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Abstract 

Background:  The topology of metabolic networks is both well-studied and remark-
ably well-conserved across many species. The regulation of these networks, however, 
is much more poorly characterized, though it is known to be divergent across organ-
isms—two characteristics that make it difficult to model metabolic networks accu-
rately. While many computational methods have been built to unravel transcriptional 
regulation, there have been few approaches developed for systems-scale analysis and 
study of metabolic regulation. Here, we present a stepwise machine learning frame-
work that applies established algorithms to identify regulatory interactions in meta-
bolic systems based on metabolic data: stepwise classification of unknown regulation, 
or SCOUR.

Results:  We evaluated our framework on both noiseless and noisy data, using several 
models of varying sizes and topologies to show that our approach is generalizable. We 
found that, when testing on data under the most realistic conditions (low sampling 
frequency and high noise), SCOUR could identify reaction fluxes controlled only by the 
concentration of a single metabolite (its primary substrate) with high accuracy. The 
positive predictive value (PPV) for identifying reactions controlled by the concentra-
tion of two metabolites ranged from 32 to 88% for noiseless data, 9.2 to 49% for either 
low sampling frequency/low noise or high sampling frequency/high noise data, and 
6.6–27% for low sampling frequency/high noise data, with results typically sufficiently 
high for lab validation to be a practical endeavor. While the PPVs for reactions con-
trolled by three metabolites were lower, they were still in most cases significantly better 
than random classification.

Conclusions:  SCOUR uses a novel approach to synthetically generate the training 
data needed to identify regulators of reaction fluxes in a given metabolic system, 
enabling metabolomics and fluxomics data to be leveraged for regulatory structure 
inference. By identifying and triaging the most likely candidate regulatory interactions, 
SCOUR can drastically reduce the amount of time needed to identify and experimen-
tally validate metabolic regulatory interactions. As high-throughput experimental 
methods for testing these interactions are further developed, SCOUR will provide criti-
cal impact in the development of predictive metabolic models in new organisms and 
pathways.
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Background
Biochemists have amassed a large amount of knowledge about the topology of the 
chemical reaction network that cells use to transform nutrients into energy and the 
building blocks for more cells, collectively known as “metabolism”. The substrates, 
products, and cofactors for hundreds of reactions have been elucidated, from the 
most central pathways like glycolysis to more distant pathways for the biosynthesis of 
uncommon metabolites. Many of these pathways are extremely well-conserved across 
the tree of life [1], with the basics of central carbon metabolism being quite similar 
from bacteria to humans. What varies much more greatly across species, and what 
allows such diverse metabolic phenotypes to arise from such otherwise similar reac-
tion networks, is the regulation and utilization of the reactions in those networks. 
However, this regulation, despite its major importance in the function and diversity 
of life, is nowhere near as well understood as the topology of the metabolic network 
[2]. This is especially true for the direct regulation of reactions by metabolites, which 
is particularly poorly characterized compared to some other levels of regulation like 
transcriptional regulation. This is in large part due to the difficulty in experimental 
characterization of direct regulation by metabolites.

One critical form of direct regulation of metabolic reactions (and arguably the 
most common) is allosteric regulation, where a regulator and a protein (in this case 
an enzyme) interact at a location other than the active site [3]. In this mechanism, 
a metabolite that is not the primary substrate of an enzyme binds to that enzyme 
and inhibits or promotes the reaction rate, most typically via an induced change in 
protein conformation. While metabolite levels can affect processes on the genome, 
transcriptome, and proteome levels [4], metabolite-dependent regulation of enzyme 
reaction rates is extremely important because it results in the control of reactions on 
a short timescale (less than 30 s) due to the direct interaction between metabolite and 
enzyme rather than requiring intermediate steps like transcription to effect changes 
[5, 6]. Their prevalence in metabolic systems makes it vital to account for these regu-
latory interactions to create accurate metabolic models.

Metabolic models that use only the known stoichiometry of the system and exclude 
metabolite-dependent regulation often have extremely limited accuracy. Machado 
et al. showed that including allosteric regulation in a model of Escherichia coli is vital 
for predicting flux dynamics and can reveal “metabolic hubs,” where a metabolite 
is connected to many reactions instead of only the few found in the stoichiometric 
topology [6]. Despite its prevalence and importance, the exact structure of this regu-
latory network (which metabolites regulate which fluxes) is typically unknown in all 
but the best-studied metabolic pathways in the best-studied organisms. With hun-
dreds of metabolites and hundreds of fluxes in any given metabolic network and no 
effective high-throughput methods for finding metabolite-protein interactions (com-
pared to, for example, protein–protein interactions [7, 8]), the space of possible regu-
latory interactions is too vast to experimentally explore [9].
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In contrast, the comparatively more mature fields of genomics and transcriptomics 
have yielded a variety of experimental approaches to explore transcriptional regulation, 
providing sufficient data to motivate the development of computational approaches to 
map out gene regulatory networks [10, 11]. Some of the latest computational approaches 
have leveraged spatial and temporal gene expression data, environmental data, and 
rapid gene perturbation data to better predict and understand gene regulation [12–14]. 
Machine learning has been used with increasing popularity in recent years to build gene 
regulatory networks [15–17]. Other efforts have even integrated metabolomics data 
with transcriptional data to discover what metabolites control transcriptional responses 
and gene expression [18, 19].

