mechanical properties and microstructures. Schematic of
hot-rolling process (a) for Ag2Se foils. Stress versus strain of three-point bending
test for Ag2Se ingot and rolled foil (b). Electron back-scattering diffraction (EBSD)

images and zoomed-in ones showing dense dislocations with statistic analyses in
the rolled foil (c). The inverse pole figures show a [013] grain orientation (d) and a
Burger’s vector along [001] (e, black arrows).
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warming37, of which the atomic rearrangement could facilitate the hot-
rolling process at nearby temperatures. Note the ductility of silver
sulfide was attributed to the uncleavable slipping of sub-lattice units31.

The details of the synthesis, characterizations, and property
measurements of Ag2Se, are shown in the Supplementary.When Ag2Se
is heated up to 150 °C, slightly higher than the orthorhombic-cubic
phase transition temperature, it becomes very soft for an easy multi-
pass rolling with various thickness down to ~30μm (Fig. S3). Indeed, a
36μmthick device focused on here shows a safe bending at a radius of
3mm for at least 1,000,000 times, as further confirmed by the
unchanged thermoelectric properties (Figs. S4, 2). This can be
understood by the largely enhanced εE

max of ~0.8% in rolled Ag2Se foil
(Fig. 1b), because it is larger than the needed strain of ~0.6% (εE

max = t/
2rb with a bending radius of rb and a thickness of t)38. Since both
minimum rb and safe bending times are critical parameters for mea-
suring the elastic bendability, a factor B of bending radius to bending
times ratio for theAg2Sedevice in thiswork is significantly smaller than
those reported (Fig. 2d).

X-ray diffraction (XRD, Fig. S5) results indicate a preferred [013]
orientation of Ag2Se foils after rolling, and the orientation factor F[013]
is about 0.5 (Table S2). Scanning electron microscopy (SEM) obser-
vations and energy dispersive spectroscopy (EDS) analyses ensure the
compositional homogeneity (Fig. S6). Importantly, thermoelectric
performance of hot-rolled foils is quite reproducible with nearly iso-
tropic properties30 (Fig. S7–S8). The existence of dense dislocations

and the increase in carrier concentration lead to a decrease in carrier
mobility in the rolled Ag2Se foils, which further result in a comparable
resistivity but a lower Seebeck coefficient (thus a lower power factor
particularly at T > 340K, Fig. S9).

A lowdevice contact resistance (Rc) is important to realize the full
potential of high-performance thermoelectricmaterials. Silver paste is
usually used for thin-device assembly. To further minimize Rc, the sil-
ver foil of 0.1mm thick is used as an electrode in this work, and Au is
deposited on both ends of the hot-rolled Ag2Se foils to ensure ohmic
metallic contacts with the electrode. With the excellent machinability
of both Ag2Se and elementary silver, a firm touching is achieved by
bolts and nuts (the inset of Fig. 3a). Uniform mechanical pressure on
the foil module is ensured by applying small torque deviation of
~0.0185 ±0.0005 Nm to the bolts (Fig. S10). The internal resistance
(Rin) for single-leg foil device with the size of 5 × 5 ×0.036mm3 was
measured by the four-probe technique across the contacts along
multiple parallel paths for averaging (Fig. 3a). The resulting interfacial
contact resistivity (ρc) at both ends are only ~2.0 and ~2.1mΩ·cm2,
respectively, being significantly lower than those of reported flexible
film devices15,16,18,33,39–47 (Fig. 3b and Table S3). The consistence between
the measured total device resistance of 2.7 Ω and the summation of
materials (2.4 Ω) and contact components (0.02 Ω × 12 = 0.24 Ω for 12
in total contacts of ~0.02 Ω each), suggests both good accuracy in ρc-
determination and uniformity in resistance distribution among
contacts.

Fig. 2 | Bendability of hot-rolled thermoelectric Ag2Se.The 36μmthick device in
thiswork shows unchanged resistance (a), Seebeck coefficient (b) andpower factor
with a statistical analysis (c) upon 1,000,000-time bending at a radius of 3mm,

ensuring its extraordinary elastic B-ratio of bending radius to bending times (d),
with a comparison to that of ever-reported flexible devices2,16–19,33,36,39–46,48–57.
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Six n-type Ag2Se legs of 20 × 5 × 0.036mm3 are assembled in
this way, paring with copper wires of a positive but quite close to
zero Seebeck coefficient, for a device (Fig. S11). Both the output
voltage and power at interested temperature gradients are quite
comparable to the predictions according to the material properties
(Fig. S12). Eventually, a maximum output power (Pmax) up to 180 μW
is reached at ΔT ~ 69 K (Fig. S13), corresponding to a power density
(Pdmax, power divided by the cross-section area of thermoelectric
materials) as high as 167W/m2 (Fig. 3c). Moreover, the specific
power density (PdmaxL/ΔT2, with L being the leg length) of the device
in this work is outstanding (Fig. 3d). Using instead an better per-
forming material, tape-supported single-crystalline Bi2Te3-based
thin films48 showed an even higher power density. Limiting the
deformations to be elastic and further strengthening its elasticity
(Fig. S14) are expected to enable extra robust bendability, perfor-
mance recoverability, free-standability and mass-producibility. Fig.
S15 shows a demonstration of outputting an open-circuit voltage of
4.2mV under a ΔT of ~8 K.

In summary, the fact that elastic bending fundamentally allows
recoverability, in principle offers an additional opportunity of flex-
ibility even in inorganics with rigidity. This work demonstrates in
elasticity-strengthened Ag2Se of an intrinsic large Poisson’s ratio, and
extrinsic dense dislocations and refined grains, a successful realization
of safe bending at a 3mm radius for at least 1,000,000 times while
retaining an extraordinary power output, through a facile hot-rolling

technique. This concept is believed to be equally applicable in other
materials/devices for topping up functionalities with robust
bendability.

Methods
Experimental details of materials and methods are shown in Supple-
mentary Information.

Data availability
All data necessary to understand and assess thismanuscript are shown
in themain text and the Supporting Information. Thedata that support
the findings of this study are available from the corresponding author
upon reasonable request.

Material availability
Requests for materials should be addressed to Yanzhong Pei, Wen Li,
and Jun Luo.
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