There have been far fewer computational approaches to identify metabolite-dependent 
regulatory interactions of enzymes in metabolic systems. Link et  al. [5] used dynamic 
metabolite data to fit an ensemble of kinetic models with different putative regulatory 
interactions to rank which interactions contributed the most to fitting accuracy. Another 
approach by Hackett et  al. named SIMMER [20], estimated kinetic parameters using 
non-linear optimization to establish if all reactions in a system could be sufficiently 
explained by Michaelis–Menten kinetics or if additional allosteric parameters were 
required. While these computational approaches are invaluable in saving time and costs 
for laboratory experiments, both methods rely on sampling [5] or estimating [20] kinetic 
parameters, which can be computationally taxing. An approach for identifying metab-
olite-dependent regulatory interactions without requiring kinetic parameters would 
be extremely useful for systems biology modeling. Although approaches using protein 
docking, such as AlloFinder [21], are promising for future ab initio prediction of regula-
tory interactions, current limitations in the accuracy of molecular simulations make sys-
tems-scale exploration of allosteric interaction space challenging and motivate a desire 
for approaches that can exploit increasingly widely available experimental datasets for 
these purposes.

Here, we present a new machine learning approach for stepwise classification of 
unknown regulation (SCOUR) that leverages metabolomics and fluxomics data to pre-
dict likely metabolite-dependent regulatory interactions. SCOUR uses established 
machine learning algorithms in a stepwise process that focuses on identifying reactions 
controlled by one, two, or three metabolites. While SCOUR benefits from stepwise, 
serial inference of these increasingly complex interactions, each step is independent, 
uses different classification features, and can be performed without the others. Impor-
tantly, the classification task that SCOUR looks to address typically has insufficient 
training data available to generate useful models, so we devise a strategy we refer to as 
“autogeneration” that we use to create sufficient data to train the models. We test our 
framework on two synthetic model networks, as well as on models of Saccharomyces 
cerevisiae and E. coli metabolism, to show that SCOUR can be used on a variety of sys-
tems. Applying SCOUR to poorly-studied organisms has the potential to enable discov-
ery of previously unknown regulatory interactions that are key to developing accurate 
and predictive metabolic models.
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Methods
Metabolic networks

In this work, we examined four metabolic networks of varying size and complexity: two 
synthetic model networks and two biological systems. We simulated each metabolic net-
work with fifteen sets of randomly generated metabolite concentration initial conditions 
(except for the first set of initial conditions for the biological systems, which were kept 
at their original values) to produce fifteen sets of metabolite concentration and flux data 
used in the testing sets of SCOUR. Each metabolic network is described in detail below.

Synthetic model networks

To initially test and evaluate SCOUR, we created two small synthetic model networks. 
The smaller synthetic model (Fig. 1a) contains six metabolites and six reactions, while 
the bigger synthetic model (Fig. 1b) contains ten metabolites and ten fluxes. Synthetic 
systems of these sizes are small and simple enough to easily assess the performance of 
SCOUR while developing the framework, but large enough to emulate biological behav-
ior of metabolite-flux interactions in metabolic systems. In both models, the influx (v1) 
is a constant flux that is not controlled by any metabolites and is not considered when 
using SCOUR. Both models contain reactions controlled by one, two, or three metabo-
lites, including both positive and negative regulatory interactions. Table 1 summarizes 
the number of each type of interaction in each model. The network dynamics were 
defined using Biochemical Systems Theory (BST) equations using power law kinetics for 
reaction rates [22], with mass action parameters randomly assigned between 0.1 and 1 
and regulation parameters randomly assigned between 0.1 and 1 for positive regulatory 
interactions and between − 1 and − 0.1 for negative regulatory interactions.

Biological models

To test SCOUR on more biologically relevant systems, we examined a model of central 
carbon metabolism in Escherichia coli and a model of glycolysis in Saccharomyces cer-
evisiae [23, 24]. The E. coli model contains 18 metabolites and 48 reactions, while the 
S. cerevisiae model contains 22 metabolites and 24 reactions. We used the previously 

Fig. 1  Synthetic Model Networks. Two synthetic model networks (a Smaller Synthetic Model and b Bigger 
Synthetic Model) created using BST frameworks to generate in silico metabolomics and fluxomics data. 
xi represent metabolites, vi represent reaction fluxes (solid black lines), long-dashed red lines represent 
regulatory behavior that causes inhibition, and short-dashed green lines represent regulatory behavior that 
increases activity
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published kinetic equations and parameters for these systems; in both cases, the math-
ematical forms of the rate expressions include Michaelis–Menten, Hill, and mass action 
kinetics. In the E. coli model, the fluxes for glucose kinetics, murein synthesis, tryp-
tophan synthesis, and methionine synthesis are constant and not controlled by any 
metabolites. Likewise, in the S. cerevisiae model, the fluxes for glucose mixed flow to 
extracellular medium and cyanide flow are constant and not controlled by any metabo-
lites. As in the synthetic models, both the S. cerevisiae and E. coli models include reac-
tions controlled by one, two or three metabolites, although they also have reactions 
controlled by four metabolites. Table 1 summarizes the number of each type of interac-
tion in each model. Because both biological models have significantly more metabolites 
and reactions than the synthetic models, the number of possible interactions that need 
to be considered is substantially greater.

Autogenerated training data

Machine learning models must be trained using data that are broadly representative of 
the input data they are likely to encounter, which often entails using datasets that are 
as large as possible. In metabolism, there is a wide variety of metabolic reactions with 
disparate mechanisms and functional behaviors (e.g. bi–bi sequential reactions vs. ping–
pong reactions) [25] or that are controlled by a different number of metabolites. How-
ever, appropriate training data for many of these possible situations are sometimes not 
available at all, let alone in sufficient quantity to enable machine learning model train-
ing. Accordingly, we chose to generate hundreds of artificial interactions to use as train-
ing data in an approach we refer to as “autogeneration”. While the practice of creating 
artificial training data has been used in other machine learning contexts before [26–29], 
to the best of our knowledge it has not been used in producing metabolite-dependent 
regulatory interaction data.

Damped sine waves with random parameters were generated to mimic common 
metabolite concentration profiles; these profiles were then used to calculate flux pro-
files using BST equations with random parameters [22]. Features for interactions labeled 

Table 1  The number of n-controller metabolite interactions that exist in or are possible for each 
model

For possible interactions, the first number assumes that regulatory interactions are correctly identified at each step of 
the framework and are removed from consideration for higher-order interactions. The number in parentheses is the total 
number of possible interactions if a stepwise framework were not used, illustrating the significant decrease in the number 
of interactions to be assessed in a stepwise framework

Smaller 
synthetic model

Bigger 
synthetic 
model

S. cerevisiae E. coli

# of 1-controller interactions 1 3 5 25

# of possible 1-controller interactions 5 9 12 39

# of 2-controller interactions 2 3 10 13

# of possible 2-controller interactions 20 (25) 54 (81) 157 (262) 243 (668)

# of 3-controller interactions 2 3 5 2

# of possible 3-controller interactions 20 (50) 108 (324) 520 (2720) 336 (5384)

# of 4-controller interactions N/A N/A 2 4

# of possible 4-controller interactions N/A N/A 380 (17,860) 480 (27,120)
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as true positives in the training data were calculated using these simulated concentra-
tion profiles and corresponding calculated flux profiles. The same process was used to 
calculate features for interactions labeled as true negatives, except that one or more of 
the input metabolite concentration profiles was replaced by a different, random metab-
olite concentration profile that was not used in the calculation of the target flux pro-
file. This approach for autogenerating training data aims to circumvent the requirement 
for large dynamic metabolomics and fluxomics datasets to train the machine learning 
framework, which are currently not widely available on the scale that would be required. 
Because this autogeneration approach is independent of SCOUR, it can possibly be used 
for other computational methods that require an abundance of metabolic data. Further 
details on autogeneration of training data can be found in the Additional file 1.

Noisy data

To generate noisy data that are more representative of what is expected to be acquired 
experimentally, we used two different sampling frequencies and two coefficients of vari-
ation (CoV) for randomly-added noise, for a total of four conditions. Sampling frequen-
cies of 50 and 15 timepoints (nT) and CoVs of 0.05 and 0.15 were used, where a higher 
CoV represents more noise (experimental error). The smaller number of timepoints 
and the two levels of added noise are reasonable values for what one might expect from 
experimental mass spectrometry data for metabolomics or fluxomics. Starting with 
noiseless data, each metabolite and flux value in each time course was replaced with 
a random value drawn from Ni,k ~ (yi(tk),CoV·yi(tk)), where yi(tk) is the value of species 
(metabolite or flux) i at time point k. For each timepoint, three noisy data values were 
generated to mimic triplicate samples, which is a common practice in metabolomics and 
fluxomics experiments.

Data pre‑processing

For noisy data, we applied two different pre-processing steps to the data. For the one-
controller metabolite interaction inference step of the framework, we used the median 
sample of the triplicate noisy data to calculate the features in the training and testing 
sets. For the two- and three-controller metabolite interaction inference steps, instead of 
using the medians, a moving Gaussian filter was applied to smooth the triplicate noisy 
data before calculating their features. The window size of the filter was chosen to be ¼ 
of the total simulation time, which was found to smooth the data without overfitting to 
the noise itself. While smoothing the noisy data for two- and three-controller metabo-
lite interactions led to an increase in SCOUR’s performance, it was detrimental for one-
controller metabolite interactions. We found that a few of the one-controller metabolite 
interaction features were more sensitive to the smoothed data than the noisy median 
data and would cause greater variability in SCOUR’s performance across repetitions.

Features

Each step of the framework contains different “features” used to predict whether a par-
ticular interaction is likely to be correct. These “features” are scalar-valued outputs of 
functions that quantify characteristics of concentration and flux profiles and the rela-
tionships between different profiles, which may thus indicate whether a given metabolite 
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or set of metabolites regulates a given flux. Different features were used for the predic-
tion of interactions controlled by different numbers of metabolites (i.e., one-controller 
vs. two-controller vs. three-controller metabolite interactions). This allows the features 
to be customized to specific interaction types (and avoids the requirement that they must 
be valid or useful for all interaction types), which is expected to increase SCOUR’s over-
all accuracy compared to using the same features for all steps. Features were designed 
using biochemical insight into how metabolites are known to interact with enzymes 
and how these interactions would manifest in concentration and flux profile data. For 
example, for the one-controller metabolite interaction step, the Spearman correlation 
between fluxes and metabolites was used as a feature, as reaction fluxes are expected to 
be highly (though not necessarily linearly) correlated with the metabolites that control 
them. Additionally, features were created based on the expectation that for every set of 
metabolites that completely defines an output flux, each possible set of metabolite input 
concentrations can only yield one single output of flux reaction rate. A list and descrip-
tion of all features used in SCOUR can be found in Additional File 1: Table S1.

Machine learning algorithms and stacking

Stacking is a technique used in machine learning that consolidates predictions from mul-
tiple machine learning algorithms [30]. Due to their different underlying assumptions 
and approaches, some machine learning approaches may identify regulatory interactions 
that other approaches miss. Combining predictions from different algorithms has been 
shown to boost overall accuracy. In SCOUR, we used four machine learning algorithms: 
random forest [31], k-nearest neighbors (kNN) [32, 33], shallow neural networks [34], 
and discriminant analysis [35]. Each of these algorithms are some of the most robust 
and commonly used machine learning approaches, but they are all fundamentally very 
different from one another. In SCOUR, we use kNN and discriminant analysis as binary 
classifiers: algorithms that can predict only two discrete labels. Random forest and neu-
ral networks are used as regression algorithms, where both predict continuous values. 
While most of these machine learning methods can be used as either discrete classi-
fiers or regression models, we decided to use a mixture of these two types of algorithms 
because we believe that using a more diverse class of algorithms will minimize poten-
tial bias toward algorithms that are very similar to one another. In the stacking process, 
the predictions from the four models were used as the input of a secondary metamodel 
(another discriminant analysis classifier) to give a final classification output for each reg-
ulatory interaction that is tested. More details on the stacking method can be found in 
Additional File 1: Additional file Information and Fig. S1.

Stepwise approach

SCOUR uses a stepwise approach to identify different types of regulatory interactions 
at each step, beginning with the identification of one-controller metabolite interactions. 
First, two training datasets that consist of true positive (controlled by a single metab-
olite) and true negative (controlled by multiple metabolites) interactions are autogen-
erated for the two levels of the stacking model. The features described in Additional File 
1: Table S1 are calculated for each interaction in the first autogenerated dataset, which 
are used to train the random forest, kNN, shallow neural network, and discriminant 
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analysis models in the first level of the stacking model. Next, the discriminant analysis 
model in the second level of the stacking model is trained using the feature matrix cal-
culated from the second autogenerated dataset. Finally, the completely trained stacking 
model predicts whether each interaction in the testing dataset (comprising all possible 
one-controller metabolite interactions in the system of interest) is controlled by a single 
metabolite. This process is repeated for predicting two- and three-controller metabolite 
interactions.

This stepwise approach has two key advantages. First, it allows for completely inde-
pendent classification models and features that can be crafted for specifically identify-
ing reactions that are controlled by one, two, or three metabolites. We found (data not 
shown) that developing a one-step platform for simultaneous multiclass prediction (i.e. 
reactions controlled by different numbers of metabolites) led to worse performance even 
when using machine learning algorithms such as random forest and neural networks 
that can be tailored toward multiclass classification. Because SCOUR is trying to predict 
not just the number of metabolites controlling a reaction but also the exact controller 
metabolites, this additional layer of complexity is easier to address with multiple binary 
classification models.

The second advantage of using a stepwise approach is that after each step, fluxes whose 
regulatory status has already been identified are removed from consideration in the next 
step so that there are fewer interactions to be tested by the machine learning algorithms. 
This reduces the computation time of the entire stepwise process, reduces the chances 
of false positives, and allows subsequent steps and features to be more simply designed 
under the assumption that lower-order regulatory interactions will not be present in 
later steps. However, these advantages are at the risk of removing fluxes at a step earlier 
than when their true regulatory status could be identified. A comparison of the number 
of interactions that need to be tested whether or not the stepwise framework is used for 
each of the evaluated models can be found in Table 1. A schematic of SCOUR’s workflow 
is shown in Fig. 2.

Framework performance metrics

To assess the performance of our framework in identifying different types of regulatory 
interactions, we evaluated four different metrics: accuracy, sensitivity, specificity, and 
positive predictive value (PPV). Accuracy is the percent of candidate regulatory inter-
actions that are identified correctly as existing or not existing in a model. While accu-
racy can be a good metric if the classes (i.e. candidate interactions that are truly in the 
model vs. candidate interactions that are not in the model) are well-balanced, this is not 
the case for combinatorial consideration of potential metabolic regulatory interactions: 
there are many more candidate metabolite and reaction flux combinations than there 
are actual regulatory interactions in a given biological system. Sensitivity and specificity 
separate accuracy into two metrics that measure, respectively, the percent of positives 
(i.e. true regulatory interactions) that are identified correctly and percent of negatives 
(i.e. candidate regulatory interactions that are not actually in the model) that are identi-
fied correctly. PPV is the percentage of interactions predicted by the model that are true 
positives, an important metric to consider when one plans on experimental validation of 
predictions because it indicates how much effort is typically required for the validation 
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of every newly discovered interaction. Exceedingly low PPVs are undesirable for predic-
tions that are difficult to experimentally test, including metabolite-dependent regulation 
of reaction rates, because they signify that a large number of predicted interactions must 

Fig. 2  Workflow of stepwise machine learning framework for identifying one-, two-, and three-controller 
metabolite interactions. Blue circles and arrows represent metabolites and the fluxes they might interact 
with, respectively, in the training set. Orange circles and arrows represent metabolites and the fluxes they 
might interact with, respectively, in the testing set. In each step, the training set is used to train the machine 
learning classifier for fluxes with a specific number of metabolite controllers, which is then applied to the 
testing set to predict which fluxes are in that category. Between each step of the workflow, fluxes that have 
been positively identified are removed from further consideration in the test set
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be tested with these difficult experimental methods in order to find any true, validated 
interactions.

Results
Performance on noiseless data

When evaluating SCOUR on noiseless data, we found good overall predictive accuracy 
for both synthetic models (Fig.  3a, b). We trained SCOUR on 30 independent sets of 
noiseless autogenerated data to assess the sensitivity of the framework to different sets 
of autogenerated training data. The average sensitivities and specificities for all steps in 
SCOUR were above 88% for both models. PPVs were above 77% for predicted one- and 
two-controller metabolite interactions, and above 58% for predicted three-controller 
metabolite interactions.

We found similar results when testing SCOUR on noiseless data simulated from the E. 
coli and S. cerevisiae systems (Fig. 3c, d). As in the synthetic models, the PPV for both 
of these biological models decreased as the number of controller metabolites increased, 
though in a steeper fashion likely due to the increased complexity of these systems. The 
accuracy, sensitivity, and specificity in both biological models were still above 71% for all 
steps, and the PPVs for one- and two-controller metabolite interactions were all above 

Fig. 3  SCOUR performance on synthetic (a Smaller Synthetic Model and b Bigger Synthetic Model) and 
biological models (c S. cerevisiae and d E. coli) using noiseless training and test data. Bar graphs for accuracy, 
sensitivity, specificity, and PPV for each step of SCOUR in each tested model. Error bars represent the standard 
error of the mean (n = 30 from independent autogenerated training replicates)
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32%, despite the increase in model complexity. The low PPV for identification of three-
controller metabolite interactions for both biological models (< 8%) despite high speci-
ficity (> 85%) was attributable to the highly imbalanced nature of the testing data. Out of 
the large number of candidate three-controller metabolite regulatory interactions that 
must be classified (Table 1), only a few are true positives and consequently there is an 
increased likelihood for false positive predictions. The large standard error of the mean 
for sensitivity in the E. coli model when identifying three-controller metabolite interac-
tions is due to SCOUR removing the fluxes of the two true positive interactions in a pre-
vious step, which leads to the sensitivity not being calculated in several of the repetitions 
(due to the absence of any true positives or false negatives).

Performance on noisy data

While using noiseless data gives a sense for the framework’s performance under ideal 
conditions, the realities of metabolomic and fluxomic experimental limitations can lead 
to significant deviation from these idealized assumptions. To assess SCOUR’s perfor-
mance under more biologically relevant conditions, we examined two factors that need 
to be considered when using real metabolomics and fluxomics data: decreased experi-
mental sampling frequency (and thus less information content to enable identification 
of true regulatory interactions) and increased experimental measurement noise. To give 
SCOUR a baseline performance level to compare to, we also created a classifier that ran-
domly predicted whether a metabolite–flux interaction was a true positive or true nega-
tive interaction and used this to calculate a PPV at each step. Each interaction had a 50% 
chance of being classified as either a true positive or true negative in each step of the 
framework. For this random predictor, we assumed that the correct reaction fluxes were 
removed at each step, giving this classifier an advantage over our framework by greatly 
reducing the number of possible false positive interactions.

Assessment of SCOUR’s performance on noisy data from the synthetic models 
(Fig. 4a–f) yielded similar trends to the results from noiseless data (Fig. 3a, b). For both 
decreased sampling frequency and increased experimental noise (Fig. 4a–f), SCOUR’s 
overall accuracy unsurprisingly decreased, but still allowed for effective identifica-
tion of many regulatory interactions in each model. In both synthetic models, there 
was an expected decrease in sensitivity and PPV with decreasing sampling frequency 
or increasing noise. As in the noiseless case, the PPV decreased for fluxes with more 
controller metabolites due to the increase in candidate regulatory interactions (and 
thus, an increase in possible false positive predictions) tested at each stage. In the most 
experimentally realistic scenario (nT = 15, CoV = 0.15), SCOUR still yielded PPVs that 
were acceptable for lab validation when classifying one- and two-controller metabolite 
interactions (> 59% and > 18%, respectively). The mean PPVs for one- and two-controller 
metabolite interactions were also better than the random predictor in both synthetic 
models across all conditions, and SCOUR outperformed the random predictor in most 
cases when classifying three-controller metabolite interactions.

The results from testing on biological models with noisy data (Fig. 4g–l) were simi-
lar to those from the synthetic models (Fig. 4a–f ). For both the S. cerevisiae and E. 
coli models, the PPV was fairly consistent (with slight decreases) for any given inter-
action type across the increasingly challenging noisy conditions, while accuracy, 
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sensitivity, and specificity sometimes exhibited slightly more variability across those 
conditions. For the S. cerevisiae model, the PPV remained high (> 69% on average) 
in all conditions for identification of one-controller metabolite interactions and was 
above 25% for identification of two-controller metabolite interactions. These PPVs 
for one- and two-controller metabolite interactions are sufficiently high to allow for 
feasible experimental validation of these predictions to identify previously unknown 
interactions. For three-controller metabolite interactions, the PPV was below 12% for 
all conditions, which is not ideal from the standpoint of experimental practicality. In 
the E. coli model, the accuracy, sensitivity, specificity, and PPV were high for one-
controller metabolite interactions in all conditions (> 92%), but the PPV dropped to 
less than 13% for two-controller metabolite interactions and was essentially 0% for 
three-controller metabolites (and a large standard error of the mean for sensitivity 
was observed, as in the noiseless condition in Fig. 3d). This would make it challeng-
ing to experimentally validate the E. coli predictions for two- and three-controller 
metabolite interactions without a guided high-throughput approach. Nevertheless, 
the PPVs for both biological systems when using SCOUR were on average better than 
the PPVs of the random predictor for one- and two-controller metabolite interactions 
for all conditions.

Fig. 4  SCOUR performance on synthetic (a-c Smaller Synthetic Model and d-f Bigger Synthetic Model) and 
biological models (g-i S. cerevisiae and j-l E. coli) using noisy and low sampling frequency training and test 
data. Solid lines represent accuracy, sensitivity, specificty, and PPV performance of SCOUR on each model for 
each step of the framework. Dashed lines represent the PPV if interactions were randomly classified. Error bars 
represent the standard error of the mean. (n = 30 from independent autogenerated training replicates)
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Discussion
Our results indicate that SCOUR is a promising route for in silico prediction of metab-
olite-dependent regulation of metabolic fluxes using metabolomics and fluxomics data. 
On noiseless data, SCOUR predicts one- and two-controller regulatory interactions with 
high PPV in both synthetic and biological models, with three-controller interactions 
also predicted extremely well in some systems. While the use of noisy data leads to an 
expected drop in performance, SCOUR still provides extremely high PPV for one-con-
troller interactions in all systems and high (experimentally useful) PPV for the synthetic 
models and the S. cerevisiae model when predicting two-controller metabolite interac-
tions. SCOUR’s PPVs for these two steps greatly outperformed the PPVs of a random 
classifier in almost all cases. PPVs for three-controller metabolite interactions remained 
useful for the synthetic models but pushed the bounds of practical utility in the S. cerevi-
siae and E. coli models, likely attributable in large part to the combinatorial growth of the 
number of candidate interactions that must be tested and thus the concomitant growth 
in the number of false positives. Regardless of whether the three-controller interaction 
predictions are sufficient for experimental validation, the PPV in the S. cerevisiae model 
is significantly greater than the PPV for random classification for all noisy conditions 
except for the lowest sampling frequency and highest noise case (Additional File 1: Fig. 
S2). This suggests that SCOUR would still be helpful for identifying these types of inter-
actions compared to indiscriminate testing all combinations of interactions as higher-
throughput guided experimental approaches are developed.

We believe the unusually sharp decrease in PPV for the E. coli model between the one- 
and two-controller interaction predictions is largely attributable to two reasons. First, 
the E. coli model contains three two-controller metabolite interactions where the two 
controller metabolites are highly correlated with each other (> 99% correlation; Addi-
tional File 1: Fig. S3). This presents an identifiability problem, with it being extremely 
difficult to decouple the effects of the two metabolites once even a small amount of noise 
is added to their data. This in turn affected the utility of several features in our machine 
learning models, which led to these three interactions rarely being identified by SCOUR 
and thus also led to lower sensitivities and PPVs. Second, as previously discussed, the 
large size of the E. coli model necessitates testing many candidate regulatory interac-
tions. Even with relatively high specificity, the resulting false positives from these tests 
can suppress the PPV. This is a common problem found in other efforts to determine 
regulatory activity (or any work with imbalanced datasets), where one class (e.g. true 
negative interactions) significantly outnumbers the other class (e.g. true positive interac-
tions) [20].

Throughout the evaluation of SCOUR, we have relied on PPV as a performance 
metric because it is a valuable indicator of whether the predictions by SCOUR are 
worth experimentally validating. F1 score is another performance metric that is calcu-
lated from PPV and sensitivity and is often used for imbalanced datasets such as those 
found in this work. When using F1 scores, we found that SCOUR still outperformed 
random classification of one- and two-controller metabolite interactions in all models 
under all noisy conditions evaluated (Additional File 1: Fig. S5). For three-controller 
metabolite interactions, the difference in performance between SCOUR and random 
classification is less clear and we would once again conclude that it would be difficult 
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to recommend lab validation of the predictions for these types of interactions without 
high-throughput guided methods. While F1 score is an important evaluation met-
ric and still verifies that SCOUR is a useful platform for identifying one- and two-
controller metabolite interactions, we believe that PPV is a more important criterion 
because of its relevance to experimental validation: PPV indicates how many undis-
covered interactions could be identified out of those predicted by SCOUR, regardless 
of how many true positive interactions exist.

Perhaps the most striking feature of SCOUR is its use of the autogeneration of 
synthetic interactions for training data. Because machine learning models generally 
require large amounts of data for training, and because this scale of data is typically 
not available for metabolomics and fluxomics data, we created a method to automati-
cally generate training data that are in some way representative of a wide variety of 
real biological interactions. While these autogenerated “interactions” may not per-
fectly recapitulate the data that result from real reactions, SCOUR’s success shows 
that this autogeneration method can sufficiently train machine learning algorithms to 
identify regulatory interactions in many different systems. Because dynamic metabo-
lomics and especially fluxomics data are so expensive and difficult to acquire with 
current analytical tools, this autogeneration method may prove useful for other tasks 
that require large amounts of these types of data.

Although this proof-of-principle framework has demonstrated significant potential 
for identification of many different regulatory interactions, there are several potential 
future avenues to improve overall performance. We note that both training and test-
ing on autogenerated data produces higher PPVs (Additional File 1: Fig. S6), which 
indicates that the autogenerated data do not perfectly capture biological interactions. 
Autogeneration of training data using Michaelis–Menten or other kinetics equations 
instead of BST equations could improve machine learning performance by generat-
ing training data that are more representative of the types of kinetics encountered in 
biological systems. While we chose to initially use BST equations for autogeneration 
based on their simplicity and utility in modeling many different systems [36], there 
are undoubtedly limitations to their generalization.

Second, as in all machine learning approaches, there is room to improve the fea-
tures used to help predict true interactions. We designed knowledge-driven features 
based on how metabolites interact with the reaction fluxes they control. Data-driven 
features derived from raw metabolomics and fluxomics data could be beneficial if 
there are sufficient data to drive the derivation of these features, including the under-
lying “ground truth” about whether a given interaction truly exists in a system. Such 
features could include graph theoretical characterization of the network topology of 
how metabolites and fluxes are connected to each other, which has previously been 
used in metabolic contexts [37, 38]. However, an outstanding challenge will be how 
to include autogenerated data that are representative of these topological trends and 
capture the biological intricacies of metabolic systems, given that the autogenerated 
data are by definition synthetic and at least partly non-biological in nature. Addition-
ally, machine learning algorithms for input to the stacking model beyond those tested 
here could also improve SCOUR’s performance.
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Finally, the preprocessing of noisy experimental data undoubtedly can impact down-
stream analytical performance. While we settled on the median sample of the triplicate 
data when calculating features for one-controller metabolite interactions, and a Gauss-
ian moving filter to smooth the data for two- and three-controller metabolite interac-
tions, we also tried an average moving filter as well as an in-house smoothing approach 
[39]. Because the framework mostly produces extremely accurate results on noiseless 
data for all models tested, an improved data pre-processing approach (e.g., filtering, nor-
malization, scaling, or other smoothing methods [40–42]) could significantly increase 
classification performance.

Notwithstanding these potential avenues for improvement, SCOUR is already a useful 
tool. At the very least, SCOUR can determine with high confidence reaction fluxes that 
are only controlled by a single metabolite, eliminating swaths of the metabolic network 
where metabolite-dependent regulation is unlikely to occur. However, SCOUR can also 
identify many more complex interactions, including possibly pointing towards reaction 
fluxes controlled by four or more metabolites (Additional File 1: Fig. S4).

Conclusions
SCOUR is a proof-of-principle for how metabolomics and fluxomics data can be lev-
eraged with machine learning to find metabolite-dependent regulatory interactions; to 
our knowledge, this is the first reported example of such an approach. The identification 
of metabolite-dependent regulatory interactions has to date been critically hampered 
by experimental limitations in measuring and validating these interactions, making 
SCOUR’s predictions and triaging particularly valuable for such labor-intensive endeav-
ors. Enabled by a method for autogenerating training data that reasonably mimic data 
from real biological systems, SCOUR circumvents the requirement for massive training 
sets that is typically associated with machine learning approaches. While metabolomics 
and fluxomics data are often collected at putative steady states, it is quite feasible to col-
lect these data dynamically to leverage SCOUR’s potential for biological discovery. This 
means that as analytical methods for measuring metabolomics and fluxomics become 
cheaper and easier, and more data are available for analysis, SCOUR will be ready to take 
full advantage of these new datasets to discover biochemical regulatory interactions.

Abbreviations
BST: Biochemical systems theory; CoV: Coefficient of variance; nT: Number of timepoints; PPV: Positive predictive value; 
SCOUR: Stepwise classification of unknown regulation.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04281-7.

Additional file 1 . Supplementary methods and figures.

Acknowledgements
Not applicable.

Authors’ contributions
JYL conceived of the study, participated in the design of the study, carried out computational experiments, analyzed 
experimental results, and helped to draft the manuscript. BN and CO carried out computational experiments and ana-
lyzed experimental results. MPS conceived of the study, participated in the design of the study, analyzed experimental 
results, and helped to draft the manuscript. All authors read and approved the final manuscript.

https://doi.org/10.1186/s12859-021-04281-7


Page 16 of 17Lee et al. BMC Bioinformatics          (2021) 22:365 

Funding
Funding for JYL and MPS was provided by the National Institutes of Health (www.​nih.​gov, R35-GM119701) and National 
Science Foundation (www.​nsf.​gov, 1254382). The funders had no role in the design of the study or collection, analysis, or 
interpretation of data or writing of the manuscript.

Availability of data and materials
The code created and used during the current study is available at http://​github.​com/​gtSty​Lab/​SCOUR

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 8 March 2021   Accepted: 30 June 2021

References
	1.	 Peregrin-Alvarez JM, Sanford C, Parkinson J. The conservation and evolutionary modularity of metabolism. Genome 

Biol. 2009;10(6):R63.
	2.	 Millard P, Smallbone K, Mendes P. Metabolic regulation is sufficient for global and robust coordination of glucose 

uptake, catabolism, energy production and growth in Escherichia coli. PLoS Comput Biol. 2017;13(2):e1005396.
	3.	 Guarnera E, Berezovsky IN. Allosteric sites: remote control in regulation of protein activity. Curr Opin Struct Biol. 

2016;37:1–8.
	4.	 Rinschen M, Ivanisevic J, Giera M, Siuzdak G. Identification of bioactive metabolites using activity metabolomics. Nat 

Rev Mol Cell Biol. 2019;20(6):353–67.
	5.	 Link H, Kochanowski K, Sauer U. Systematic identification of allosteric protein-metabolite interactions that control 

enzyme activity in vivo. Nat Biotechnol. 2013;31:357–61.
	6.	 Machado D, Herrgard MJ, Rocha I. Modeling the contribution of allosteric regulation for flux control in the central 

carbon metabolism of E. coli. Front Bioeng Biotechnol. 2015;3:154.
	7.	 Berggard T, Linse S, James P. Methods for the detection and analysis of protein–protein interactions. Proteomics. 

2007;7(16):2833–42.
	8.	 Macalino SJY, Basith S, Clavio NAB, Chang H, Kang S, Choi S. Evolution of in silico strategies for protein–protein 

interaction drug discovery. Molecules. 2018;23(8):1963.
	9.	 Diether M, Sauer U. Towards detecting regulatory protein–metabolite interactions. Curr Opin Microbiol. 

2017;39:16–23.
	10.	 Abnizova I, Subhankulova T, Gilks W. Recent computational approaches to understand gene regulation: mining 

gene regulation in silico. Curr Genom. 2007;8(2):79–91.
	11.	 GuhaThakurta D. Computational identification of transcriptional regulatory elements in DNA sequence. Nucleic 

Acids Res. 2006;34(12):3585–98.
	12.	 de Luis Balaguer MA, Fisher AP, Clark NM, Fernandez-Espinosa MG, Moller BK, Weijers D, et al. Predicting gene regula-

tory networks by combining spatial and temporal gene expression data in Arabidopsis root stem cells. Proc Natl 
Acad Sci USA. 2017;114(36):E7632–40.

	13.	 Hackett SR, Baltz EA, Coram M, Wranik BJ, Kim G, Baker A, et al. Learning causal networks using inducible transcrip-
tion factors and transcriptome-wide time series. Mol Syst Biol. 2020;16:e9174.

	14.	 Haque S, Ahmad JS, Clark NM, Williams CM, Sozzani R. Computational prediction of gene regulatory networks in 
plant growth and development. Curr Opin Plant Biol. 2019;47:96–105.

	15.	 Mochida K, Koda S, Inoue K, Nishii R. Statistical and machine learning approaches to predict gene regulatory net-
works from transcriptome datasets. Front Plant Sci. 2018;9:1770.

	16.	 Wang Y, Yang S, Zhao J, Du W, Liang Y, Wang C, et al. Using machine learning to measure relatedness between 
genes: a multi-features model. Sci Rep. 2019;9:1–15.

	17.	 Yang Y, Fang Q, Shen HB. Predicting gene regulatory interactions based on spatial gene expression data and deep 
learning. PLoS Comput Biol. 2019;15(9):e1007324.

	18.	 Lempp M, Farke N, Kuntz M, Freibert SA, Lill R, Link H. Systematic identification of metabolites controlling gene 
expression in E. coli. Nat Commun. 2019;10(1):4463.

	19.	 Oliveira AP, Dimopoulos S, Busetto AG, Christen S, Dechant R, Falter L, et al. Inferring causal metabolic signals that 
regulate the dynamic TORC1-dependent transcriptome. Mol Syst Biol. 2015;11(4):802.

	20.	 Hackett SR, Zanotelli VR, Xu W, Goya J, Park JO, Perlman DH, et al. Systems-level analysis of mechanisms regulating 
yeast metabolic flux. Science. 2016;354(6311):1–17.

	21.	 Huang M, Song K, Liu X, Lu S, Shen Q, Wang R, et al. AlloFinder: a strategy for allosteric modulator discovery and 
allosterome analyses. Nucleic Acids Res. 2018;46(W1):W451–8.

	22.	 Savageau MA, Voit EO, Irvine DH. Biochemical systems theory and metabolic control theory: 1. Fundamental simi-
larities and differences. Math Biosci. 1987;86(2):127–45.

http://www.nih.gov
http://www.nsf.gov
http://github.com/gtStyLab/SCOUR


Page 17 of 17Lee et al. BMC Bioinformatics          (2021) 22:365 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	23.	 Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M. Dynamic modeling of the central carbon 
metabolism of Escherichia coli. Biotechnol Bioeng. 2002;79(1):53–73.

	24.	 Hynne F, Dano S, Sorensen PG. Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys Chem. 
2001;94(1–2):121–63.

	25.	 Ulusu NN. Evolution of enzyme kinetic mechanisms. J Mol Evol. 2015;80(5–6):251–7.
	26.	 Hoffmann J, Bar-Sinai Y, Lee LM, Andrejevic J, Mishra S, Rubinstein SM, et al. Machine learning in a data-

limited regime: augmenting experiments with synthetic data uncovers order in crumpled sheets. Sci Adv. 
2019;5(4):eaau792.

	27.	 Le TA, Baydin AG, Zinkov R, Wood F. Using synthetic data to train neural networks is model-based reasoning. IEEE 
IJCNN. 2017. https://​doi.​org/​10.​1109/​IJCNN.​2017.​79662​98.

	28.	 Radivojevic T, Costello Z, Workman K, Garcia Martin H. A machine learning automated recommendation tool for 
synthetic biology. Nat Commun. 2020;11(1):4879.

	29.	 Schon M, Simeth J, Heinrich P, Gortler F, Solbrig S, Wettig T, et al. DTD: An R package for digital tissue deconvolution. 
J Comput Biol. 2020;27(3):386–9.

	30.	 Wolpert H. Stacked generalization. Neural Netw. 1992;5(2):241–59.
	31.	 Breiman L. Random forests. Mach Learn. 2001;45:5–32.
	32.	 Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967;13(1):21–7.
	33.	 Fix E, Hodges JL. Discriminatory analysis—nonparametric discrimination: consistency properties. San Antonio: 

Randolph Field; 1951.
	34.	 McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biol. 1990;52(1–2):99–

115 (discussion 73–97).
	35.	 Fisher RA. The use of multiple measurements in taxonomic problems. Ann Eugen. 1936;7(2):179–88.
	36.	 Voit EO. Biochemical systems theory: a review. ISRN Biomath. 2013;2013:1–53.
	37.	 Batushansky A, Toubiana D, Fait A. Using graph theory to analyze biological networks. BioMed Res Int. 

2016;2016:1–9.
	38.	 Toubiana D, Puzis R, Wen L, Sikron N, Kurmanbayeva A, Soltabayeva A, et al. Combined network analysis and 

machine learning allows the prediction of metabolic pathways from tomato metabolomics data. Commun Biol. 
2019;2:214.

	39.	 Dromms RA, Styczynski MP. Improved metabolite profile smoothing for flux estimation. Mol Biosyst. 
2015;11(9):2394–405.

	40.	 Thonusin C, IglayReger HB, Soni T, Rothberg AE, Burant CF, Evans CR. Evaluation of intensity drift correction strate-
gies using MetaboDrift, a normalization tool for multi-batch metabolomics data. J Chromatogr A. 2017;1523:265–74.

	41.	 Wei X, Shi X, Kim S, Zhang L, Patrick JS, Binkley J, et al. Data preprocessing method for liquid chromatography-mass 
spectrometry based metabolomics. Anal Chem. 2012;84(18):7963–71.

	42.	 Yang J, Zhao X, Lu X, Lin X, Xu G. A data preprocessing strategy for metabolomics to reduce the mask effect in data 
analysis. Front Mol Biosci. 2015;2:4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/IJCNN.2017.7966298

	SCOUR: a stepwise machine learning framework for predicting metabolite-dependent regulatory interactions
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Metabolic networks
	Synthetic model networks
	Biological models
	Autogenerated training data
	Noisy data
	Data pre-processing
	Features
	Machine learning algorithms and stacking
	Stepwise approach
	Framework performance metrics

	Results
	Performance on noiseless data
	Performance on noisy data

	Discussion
	Conclusions
	Acknowledgements
	References


